### multi_match查詢
multi_match查詢提供了一個簡便的方法用來對多個字段執行相同的查詢。
> 提示:存在幾種類型的multi_match查詢,其中的3種正好和在["單一查詢字符串"小節中"了解你的數據"單元](../110_Multi_Field_Search/10_Single_query_string.md)中提到的幾種類型相同:best_fields,most_fields以及cross_fields。
默認情況下,該查詢以best_fields類型執行,它會為每個字段生成一個match查詢,然后將這些查詢包含在一個dis_max查詢中。下面的dis_max查詢:
```Javascript
{
"dis_max": {
"queries": [
{
"match": {
"title": {
"query": "Quick brown fox",
"minimum_should_match": "30%"
}
}
},
{
"match": {
"body": {
"query": "Quick brown fox",
"minimum_should_match": "30%"
}
}
},
],
"tie_breaker": 0.3
}
}
```
可以通過multi_match簡單地重寫如下:
```Javascript
{
"multi_match": {
"query": "Quick brown fox",
"type": "best_fields", <1>
"fields": [ "title", "body" ],
"tie_breaker": 0.3,
"minimum_should_match": "30%" <2>
}
}
```
// SENSE: 110_Multi_Field_Search/25_Best_fields.json
<1> 注意到以上的type屬性為best_fields。
<2> minimum_should_match和operator參數會被傳入到生成的match查詢中。
#### 在字段名中使用通配符
字段名可以通過通配符指定:任何匹配了通配符的字段都會被包含在搜索中。你可以通過下面的查詢來匹配book_title,chapter_title以及section_title字段:
```Javascript
{
"multi_match": {
"query": "Quick brown fox",
"fields": "*_title"
}
}
```
#### 加權個別字段
個別字段可以通過caret語法(^)進行加權:僅需要在字段名后添加^boost,其中的boost是一個浮點數:
```Javascript
{
"multi_match": {
"query": "Quick brown fox",
"fields": [ "*_title", "chapter_title^2" ] <1>
}
}
```
<1> chapter_title字段的boost值為2,而book_title和section_title字段的boost值為默認的1。
<!--
[[multi-match-query]]
=== multi_match Query
The `multi_match` query provides ((("multifield search", "multi_match query")))((("multi_match queries")))((("match query", "multi_match queries"))) a convenient shorthand way of running
the same query against multiple fields.
[NOTE]
====
There are several types of `multi_match` query, three of which just
happen to coincide with the three scenarios that we listed in
<<know-your-data>>: `best_fields`, `most_fields`, and `cross_fields`.
====
By default, this query runs as type `best_fields`, which means((("best fields queries", "multi-match queries")))((("dis_max (disjunction max) query", "multi_match query wrapped in"))) that it generates a
`match` query for each field and wraps them in a `dis_max` query. This
`dis_max` query
[source,js]
--------------------------------------------------
{
"dis_max": {
"queries": [
{
"match": {
"title": {
"query": "Quick brown fox",
"minimum_should_match": "30%"
}
}
},
{
"match": {
"body": {
"query": "Quick brown fox",
"minimum_should_match": "30%"
}
}
},
],
"tie_breaker": 0.3
}
}
--------------------------------------------------
could be rewritten more concisely with `multi_match` as follows:
[source,js]
--------------------------------------------------
{
"multi_match": {
"query": "Quick brown fox",
"type": "best_fields", <1>
"fields": [ "title", "body" ],
"tie_breaker": 0.3,
"minimum_should_match": "30%" <2>
}
}
--------------------------------------------------
// SENSE: 110_Multi_Field_Search/25_Best_fields.json
<1> The `best_fields` type is the default and can be left out.
<2> Parameters like `minimum_should_match` or `operator` are passed through to
the generated `match` queries.
==== Using Wildcards in Field Names
Field names can be specified with wildcards: any field that matches the
wildcard pattern((("multi_match queries", "wildcards in field names")))((("wildcards in field names")))((("fields", "wildcards in field names"))) will be included in the search. You could match on the
`book_title`, `chapter_title`, and `section_title` fields, with the following:
[source,js]
--------------------------------------------------
{
"multi_match": {
"query": "Quick brown fox",
"fields": "*_title"
}
}
--------------------------------------------------
==== Boosting Individual Fields
Individual fields can be boosted by using the caret (`^`) syntax: just add
`^boost` after the field((("multi_match queries", "boosting individual fields")))((("boost parameter", "boosting individual fields in multi_match queries"))) name, where `boost` is a floating-point number:
[source,js]
--------------------------------------------------
{
"multi_match": {
"query": "Quick brown fox",
"fields": [ "*_title", "chapter_title^2" ] <1>
}
}
--------------------------------------------------
<1> The `chapter_title` field has a `boost` of `2`, while the `book_title` and
`section_title` fields have a default boost of `1`.
-->
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion