#分布式搜索的執行方式
在繼續之前,我們將繞道講一下搜索是如何在分布式環境中執行的。 <!--"distributed search execution"--> 它比我們之前講的基礎的_增刪改查_(_create-read-update-delete_ ,CRUD)<!--"CRUD (create-read-update-delete) operations"-->請求要復雜一些。
> ####注意:
> 本章的信息只是出于興趣閱讀,使用Elasticsearch并不需要理解和記住這里的所有細節。
> 閱讀這一章只是增加對系統如何工作的了解,并讓你知道這些信息以備以后參考,所以別淹沒在細節里。
一個CRUD操作只處理一個單獨的文檔。文檔的唯一性由`_index`, `_type`和`routing-value`(通常默認是該文檔的`_id`)的組合來確定。這意味著我們可以準確知道集群中的哪個分片持有這個文檔。
由于不知道哪個文檔會匹配查詢(文檔可能存放在集群中的任意分片上),所以搜索需要一個更復雜的模型。一個搜索不得不通過查詢每一個我們感興趣的索引的分片副本,來看是否含有任何匹配的文檔。
但是,找到所有匹配的文檔只完成了這件事的一半。在搜索(`search`)API返回一頁結果前,來自多個分片的結果必須被組合放到一個有序列表中。因此,搜索的執行過程分兩個階段,稱為_查詢然后取回_(_query then fetch_)。
<!--
[[distributed-search]]
== Distributed Search Execution
Before moving on, we are going to take a detour and talk about how search is
executed in a distributed environment.((("distributed search execution"))) It is a bit more complicated than the
basic _create-read-update-delete_ (CRUD) requests((("CRUD (create-read-update-delete) operations"))) that we discussed in
<<distributed-docs>>.
.Content Warning
****
The information presented in this chapter is for your interest. You are not required to
understand and remember all the detail in order to use Elasticsearch.
Read this chapter to gain a taste for how things work, and to know where the
information is in case you need to refer to it in the future, but don't be
overwhelmed by the detail.
****
A CRUD operation deals with a single document that has a unique combination of
`_index`, `_type`, and <<routing-value,`routing` values>> (which defaults to the
document's `_id`). This means that we know exactly which shard in the cluster
holds that document.
Search requires a more complicated execution model because we don't know which
documents will match the query: they could be on any shard in the cluster. A
search request has to consult a copy of every shard in the index or indices
we're interested in to see if they have any matching documents.
But finding all matching documents is only half the story. Results from
multiple shards must be combined into a single sorted list before the `search`
API can return a ``page'' of results. For this reason, search is executed in a
two-phase process called _query then fetch_.
-->
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion