[[asciifolding-token-filter]]
=== You Have an Accent
English uses diacritics (like `′`, `^`, and `¨`) only for imported words--like `r?le`, ++déjà++, and `d?is`—but usually they are optional. ((("diacritics")))((("tokens", "normalizing", "diacritics"))) Other
languages require diacritics in order to be correct. Of course, just because
words are spelled correctly in your index doesn't mean that the user will
search for the correct spelling.
It is often useful to strip diacritics from words, allowing `r?le` to match
`role`, and vice versa. With Western languages, this can be done with the
`asciifolding` character filter.((("asciifolding character filter"))) Actually, it does more than just strip
diacritics. It tries to convert many Unicode characters into a simpler ASCII
representation:
* `?` => `ss`
* `?` => `ae`
* `?` => `l`
* `?` => `m`
* `?` => `??`
* `?` => `2`
* `?` => `6`
Like the `lowercase` filter, the `asciifolding` filter doesn't require any
configuration but can be included directly in a `custom` analyzer:
[source,js]
--------------------------------------------------
PUT /my_index
{
"settings": {
"analysis": {
"analyzer": {
"folding": {
"tokenizer": "standard",
"filter": [ "lowercase", "asciifolding" ]
}
}
}
}
}
GET /my_index?analyzer=folding
My ?sophagus caused a débacle <1>
--------------------------------------------------
<1> Emits `my`, `oesophagus`, `caused`, `a`, `debacle`
==== Retaining Meaning
Of course, when you strip diacritical marks from a word, you lose meaning.
For instance, consider((("diacritics", "stripping, meaning loss from"))) these three ((("Spanish", "stripping diacritics, meaning loss from")))Spanish words:
`esta`::
Feminine form of the adjective _this_, as in _esta silla_ (this chair) or _esta_ (this one).
`ésta`::
An archaic form of `esta`.
`está`::
The third-person form of the verb _estar_ (to be), as in _está feliz_ (he is happy).
While we would like to conflate the first two forms, they differ in meaning
from the third form, which we would like to keep separate. Similarly:
`sé`::
The first person form of the verb _saber_ (to know) as in _Yo sé_ (I know).
`se`::
The third-person reflexive pronoun used with many verbs, such as _se sabe_ (it is known).
Unfortunately, there is no easy way to separate words that should have
their diacritics removed from words that shouldn't. And it is quite likely
that your users won't know either.
Instead, we index the text twice: once in the original form and once with
diacritics ((("indexing", "text with diacritics removed")))removed:
[source,js]
--------------------------------------------------
PUT /my_index/_mapping/my_type
{
"properties": {
"title": { <1>
"type": "string",
"analyzer": "standard",
"fields": {
"folded": { <2>
"type": "string",
"analyzer": "folding"
}
}
}
}
}
--------------------------------------------------
<1> The `title` field uses the `standard` analyzer and will contain
the original word with diacritics in place.
<2> The `title.folded` field uses the `folding` analyzer, which strips
the diacritical marks.((("folding analyzer")))
You can test the field mappings by using the `analyze` API on the sentence
_Esta está loca_ (This woman is crazy):
[source,js]
--------------------------------------------------
GET /my_index/_analyze?field=title <1>
Esta está loca
GET /my_index/_analyze?field=title.folded <2>
Esta está loca
--------------------------------------------------
<1> Emits `esta`, `está`, `loca`
<2> Emits `esta`, `esta`, `loca`
Let's index some documents to test it out:
[source,js]
--------------------------------------------------
PUT /my_index/my_type/1
{ "title": "Esta loca!" }
PUT /my_index/my_type/2
{ "title": "Está loca!" }
--------------------------------------------------
Now we can search across both fields, using the `multi_match` query in
<<most-fields,`most_fields` mode>> to combine the scores from each field:
[source,js]
--------------------------------------------------
GET /my_index/_search
{
"query": {
"multi_match": {
"type": "most_fields",
"query": "esta loca",
"fields": [ "title", "title.folded" ]
}
}
}
--------------------------------------------------
Running this query through the `validate-query` API helps to explain how the
query is executed:
[source,js]
--------------------------------------------------
GET /my_index/_validate/query?explain
{
"query": {
"multi_match": {
"type": "most_fields",
"query": "está loca",
"fields": [ "title", "title.folded" ]
}
}
}
--------------------------------------------------
The `multi-match` query searches for the original form of the word (`está`) in the `title` field,
and the form without diacritics `esta` in the `title.folded` field:
(title:está title:loca )
(title.folded:esta title.folded:loca)
It doesn't matter whether the user searches for `esta` or `está`; both
documents will match because the form without diacritics exists in the the
`title.folded` field. However, only the original form exists in the `title`
field. This extra match will push the document containing the original form of
the word to the top of the results list.
We use the `title.folded` field to _widen the net_ in order to match more
documents, and use the original `title` field to push the most relevant
document to the top. This same technique can be used wherever an analyzer is
used, to increase matches at the expense of meaning.
[TIP]
=================================================
The `asciifolding` filter does have an option called `preserve_original` that
allows you to index the((("asciifolding character filter", "preserve_original option"))) original token and the folded token in the same
position in the same field. With this option enabled, you would end up with
something like this:
Position 1 Position 2
--------------------------
(ésta,esta) loca
--------------------------
While this appears to be a nice way to save space, it does mean that you have
no way of saying, ``Give me an exact match on the original word.'' Mixing
tokens with and without diacritics can also end up interfering with term-frequency counts, resulting in less-reliable relevance calcuations.
As a rule, it is cleaner to index each field variant into a separate field,
as we have done in this section.
=================================================
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion