<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                ## 按距離聚合 按距離聚合對于類似“找出距我1公里內的所有pizza店”這樣的檢索場景很適合。 檢索結果需要確實地只返回距離用戶1km內的文檔,不過我們可以再加上一個“1-2km內的結果集”: ```json GET /attractions/restaurant/_search { "query": { "filtered": { "query": { "match": { <1> "name": "pizza" } }, "filter": { "geo_bounding_box": { "location": { <2> "top_left": { "lat": 40,8, "lon": -74.1 }, "bottom_right": { "lat": 40.4, "lon": -73.7 } } } } } }, "aggs": { "per_ring": { "geo_distance": { <3> "field": "location", "unit": "km", "origin": { "lat": 40.712, "lon": -73.988 }, "ranges": [ { "from": 0, "to": 1 }, { "from": 1, "to": 2 } ] } } }, "post_filter": { <4> "geo_distance": { "distance": "1km", "location": { "lat": 40.712, "lon": -73.988 } } } } ``` - <1> 主查詢查找飯店名中包含了 “pizza” 的文檔。 - <2> 矩形框過濾器讓結果集縮小到紐約區域。 - <3> 距離聚合器計算距用戶1km和1km-2km的結果數。 - <4> 最后,后置過濾器(`post_filter`)再把結果縮小到距離用戶1km的飯店。 上例請求的返回結果如下: ```json "hits": { "total": 1, "max_score": 0.15342641, "hits": [ <1> { "_index": "attractions", "_type": "restaurant", "_id": "3", "_score": 0.15342641, "_source": { "name": "Mini Munchies Pizza", "location": [ -73.983, 40.719 ] } } ] }, "aggregations": { "per_ring": { <2> "buckets": [ { "key": "*-1.0", "from": 0, "to": 1, "doc_count": 1 }, { "key": "1.0-2.0", "from": 1, "to": 2, "doc_count": 1 } ] } } ``` - <1> 后置過濾器(`post_filter`)已經結果集縮小到滿足“距離用戶1km”條件下的唯一一個pizza店。 - <2> 聚合器包含了"距離用戶2km"的pizza店的檢索結果。 這個例子中,我們統計了落到各個環形區域中的飯店數。 當然,我們也可以使用子聚合器再在每個環形區域中進一步計算它們的平均價格,最流行,等等。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看