[[_scoping_aggregations]]
== Scoping Aggregations
With all of the aggregation examples given so far, you may have noticed that we
omitted a `query` from the search request. ((("queries", "in aggregations")))((("aggregations", "scoping"))) The entire request was
simply an aggregation.
Aggregations can be run at the same time as search requests, but you need to
understand a new concept: _scope_. ((("scoping aggregations", id="ix_scopeaggs", range="startofrange"))) By default, aggregations operate in the same
scope as the query. Put another way, aggregations are calculated on the set of
documents that match your query.
Let's look at one of our first aggregation examples:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"aggs" : {
"colors" : {
"terms" : {
"field" : "color"
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/40_scope.json
You can see that the aggregation is in isolation. In reality, Elasticsearch
assumes "no query specified" is equivalent to "query all documents." The preceding
query is internally translated as follows:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"query" : {
"match_all" : {}
},
"aggs" : {
"colors" : {
"terms" : {
"field" : "color"
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/40_scope.json
The aggregation always operates in the scope of the query, so an isolated
aggregation really operates in the scope of ((("match_all query", "isolated aggregations in scope of")))a `match_all` query--that is to say,
all documents.
Once armed with the knowledge of scoping, we can start to customize
aggregations even further. All of our previous examples calculated statistics
about _all_ of the data: top-selling cars, average price of all cars, most sales
per month, and so forth.
With scope, we can ask questions such as "How many colors are Ford cars are
available in?" We do this by simply adding a query to the request (in this case
a `match` query):
[source,js]
--------------------------------------------------
GET /cars/transactions/_search <1>
{
"query" : {
"match" : {
"make" : "ford"
}
},
"aggs" : {
"colors" : {
"terms" : {
"field" : "color"
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/40_scope.json
<1> We are omitting `search_type=count` so((("search_type", "count"))) that search hits are returned too.
By omitting the `search_type=count` this time, we can see both the search
results and the aggregation results:
[source,js]
--------------------------------------------------
{
...
"hits": {
"total": 2,
"max_score": 1.6931472,
"hits": [
{
"_source": {
"price": 25000,
"color": "blue",
"make": "ford",
"sold": "2014-02-12"
}
},
{
"_source": {
"price": 30000,
"color": "green",
"make": "ford",
"sold": "2014-05-18"
}
}
]
},
"aggregations": {
"colors": {
"buckets": [
{
"key": "blue",
"doc_count": 1
},
{
"key": "green",
"doc_count": 1
}
]
}
}
}
--------------------------------------------------
This may seem trivial, but it is the key to advanced and powerful dashboards.
You can transform any static dashboard into a real-time data exploration device
by adding a search bar.((("dashboards", "adding a search bar"))) This allows the user to search for terms and see all
of the graphs (which are powered by aggregations, and thus scoped to the query)
update in real time. Try that with Hadoop!
[float]
=== Global Bucket
You'll often want your aggregation to be scoped to your query. But sometimes
you'll want to search for a subset of data, but aggregate across _all_ of
your data.((("aggregations", "scoping", "global bucket")))((("scoping aggregations", "using a global bucket")))
For example, say you want to know the average price of Ford cars compared to the
average price of _all_ cars. We can use a regular aggregation (scoped to the query)
to get the first piece of information. The second piece of information can be
obtained by using((("buckets", "global")))((("global bucket"))) a `global` bucket.
The +global+ bucket will contain _all_ of your documents, regardless of the query
scope; it bypasses the scope completely. Because it is a bucket, you can nest
aggregations inside it as usual:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"query" : {
"match" : {
"make" : "ford"
}
},
"aggs" : {
"single_avg_price": {
"avg" : { "field" : "price" } <1>
},
"all": {
"global" : {}, <2>
"aggs" : {
"avg_price": {
"avg" : { "field" : "price" } <3>
}
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/40_scope.json
<1> This aggregation operates in the query scope (for example, all docs matching +ford+)
<2> The `global` bucket has no parameters.
<3> This aggregation operates on the all documents, regardless of the make.
The +single_avg_price+ metric calculation is based on all documents that fall under the
query scope--all +ford+ cars. The +avg_price+ metric is nested under a
`global` bucket, which means it ignores scoping entirely and calculates on
all the documents. The average returned for that aggregation represents
the average price of all cars.
If you've made it this far in the book, you'll recognize the mantra: use a filter
wherever you can. The same applies to aggregations, and in the next chapter
we show you how to filter an aggregation instead of just limiting the query
scope.((("scoping aggregations", range="endofrange", startref="ix_scopeaggs")))
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion