[[time-based]]
=== Time-Based Data
One of the most common use cases for Elasticsearch is for logging,((("logging", "using Elasticsearch for")))((("time-based data")))((("scaling", "time-based data and"))) so common
in fact that Elasticsearch provides an integrated((("ELK stack"))) logging platform called the
_ELK stack_—Elasticsearch, Logstash, and Kibana--to make the process easy.
http://www.elasticsearch.org/overview/logstash[Logstash] collects, parses, and
enriches logs before indexing them into Elasticsearch.((("Logstash"))) Elasticsearch acts as
a centralized logging server, and
http://www.elasticsearch.org/overview/kibana[Kibana] is a((("Kibana"))) graphic frontend
that makes it easy to query and visualize what is happening across your
network in near real-time.
Most traditional use cases for search engines involve a relatively static
collection of documents that grows slowly. Searches look for the most relevant
documents, regardless of when they were created.
Logging--and other time-based data streams such as social-network activity--are very different in nature. ((("social-network activity"))) The number of documents in the index grows
rapidly, often accelerating with time. Documents are almost never updated,
and searches mostly target the most recent documents. As documents age, they
lose value.
We need to adapt our index design to function with the flow of time-based
data.
[[index-per-timeframe]]
==== Index per Time Frame
If we were to have one big index for documents of this type, we would soon run
out of space. Logging events just keep on coming, without pause or
interruption. We could delete the old events, with a `delete-by-query`:
[source,json]
-------------------------
DELETE /logs/event/_query
{
"query": {
"range": {
"@timestamp": { <1>
"lt": "now-90d"
}
}
}
}
-------------------------
<1> Deletes all documents where Logstash's `@timestamp` field is
older than 90 days.
But this approach is _very inefficient_. Remember that when you delete a
document, it is only _marked_ as deleted (see <<deletes-and-updates>>). It won't
be physically deleted until the segment containing it is merged away.
Instead, use an _index per time frame_. ((("indices", "index per-timeframe")))You could start out with an index per
year (`logs_2014`) or per month (`logs_2014-10`). Perhaps, when your
website gets really busy, you need to switch to an index per day
(`logs_2014-10-24`). Purging old data is easy: just delete old indices.
This approach has the advantage of allowing you to scale as and when you need
to. You don't have to make any difficult decisions up front. Every day is a
new opportunity to change your indexing time frames to suit the current demand.
Apply the same logic to how big you make each index. Perhaps all you need is
one primary shard per week initially. Later, maybe you need five primary shards
per day. It doesn't matter--you can adjust to new circumstances at any
time.
Aliases can help make switching indices more transparent.((("aliases, index"))) For indexing,
you can point `logs_current` to the index currently accepting new log events,
and for searching, update `last_3_months` to point to all indices for the
previous three months:
[source,json]
-------------------------
POST /_aliases
{
"actions": [
{ "add": { "alias": "logs_current", "index": "logs_2014-10" }}, <1>
{ "remove": { "alias": "logs_current", "index": "logs_2014-09" }}, <1>
{ "add": { "alias": "last_3_months", "index": "logs_2014-10" }}, <2>
{ "remove": { "alias": "last_3_months", "index": "logs_2014-07" }} <2>
]
}
-------------------------
<1> Switch `logs_current` from September to October.
<2> Add October to `last_3_months` and remove July.
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion