<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                # 實現彈性網絡回歸 彈性網絡回歸是一種回歸類型,通過將 L1 和 L2 正則化項添加到損失函數,將套索回歸與嶺回歸相結合。 ## 做好準備 在前兩個秘籍之后實現彈性網絡回歸應該是直截了當的,因此我們將在虹膜數據集上的多元線性回歸中實現這一點,而不是像以前那樣堅持二維數據。我們將使用花瓣長度,花瓣寬度和萼片寬度來預測萼片長度。 ## 操作步驟 我們按如下方式處理秘籍: 1. 首先,我們加載必要的庫并初始化圖,如下所示: ```py import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets sess = tf.Session() ``` 1. 現在,我們加載數據。這次,`x`數據的每個元素將是三個值的列表而不是一個。使用以下代碼: ```py iris = datasets.load_iris() x_vals = np.array([[x[1], x[2], x[3]] for x in iris.data]) y_vals = np.array([y[0] for y in iris.data]) ``` 1. 接下來,我們聲明批量大小,占位符,變量和模型輸出。這里唯一的區別是我們更改`x`數據占位符的大小規范,取三個值而不是一個,如下所示: ```py batch_size = 50 learning_rate = 0.001 x_data = tf.placeholder(shape=[None, 3], dtype=tf.float32) y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) A = tf.Variable(tf.random_normal(shape=[3,1])) b = tf.Variable(tf.random_normal(shape=[1,1])) model_output = tf.add(tf.matmul(x_data, A), b) ``` 1. 對于彈性網絡,損失函數具有部分斜率的 L1 和 L2 范數。我們創建這些術語,然后將它們添加到損失函數中,如下所示: ```py elastic_param1 = tf.constant(1.) elastic_param2 = tf.constant(1.) l1_a_loss = tf.reduce_mean(tf.abs(A)) l2_a_loss = tf.reduce_mean(tf.square(A)) e1_term = tf.multiply(elastic_param1, l1_a_loss) e2_term = tf.multiply(elastic_param2, l2_a_loss) loss = tf.expand_dims(tf.add(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), e1_term), e2_term), 0) ``` 1. 現在,我們可以初始化變量,聲明我們的優化函數,運行訓練循環,并擬合我們的系數,如下所示: ```py init = tf.global_variables_initializer() sess.run(init) my_opt = tf.train.GradientDescentOptimizer(learning_rate) train_step = my_opt.minimize(loss) loss_vec = [] for i in range(1000): rand_index = np.random.choice(len(x_vals), size=batch_size) rand_x = x_vals[rand_index] rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss[0]) if (i+1)%250==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b))) print('Loss = ' + str(temp_loss)) ``` 1. 這是代碼的輸出: ```py Step #250 A = [[ 0.42095602] [ 0.1055888 ] [ 1.77064979]] b = [[ 1.76164341]] Loss = [ 2.87764359] Step #500 A = [[ 0.62762028] [ 0.06065864] [ 1.36294949]] b = [[ 1.87629771]] Loss = [ 1.8032167] Step #750 A = [[ 0.67953539] [ 0.102514 ] [ 1.06914485]] b = [[ 1.95604002]] Loss = [ 1.33256555] Step #1000 A = [[ 0.6777274 ] [ 0.16535147] [ 0.8403284 ]] b = [[ 2.02246833]] Loss = [ 1.21458709] ``` 1. 現在,我們可以觀察訓練迭代的損失,以確保算法收斂,如下所示: ```py plt.plot(loss_vec, 'k-') plt.title('Loss per Generation') plt.xlabel('Generation') plt.ylabel('Loss') plt.show() ``` 我們得到上面代碼的以下圖: ![](https://img.kancloud.cn/9f/c4/9fc48cecf63339931cbdde8cba63cc3a_393x281.png) 圖 10:在 1,000 次訓練迭代中繪制的彈性凈回歸損失 ## 工作原理 這里實現彈性網絡回歸以及多元線性回歸。我們可以看到,利用損失函數中的這些正則化項,收斂速度比先前的秘籍慢。正則化就像在損失函數中添加適當的術語一樣簡單。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看