### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](2.0.xhtml "What's New in Python 2.0") |
- [上一頁](2.2.xhtml "What's New in Python 2.2") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 有什么新變化?](index.xhtml) ?
- $('.inline-search').show(0); |
# What's New in Python 2.1
作者A.M. Kuchling
## 概述
This article explains the new features in Python 2.1. While there aren't as many changes in 2.1 as there were in Python 2.0, there are still some pleasant surprises in store. 2.1 is the first release to be steered through the use of Python Enhancement Proposals, or PEPs, so most of the sizable changes have accompanying PEPs that provide more complete documentation and a design rationale for the change. This article doesn't attempt to document the new features completely, but simply provides an overview of the new features for Python programmers. Refer to the Python 2.1 documentation, or to the specific PEP, for more details about any new feature that particularly interests you.
One recent goal of the Python development team has been to accelerate the pace of new releases, with a new release coming every 6 to 9 months. 2.1 is the first release to come out at this faster pace, with the first alpha appearing in January, 3 months after the final version of 2.0 was released.
The final release of Python 2.1 was made on April 17, 2001.
## PEP 227: Nested Scopes
The largest change in Python 2.1 is to Python's scoping rules. In Python 2.0, at any given time there are at most three namespaces used to look up variable names: local, module-level, and the built-in namespace. This often surprised people because it didn't match their intuitive expectations. For example, a nested recursive function definition doesn't work:
```
def f():
...
def g(value):
...
return g(value-1) + 1
...
```
The function `g()` will always raise a [`NameError`](../library/exceptions.xhtml#NameError "NameError") exception, because the binding of the name `g` isn't in either its local namespace or in the module-level namespace. This isn't much of a problem in practice (how often do you recursively define interior functions like this?), but this also made using the [`lambda`](../reference/expressions.xhtml#lambda) expression clumsier, and this was a problem in practice. In code which uses [`lambda`](../reference/expressions.xhtml#lambda) you can often find local variables being copied by passing them as the default values of arguments.
```
def find(self, name):
"Return list of any entries equal to 'name'"
L = filter(lambda x, name=name: x == name,
self.list_attribute)
return L
```
The readability of Python code written in a strongly functional style suffers greatly as a result.
The most significant change to Python 2.1 is that static scoping has been added to the language to fix this problem. As a first effect, the `name=name`default argument is now unnecessary in the above example. Put simply, when a given variable name is not assigned a value within a function (by an assignment, or the [`def`](../reference/compound_stmts.xhtml#def), [`class`](../reference/compound_stmts.xhtml#class), or [`import`](../reference/simple_stmts.xhtml#import) statements), references to the variable will be looked up in the local namespace of the enclosing scope. A more detailed explanation of the rules, and a dissection of the implementation, can be found in the PEP.
This change may cause some compatibility problems for code where the same variable name is used both at the module level and as a local variable within a function that contains further function definitions. This seems rather unlikely though, since such code would have been pretty confusing to read in the first place.
One side effect of the change is that the `from module import *` and `exec` statements have been made illegal inside a function scope under certain conditions. The Python reference manual has said all along that
```
from
module import *
```
is only legal at the top level of a module, but the CPython interpreter has never enforced this before. As part of the implementation of nested scopes, the compiler which turns Python source into bytecodes has to generate different code to access variables in a containing scope.
```
from
module import *
```
and `exec` make it impossible for the compiler to figure this out, because they add names to the local namespace that are unknowable at compile time. Therefore, if a function contains function definitions or [`lambda`](../reference/expressions.xhtml#lambda) expressions with free variables, the compiler will flag this by raising a [`SyntaxError`](../library/exceptions.xhtml#SyntaxError "SyntaxError") exception.
To make the preceding explanation a bit clearer, here's an example:
```
x = 1
def f():
# The next line is a syntax error
exec 'x=2'
def g():
return x
```
Line 4 containing the `exec` statement is a syntax error, since `exec` would define a new local variable named `x` whose value should be accessed by `g()`.
This shouldn't be much of a limitation, since `exec` is rarely used in most Python code (and when it is used, it's often a sign of a poor design anyway).
Compatibility concerns have led to nested scopes being introduced gradually; in Python 2.1, they aren't enabled by default, but can be turned on within a module by using a future statement as described in PEP 236. (See the following section for further discussion of PEP 236.) In Python 2.2, nested scopes will become the default and there will be no way to turn them off, but users will have had all of 2.1's lifetime to fix any breakage resulting from their introduction.
參見
[**PEP 227**](https://www.python.org/dev/peps/pep-0227) \[https://www.python.org/dev/peps/pep-0227\] - Statically Nested ScopesWritten and implemented by Jeremy Hylton.
## PEP 236: \_\_future\_\_ Directives
The reaction to nested scopes was widespread concern about the dangers of breaking code with the 2.1 release, and it was strong enough to make the Pythoneers take a more conservative approach. This approach consists of introducing a convention for enabling optional functionality in release N that will become compulsory in release N+1.
The syntax uses a `from...import` statement using the reserved module name [`__future__`](../library/__future__.xhtml#module-__future__ "__future__: Future statement definitions"). Nested scopes can be enabled by the following statement:
```
from __future__ import nested_scopes
```
While it looks like a normal [`import`](../reference/simple_stmts.xhtml#import) statement, it's not; there are strict rules on where such a future statement can be put. They can only be at the top of a module, and must precede any Python code or regular `import` statements. This is because such statements can affect how the Python bytecode compiler parses code and generates bytecode, so they must precede any statement that will result in bytecodes being produced.
參見
[**PEP 236**](https://www.python.org/dev/peps/pep-0236) \[https://www.python.org/dev/peps/pep-0236\] - Back to the [`__future__`](../library/__future__.xhtml#module-__future__ "__future__: Future statement definitions")Written by Tim Peters, and primarily implemented by Jeremy Hylton.
## PEP 207: Rich Comparisons
In earlier versions, Python's support for implementing comparisons on user-defined classes and extension types was quite simple. Classes could implement a `__cmp__()` method that was given two instances of a class, and could only return 0 if they were equal or +1 or -1 if they weren't; the method couldn't raise an exception or return anything other than a Boolean value. Users of Numeric Python often found this model too weak and restrictive, because in the number-crunching programs that numeric Python is used for, it would be more useful to be able to perform elementwise comparisons of two matrices, returning a matrix containing the results of a given comparison for each element. If the two matrices are of different sizes, then the compare has to be able to raise an exception to signal the error.
In Python 2.1, rich comparisons were added in order to support this need. Python classes can now individually overload each of the `<`, `<=`, `>`, `>=`, `==`, and `!=` operations. The new magic method names are:
運算
Method name
`<`
[`__lt__()`](../reference/datamodel.xhtml#object.__lt__ "object.__lt__")
`<=`
[`__le__()`](../reference/datamodel.xhtml#object.__le__ "object.__le__")
`>`
[`__gt__()`](../reference/datamodel.xhtml#object.__gt__ "object.__gt__")
`>=`
[`__ge__()`](../reference/datamodel.xhtml#object.__ge__ "object.__ge__")
`==`
[`__eq__()`](../reference/datamodel.xhtml#object.__eq__ "object.__eq__")
`!=`
[`__ne__()`](../reference/datamodel.xhtml#object.__ne__ "object.__ne__")
(The magic methods are named after the corresponding Fortran operators `.LT.`. `.LE.`, &c. Numeric programmers are almost certainly quite familiar with these names and will find them easy to remember.)
Each of these magic methods is of the form `method(self, other)`, where `self` will be the object on the left-hand side of the operator, while `other` will be the object on the right-hand side. For example, the expression `A < B` will cause `A.__lt__(B)` to be called.
Each of these magic methods can return anything at all: a Boolean, a matrix, a list, or any other Python object. Alternatively they can raise an exception if the comparison is impossible, inconsistent, or otherwise meaningless.
The built-in `cmp(A,B)` function can use the rich comparison machinery, and now accepts an optional argument specifying which comparison operation to use; this is given as one of the strings `"<"`, `"<="`, `">"`, `">="`, `"=="`, or `"!="`. If called without the optional third argument, `cmp()` will only return -1, 0, or +1 as in previous versions of Python; otherwise it will call the appropriate method and can return any Python object.
There are also corresponding changes of interest to C programmers; there's a new slot `tp_richcmp` in type objects and an API for performing a given rich comparison. I won't cover the C API here, but will refer you to PEP 207, or to 2.1's C API documentation, for the full list of related functions.
參見
[**PEP 207**](https://www.python.org/dev/peps/pep-0207) \[https://www.python.org/dev/peps/pep-0207\] - Rich ComparisonsWritten by Guido van Rossum, heavily based on earlier work by David Ascher, and implemented by Guido van Rossum.
## PEP 230: Warning Framework
Over its 10 years of existence, Python has accumulated a certain number of obsolete modules and features along the way. It's difficult to know when a feature is safe to remove, since there's no way of knowing how much code uses it --- perhaps no programs depend on the feature, or perhaps many do. To enable removing old features in a more structured way, a warning framework was added. When the Python developers want to get rid of a feature, it will first trigger a warning in the next version of Python. The following Python version can then drop the feature, and users will have had a full release cycle to remove uses of the old feature.
Python 2.1 adds the warning framework to be used in this scheme. It adds a [`warnings`](../library/warnings.xhtml#module-warnings "warnings: Issue warning messages and control their disposition.") module that provide functions to issue warnings, and to filter out warnings that you don't want to be displayed. Third-party modules can also use this framework to deprecate old features that they no longer wish to support.
For example, in Python 2.1 the `regex` module is deprecated, so importing it causes a warning to be printed:
```
>>> import regex
__main__:1: DeprecationWarning: the regex module
is deprecated; please use the re module
>>>
```
Warnings can be issued by calling the [`warnings.warn()`](../library/warnings.xhtml#warnings.warn "warnings.warn") function:
```
warnings.warn("feature X no longer supported")
```
The first parameter is the warning message; an additional optional parameters can be used to specify a particular warning category.
Filters can be added to disable certain warnings; a regular expression pattern can be applied to the message or to the module name in order to suppress a warning. For example, you may have a program that uses the `regex` module and not want to spare the time to convert it to use the [`re`](../library/re.xhtml#module-re "re: Regular expression operations.") module right now. The warning can be suppressed by calling
```
import warnings
warnings.filterwarnings(action = 'ignore',
message='.*regex module is deprecated',
category=DeprecationWarning,
module = '__main__')
```
This adds a filter that will apply only to warnings of the class [`DeprecationWarning`](../library/exceptions.xhtml#DeprecationWarning "DeprecationWarning") triggered in the [`__main__`](../library/__main__.xhtml#module-__main__ "__main__: The environment where the top-level script is run.") module, and applies a regular expression to only match the message about the `regex` module being deprecated, and will cause such warnings to be ignored. Warnings can also be printed only once, printed every time the offending code is executed, or turned into exceptions that will cause the program to stop (unless the exceptions are caught in the usual way, of course).
Functions were also added to Python's C API for issuing warnings; refer to PEP 230 or to Python's API documentation for the details.
參見
[**PEP 5**](https://www.python.org/dev/peps/pep-0005) \[https://www.python.org/dev/peps/pep-0005\] - Guidelines for Language EvolutionWritten by Paul Prescod, to specify procedures to be followed when removing old features from Python. The policy described in this PEP hasn't been officially adopted, but the eventual policy probably won't be too different from Prescod's proposal.
[**PEP 230**](https://www.python.org/dev/peps/pep-0230) \[https://www.python.org/dev/peps/pep-0230\] - Warning FrameworkWritten and implemented by Guido van Rossum.
## PEP 229: New Build System
When compiling Python, the user had to go in and edit the `Modules/Setup`file in order to enable various additional modules; the default set is relatively small and limited to modules that compile on most Unix platforms. This means that on Unix platforms with many more features, most notably Linux, Python installations often don't contain all useful modules they could.
Python 2.0 added the Distutils, a set of modules for distributing and installing extensions. In Python 2.1, the Distutils are used to compile much of the standard library of extension modules, autodetecting which ones are supported on the current machine. It's hoped that this will make Python installations easier and more featureful.
Instead of having to edit the `Modules/Setup` file in order to enable modules, a `setup.py` script in the top directory of the Python source distribution is run at build time, and attempts to discover which modules can be enabled by examining the modules and header files on the system. If a module is configured in `Modules/Setup`, the `setup.py` script won't attempt to compile that module and will defer to the `Modules/Setup` file's contents. This provides a way to specific any strange command-line flags or libraries that are required for a specific platform.
In another far-reaching change to the build mechanism, Neil Schemenauer restructured things so Python now uses a single makefile that isn't recursive, instead of makefiles in the top directory and in each of the `Python/`, `Parser/`, `Objects/`, and `Modules/` subdirectories. This makes building Python faster and also makes hacking the Makefiles clearer and simpler.
參見
[**PEP 229**](https://www.python.org/dev/peps/pep-0229) \[https://www.python.org/dev/peps/pep-0229\] - Using Distutils to Build PythonWritten and implemented by A.M. Kuchling.
## PEP 205: Weak References
Weak references, available through the [`weakref`](../library/weakref.xhtml#module-weakref "weakref: Support for weak references and weak dictionaries.") module, are a minor but useful new data type in the Python programmer's toolbox.
Storing a reference to an object (say, in a dictionary or a list) has the side effect of keeping that object alive forever. There are a few specific cases where this behaviour is undesirable, object caches being the most common one, and another being circular references in data structures such as trees.
For example, consider a memoizing function that caches the results of another function `f(x)` by storing the function's argument and its result in a dictionary:
```
_cache = {}
def memoize(x):
if _cache.has_key(x):
return _cache[x]
retval = f(x)
# Cache the returned object
_cache[x] = retval
return retval
```
This version works for simple things such as integers, but it has a side effect; the `_cache` dictionary holds a reference to the return values, so they'll never be deallocated until the Python process exits and cleans up. This isn't very noticeable for integers, but if `f()` returns an object, or a data structure that takes up a lot of memory, this can be a problem.
Weak references provide a way to implement a cache that won't keep objects alive beyond their time. If an object is only accessible through weak references, the object will be deallocated and the weak references will now indicate that the object it referred to no longer exists. A weak reference to an object *obj* is created by calling `wr = weakref.ref(obj)`. The object being referred to is returned by calling the weak reference as if it were a function: `wr()`. It will return the referenced object, or `None` if the object no longer exists.
This makes it possible to write a `memoize()` function whose cache doesn't keep objects alive, by storing weak references in the cache.
```
_cache = {}
def memoize(x):
if _cache.has_key(x):
obj = _cache[x]()
# If weak reference object still exists,
# return it
if obj is not None: return obj
retval = f(x)
# Cache a weak reference
_cache[x] = weakref.ref(retval)
return retval
```
The [`weakref`](../library/weakref.xhtml#module-weakref "weakref: Support for weak references and weak dictionaries.") module also allows creating proxy objects which behave like weak references --- an object referenced only by proxy objects is deallocated -- but instead of requiring an explicit call to retrieve the object, the proxy transparently forwards all operations to the object as long as the object still exists. If the object is deallocated, attempting to use a proxy will cause a [`weakref.ReferenceError`](../library/weakref.xhtml#weakref.ReferenceError "weakref.ReferenceError") exception to be raised.
```
proxy = weakref.proxy(obj)
proxy.attr # Equivalent to obj.attr
proxy.meth() # Equivalent to obj.meth()
del obj
proxy.attr # raises weakref.ReferenceError
```
參見
[**PEP 205**](https://www.python.org/dev/peps/pep-0205) \[https://www.python.org/dev/peps/pep-0205\] - Weak ReferencesWritten and implemented by Fred L. Drake, Jr.
## PEP 232: Function Attributes
In Python 2.1, functions can now have arbitrary information attached to them. People were often using docstrings to hold information about functions and methods, because the `__doc__` attribute was the only way of attaching any information to a function. For example, in the Zope Web application server, functions are marked as safe for public access by having a docstring, and in John Aycock's SPARK parsing framework, docstrings hold parts of the BNF grammar to be parsed. This overloading is unfortunate, since docstrings are really intended to hold a function's documentation; for example, it means you can't properly document functions intended for private use in Zope.
Arbitrary attributes can now be set and retrieved on functions using the regular Python syntax:
```
def f(): pass
f.publish = 1
f.secure = 1
f.grammar = "A ::= B (C D)*"
```
The dictionary containing attributes can be accessed as the function's [`__dict__`](../library/stdtypes.xhtml#object.__dict__ "object.__dict__"). Unlike the [`__dict__`](../library/stdtypes.xhtml#object.__dict__ "object.__dict__") attribute of class instances, in functions you can actually assign a new dictionary to [`__dict__`](../library/stdtypes.xhtml#object.__dict__ "object.__dict__"), though the new value is restricted to a regular Python dictionary; you *can't* be tricky and set it to a `UserDict` instance, or any other random object that behaves like a mapping.
參見
[**PEP 232**](https://www.python.org/dev/peps/pep-0232) \[https://www.python.org/dev/peps/pep-0232\] - Function AttributesWritten and implemented by Barry Warsaw.
## PEP 235: Importing Modules on Case-Insensitive Platforms
Some operating systems have filesystems that are case-insensitive, MacOS and Windows being the primary examples; on these systems, it's impossible to distinguish the filenames `FILE.PY` and `file.py`, even though they do store the file's name in its original case (they're case-preserving, too).
In Python 2.1, the [`import`](../reference/simple_stmts.xhtml#import) statement will work to simulate case-sensitivity on case-insensitive platforms. Python will now search for the first case-sensitive match by default, raising an [`ImportError`](../library/exceptions.xhtml#ImportError "ImportError") if no such file is found, so `import file` will not import a module named `FILE.PY`. Case-insensitive matching can be requested by setting the [`PYTHONCASEOK`](../using/cmdline.xhtml#envvar-PYTHONCASEOK)environment variable before starting the Python interpreter.
## PEP 217: Interactive Display Hook
When using the Python interpreter interactively, the output of commands is displayed using the built-in [`repr()`](../library/functions.xhtml#repr "repr") function. In Python 2.1, the variable [`sys.displayhook()`](../library/sys.xhtml#sys.displayhook "sys.displayhook") can be set to a callable object which will be called instead of [`repr()`](../library/functions.xhtml#repr "repr"). For example, you can set it to a special pretty-printing function:
```
>>> # Create a recursive data structure
... L = [1,2,3]
>>> L.append(L)
>>> L # Show Python's default output
[1, 2, 3, [...]]
>>> # Use pprint.pprint() as the display function
... import sys, pprint
>>> sys.displayhook = pprint.pprint
>>> L
[1, 2, 3, <Recursion on list with id=135143996>]
>>>
```
參見
[**PEP 217**](https://www.python.org/dev/peps/pep-0217) \[https://www.python.org/dev/peps/pep-0217\] - Display Hook for Interactive UseWritten and implemented by Moshe Zadka.
## PEP 208: New Coercion Model
How numeric coercion is done at the C level was significantly modified. This will only affect the authors of C extensions to Python, allowing them more flexibility in writing extension types that support numeric operations.
Extension types can now set the type flag `Py_TPFLAGS_CHECKTYPES` in their `PyTypeObject` structure to indicate that they support the new coercion model. In such extension types, the numeric slot functions can no longer assume that they'll be passed two arguments of the same type; instead they may be passed two arguments of differing types, and can then perform their own internal coercion. If the slot function is passed a type it can't handle, it can indicate the failure by returning a reference to the `Py_NotImplemented` singleton value. The numeric functions of the other type will then be tried, and perhaps they can handle the operation; if the other type also returns `Py_NotImplemented`, then a [`TypeError`](../library/exceptions.xhtml#TypeError "TypeError") will be raised. Numeric methods written in Python can also return `Py_NotImplemented`, causing the interpreter to act as if the method did not exist (perhaps raising a [`TypeError`](../library/exceptions.xhtml#TypeError "TypeError"), perhaps trying another object's numeric methods).
參見
[**PEP 208**](https://www.python.org/dev/peps/pep-0208) \[https://www.python.org/dev/peps/pep-0208\] - Reworking the Coercion ModelWritten and implemented by Neil Schemenauer, heavily based upon earlier work by Marc-André Lemburg. Read this to understand the fine points of how numeric operations will now be processed at the C level.
## PEP 241: Metadata in Python Packages
A common complaint from Python users is that there's no single catalog of all the Python modules in existence. T. Middleton's Vaults of Parnassus at <http://www.vex.net/parnassus/> are the largest catalog of Python modules, but registering software at the Vaults is optional, and many people don't bother.
As a first small step toward fixing the problem, Python software packaged using the Distutils **sdist** command will include a file named `PKG-INFO` containing information about the package such as its name, version, and author (metadata, in cataloguing terminology). PEP 241 contains the full list of fields that can be present in the `PKG-INFO` file. As people began to package their software using Python 2.1, more and more packages will include metadata, making it possible to build automated cataloguing systems and experiment with them. With the result experience, perhaps it'll be possible to design a really good catalog and then build support for it into Python 2.2. For example, the Distutils **sdist** and **bdist\_\*** commands could support an `upload` option that would automatically upload your package to a catalog server.
You can start creating packages containing `PKG-INFO` even if you're not using Python 2.1, since a new release of the Distutils will be made for users of earlier Python versions. Version 1.0.2 of the Distutils includes the changes described in PEP 241, as well as various bugfixes and enhancements. It will be available from the Distutils SIG at <https://www.python.org/community/sigs/current/distutils-sig/>.
參見
[**PEP 241**](https://www.python.org/dev/peps/pep-0241) \[https://www.python.org/dev/peps/pep-0241\] - Metadata for Python Software PackagesWritten and implemented by A.M. Kuchling.
[**PEP 243**](https://www.python.org/dev/peps/pep-0243) \[https://www.python.org/dev/peps/pep-0243\] - Module Repository Upload MechanismWritten by Sean Reifschneider, this draft PEP describes a proposed mechanism for uploading Python packages to a central server.
## New and Improved Modules
- Ka-Ping Yee contributed two new modules: `inspect.py`, a module for getting information about live Python code, and `pydoc.py`, a module for interactively converting docstrings to HTML or text. As a bonus, `Tools/scripts/pydoc`, which is now automatically installed, uses `pydoc.py` to display documentation given a Python module, package, or class name. For example, `pydoc xml.dom` displays the following:
```
Python Library Documentation: package xml.dom in xml
NAME
xml.dom - W3C Document Object Model implementation for Python.
FILE
/usr/local/lib/python2.1/xml/dom/__init__.pyc
DESCRIPTION
The Python mapping of the Document Object Model is documented in the
Python Library Reference in the section on the xml.dom package.
This package contains the following modules:
...
```
`pydoc` also includes a Tk-based interactive help browser. `pydoc`quickly becomes addictive; try it out!
- Two different modules for unit testing were added to the standard library. The [`doctest`](../library/doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.") module, contributed by Tim Peters, provides a testing framework based on running embedded examples in docstrings and comparing the results against the expected output. PyUnit, contributed by Steve Purcell, is a unit testing framework inspired by JUnit, which was in turn an adaptation of Kent Beck's Smalltalk testing framework. See <http://pyunit.sourceforge.net/> for more information about PyUnit.
- The [`difflib`](../library/difflib.xhtml#module-difflib "difflib: Helpers for computing differences between objects.") module contains a class, `SequenceMatcher`, which compares two sequences and computes the changes required to transform one sequence into the other. For example, this module can be used to write a tool similar to the Unix **diff** program, and in fact the sample program `Tools/scripts/ndiff.py` demonstrates how to write such a script.
- [`curses.panel`](../library/curses.panel.xhtml#module-curses.panel "curses.panel: A panel stack extension that adds depth to curses windows."), a wrapper for the panel library, part of ncurses and of SYSV curses, was contributed by Thomas Gellekum. The panel library provides windows with the additional feature of depth. Windows can be moved higher or lower in the depth ordering, and the panel library figures out where panels overlap and which sections are visible.
- The PyXML package has gone through a few releases since Python 2.0, and Python 2.1 includes an updated version of the [`xml`](../library/xml.xhtml#module-xml "xml: Package containing XML processing modules") package. Some of the noteworthy changes include support for Expat 1.2 and later versions, the ability for Expat parsers to handle files in any encoding supported by Python, and various bugfixes for SAX, DOM, and the `minidom` module.
- Ping also contributed another hook for handling uncaught exceptions. [`sys.excepthook()`](../library/sys.xhtml#sys.excepthook "sys.excepthook") can be set to a callable object. When an exception isn't caught by any [`try`](../reference/compound_stmts.xhtml#try)...[`except`](../reference/compound_stmts.xhtml#except) blocks, the exception will be passed to [`sys.excepthook()`](../library/sys.xhtml#sys.excepthook "sys.excepthook"), which can then do whatever it likes. At the Ninth Python Conference, Ping demonstrated an application for this hook: printing an extended traceback that not only lists the stack frames, but also lists the function arguments and the local variables for each frame.
- Various functions in the [`time`](../library/time.xhtml#module-time "time: Time access and conversions.") module, such as `asctime()` and `localtime()`, require a floating point argument containing the time in seconds since the epoch. The most common use of these functions is to work with the current time, so the floating point argument has been made optional; when a value isn't provided, the current time will be used. For example, log file entries usually need a string containing the current time; in Python 2.1, `time.asctime()` can be used, instead of the lengthier `time.asctime(time.localtime(time.time()))` that was previously required.
This change was proposed and implemented by Thomas Wouters.
- The [`ftplib`](../library/ftplib.xhtml#module-ftplib "ftplib: FTP protocol client (requires sockets).") module now defaults to retrieving files in passive mode, because passive mode is more likely to work from behind a firewall. This request came from the Debian bug tracking system, since other Debian packages use [`ftplib`](../library/ftplib.xhtml#module-ftplib "ftplib: FTP protocol client (requires sockets).") to retrieve files and then don't work from behind a firewall. It's deemed unlikely that this will cause problems for anyone, because Netscape defaults to passive mode and few people complain, but if passive mode is unsuitable for your application or network setup, call `set_pasv(0)` on FTP objects to disable passive mode.
- Support for raw socket access has been added to the [`socket`](../library/socket.xhtml#module-socket "socket: Low-level networking interface.") module, contributed by Grant Edwards.
- The [`pstats`](../library/profile.xhtml#module-pstats "pstats: Statistics object for use with the profiler.") module now contains a simple interactive statistics browser for displaying timing profiles for Python programs, invoked when the module is run as a script. Contributed by Eric S. Raymond.
- A new implementation-dependent function, `sys._getframe([depth])`, has been added to return a given frame object from the current call stack. [`sys._getframe()`](../library/sys.xhtml#sys._getframe "sys._getframe") returns the frame at the top of the call stack; if the optional integer argument *depth* is supplied, the function returns the frame that is *depth* calls below the top of the stack. For example, `sys._getframe(1)` returns the caller's frame object.
This function is only present in CPython, not in Jython or the .NET implementation. Use it for debugging, and resist the temptation to put it into production code.
## Other Changes and Fixes
There were relatively few smaller changes made in Python 2.1 due to the shorter release cycle. A search through the CVS change logs turns up 117 patches applied, and 136 bugs fixed; both figures are likely to be underestimates. Some of the more notable changes are:
- A specialized object allocator is now optionally available, that should be faster than the system `malloc()` and have less memory overhead. The allocator uses C's `malloc()` function to get large pools of memory, and then fulfills smaller memory requests from these pools. It can be enabled by providing the `--with-pymalloc` option to the **configure**script; see `Objects/obmalloc.c` for the implementation details.
Authors of C extension modules should test their code with the object allocator enabled, because some incorrect code may break, causing core dumps at runtime. There are a bunch of memory allocation functions in Python's C API that have previously been just aliases for the C library's `malloc()` and `free()`, meaning that if you accidentally called mismatched functions, the error wouldn't be noticeable. When the object allocator is enabled, these functions aren't aliases of `malloc()` and `free()` any more, and calling the wrong function to free memory will get you a core dump. For example, if memory was allocated using `PyMem_New()`, it has to be freed using `PyMem_Del()`, not `free()`. A few modules included with Python fell afoul of this and had to be fixed; doubtless there are more third-party modules that will have the same problem.
The object allocator was contributed by Vladimir Marangozov.
- The speed of line-oriented file I/O has been improved because people often complain about its lack of speed, and because it's often been used as a na?ve benchmark. The [`readline()`](../library/readline.xhtml#module-readline "readline: GNU readline support for Python. (Unix)") method of file objects has therefore been rewritten to be much faster. The exact amount of the speedup will vary from platform to platform depending on how slow the C library's `getc()` was, but is around 66%, and potentially much faster on some particular operating systems. Tim Peters did much of the benchmarking and coding for this change, motivated by a discussion in comp.lang.python.
A new module and method for file objects was also added, contributed by Jeff Epler. The new method, `xreadlines()`, is similar to the existing `xrange()` built-in. `xreadlines()` returns an opaque sequence object that only supports being iterated over, reading a line on every iteration but not reading the entire file into memory as the existing `readlines()` method does. You'd use it like this:
```
for line in sys.stdin.xreadlines():
# ... do something for each line ...
...
```
For a fuller discussion of the line I/O changes, see the python-dev summary for January 1--15, 2001 at <https://mail.python.org/pipermail/python-dev/2001-January/>.
- A new method, `popitem()`, was added to dictionaries to enable destructively iterating through the contents of a dictionary; this can be faster for large dictionaries because there's no need to construct a list containing all the keys or values. `D.popitem()` removes a random `(key, value)` pair from the dictionary `D` and returns it as a 2-tuple. This was implemented mostly by Tim Peters and Guido van Rossum, after a suggestion and preliminary patch by Moshe Zadka.
- Modules can now control which names are imported when `from module import *`is used, by defining an `__all__` attribute containing a list of names that will be imported. One common complaint is that if the module imports other modules such as [`sys`](../library/sys.xhtml#module-sys "sys: Access system-specific parameters and functions.") or [`string`](../library/string.xhtml#module-string "string: Common string operations."), `from module import *` will add them to the importing module's namespace. To fix this, simply list the public names in `__all__`:
```
# List public names
__all__ = ['Database', 'open']
```
A stricter version of this patch was first suggested and implemented by Ben Wolfson, but after some python-dev discussion, a weaker final version was checked in.
- Applying [`repr()`](../library/functions.xhtml#repr "repr") to strings previously used octal escapes for non-printable characters; for example, a newline was `'\012'`. This was a vestigial trace of Python's C ancestry, but today octal is of very little practical use. Ka-Ping Yee suggested using hex escapes instead of octal ones, and using the `\n`, `\t`, `\r` escapes for the appropriate characters, and implemented this new formatting.
- Syntax errors detected at compile-time can now raise exceptions containing the filename and line number of the error, a pleasant side effect of the compiler reorganization done by Jeremy Hylton.
- C extensions which import other modules have been changed to use `PyImport_ImportModule()`, which means that they will use any import hooks that have been installed. This is also encouraged for third-party extensions that need to import some other module from C code.
- The size of the Unicode character database was shrunk by another 340K thanks to Fredrik Lundh.
- Some new ports were contributed: MacOS X (by Steven Majewski), Cygwin (by Jason Tishler); RISCOS (by Dietmar Schwertberger); Unixware 7 (by Billy G. Allie).
And there's the usual list of minor bugfixes, minor memory leaks, docstring edits, and other tweaks, too lengthy to be worth itemizing; see the CVS logs for the full details if you want them.
## Acknowledgements
The author would like to thank the following people for offering suggestions on various drafts of this article: Graeme Cross, David Goodger, Jay Graves, Michael Hudson, Marc-André Lemburg, Fredrik Lundh, Neil Schemenauer, Thomas Wouters.
### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](2.0.xhtml "What's New in Python 2.0") |
- [上一頁](2.2.xhtml "What's New in Python 2.2") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 有什么新變化?](index.xhtml) ?
- $('.inline-search').show(0); |
? [版權所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 軟件基金會是一個非盈利組織。 [請捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [發現了問題](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 創建。
- Python文檔內容
- Python 有什么新變化?
- Python 3.7 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- C API 的改變
- 構建的改變
- 性能優化
- 其他 CPython 實現的改變
- 已棄用的 Python 行為
- 已棄用的 Python 模塊、函數和方法
- 已棄用的 C API 函數和類型
- 平臺支持的移除
- API 與特性的移除
- 移除的模塊
- Windows 專屬的改變
- 移植到 Python 3.7
- Python 3.7.1 中的重要變化
- Python 3.7.2 中的重要變化
- Python 3.6 有什么新變化A
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 其他改進
- 棄用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要變化
- Python 3.6.4 中的重要變化
- Python 3.6.5 中的重要變化
- Python 3.6.7 中的重要變化
- Python 3.5 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- Other module-level changes
- 性能優化
- Build and C API Changes
- 棄用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 發布重點
- 新的特性
- 新增模塊
- 改進的模塊
- CPython Implementation Changes
- 棄用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 發布重點
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他語言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 棄用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 多線程
- 性能優化
- Unicode
- Codecs
- 文檔
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 性能優化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他語言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新變化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他語言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他語言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推導式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最終版
- Python 3.7.3 發布候選版 1
- Python 3.7.2 最終版
- Python 3.7.2 發布候選版 1
- Python 3.7.1 最終版
- Python 3.7.1 RC 2版本
- Python 3.7.1 發布候選版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 課前甜點
- 使用 Python 解釋器
- 調用解釋器
- 解釋器的運行環境
- Python 的非正式介紹
- Python 作為計算器使用
- 走向編程的第一步
- 其他流程控制工具
- if 語句
- for 語句
- range() 函數
- break 和 continue 語句,以及循環中的 else 子句
- pass 語句
- 定義函數
- 函數定義的更多形式
- 小插曲:編碼風格
- 數據結構
- 列表的更多特性
- del 語句
- 元組和序列
- 集合
- 字典
- 循環的技巧
- 深入條件控制
- 序列和其它類型的比較
- 模塊
- 有關模塊的更多信息
- 標準模塊
- dir() 函數
- 包
- 輸入輸出
- 更漂亮的輸出格式
- 讀寫文件
- 錯誤和異常
- 語法錯誤
- 異常
- 處理異常
- 拋出異常
- 用戶自定義異常
- 定義清理操作
- 預定義的清理操作
- 類
- 名稱和對象
- Python 作用域和命名空間
- 初探類
- 補充說明
- 繼承
- 私有變量
- 雜項說明
- 迭代器
- 生成器
- 生成器表達式
- 標準庫簡介
- 操作系統接口
- 文件通配符
- 命令行參數
- 錯誤輸出重定向和程序終止
- 字符串模式匹配
- 數學
- 互聯網訪問
- 日期和時間
- 數據壓縮
- 性能測量
- 質量控制
- 自帶電池
- 標準庫簡介 —— 第二部分
- 格式化輸出
- 模板
- 使用二進制數據記錄格式
- 多線程
- 日志
- 弱引用
- 用于操作列表的工具
- 十進制浮點運算
- 虛擬環境和包
- 概述
- 創建虛擬環境
- 使用pip管理包
- 接下來?
- 交互式編輯和編輯歷史
- Tab 補全和編輯歷史
- 默認交互式解釋器的替代品
- 浮點算術:爭議和限制
- 表示性錯誤
- 附錄
- 交互模式
- 安裝和使用 Python
- 命令行與環境
- 命令行
- 環境變量
- 在Unix平臺中使用Python
- 獲取最新版本的Python
- 構建Python
- 與Python相關的路徑和文件
- 雜項
- 編輯器和集成開發環境
- 在Windows上使用 Python
- 完整安裝程序
- Microsoft Store包
- nuget.org 安裝包
- 可嵌入的包
- 替代捆綁包
- 配置Python
- 適用于Windows的Python啟動器
- 查找模塊
- 附加模塊
- 在Windows上編譯Python
- 其他平臺
- 在蘋果系統上使用 Python
- 獲取和安裝 MacPython
- IDE
- 安裝額外的 Python 包
- Mac 上的圖形界面編程
- 在 Mac 上分發 Python 應用程序
- 其他資源
- Python 語言參考
- 概述
- 其他實現
- 標注
- 詞法分析
- 行結構
- 其他形符
- 標識符和關鍵字
- 字面值
- 運算符
- 分隔符
- 數據模型
- 對象、值與類型
- 標準類型層級結構
- 特殊方法名稱
- 協程
- 執行模型
- 程序的結構
- 命名與綁定
- 異常
- 導入系統
- importlib
- 包
- 搜索
- 加載
- 基于路徑的查找器
- 替換標準導入系統
- Package Relative Imports
- 有關 main 的特殊事項
- 開放問題項
- 參考文獻
- 表達式
- 算術轉換
- 原子
- 原型
- await 表達式
- 冪運算符
- 一元算術和位運算
- 二元算術運算符
- 移位運算
- 二元位運算
- 比較運算
- 布爾運算
- 條件表達式
- lambda 表達式
- 表達式列表
- 求值順序
- 運算符優先級
- 簡單語句
- 表達式語句
- 賦值語句
- assert 語句
- pass 語句
- del 語句
- return 語句
- yield 語句
- raise 語句
- break 語句
- continue 語句
- import 語句
- global 語句
- nonlocal 語句
- 復合語句
- if 語句
- while 語句
- for 語句
- try 語句
- with 語句
- 函數定義
- 類定義
- 協程
- 最高層級組件
- 完整的 Python 程序
- 文件輸入
- 交互式輸入
- 表達式輸入
- 完整的語法規范
- Python 標準庫
- 概述
- 可用性注釋
- 內置函數
- 內置常量
- 由 site 模塊添加的常量
- 內置類型
- 邏輯值檢測
- 布爾運算 — and, or, not
- 比較
- 數字類型 — int, float, complex
- 迭代器類型
- 序列類型 — list, tuple, range
- 文本序列類型 — str
- 二進制序列類型 — bytes, bytearray, memoryview
- 集合類型 — set, frozenset
- 映射類型 — dict
- 上下文管理器類型
- 其他內置類型
- 特殊屬性
- 內置異常
- 基類
- 具體異常
- 警告
- 異常層次結構
- 文本處理服務
- string — 常見的字符串操作
- re — 正則表達式操作
- 模塊 difflib 是一個計算差異的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 數據庫
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函數
- 二進制數據服務
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 數據類型
- datetime — 基礎日期/時間數據類型
- calendar — General calendar-related functions
- collections — 容器數據類型
- collections.abc — 容器的抽象基類
- heapq — 堆隊列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 淺層 (shallow) 和深層 (deep) 復制操作
- pprint — 數據美化輸出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 數字和數學模塊
- numbers — 數字的抽象基類
- math — 數學函數
- cmath — Mathematical functions for complex numbers
- decimal — 十進制定點和浮點運算
- fractions — 分數
- random — 生成偽隨機數
- statistics — Mathematical statistics functions
- 函數式編程模塊
- itertools — 為高效循環而創建迭代器的函數
- functools — 高階函數和可調用對象上的操作
- operator — 標準運算符替代函數
- 文件和目錄訪問
- pathlib — 面向對象的文件系統路徑
- os.path — 常見路徑操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路徑操作函數
- 數據持久化
- pickle —— Python 對象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 數據庫 DB-API 2.0 接口模塊
- 數據壓縮和存檔
- zlib — 與 gzip 兼容的壓縮
- gzip — 對 gzip 格式的支持
- bz2 — 對 bzip2 壓縮算法的支持
- lzma — 用 LZMA 算法壓縮
- zipfile — 在 ZIP 歸檔中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件讀寫
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服務
- hashlib — 安全哈希與消息摘要
- hmac — 基于密鑰的消息驗證
- secrets — Generate secure random numbers for managing secrets
- 通用操作系統服務
- os — 操作系統接口模塊
- io — 處理流的核心工具
- time — 時間的訪問和轉換
- argparse — 命令行選項、參數和子命令解析器
- getopt — C-style parser for command line options
- 模塊 logging — Python 的日志記錄工具
- logging.config — 日志記錄配置
- logging.handlers — Logging handlers
- getpass — 便攜式密碼輸入工具
- curses — 終端字符單元顯示的處理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函數庫
- 并發執行
- threading — 基于線程的并行
- multiprocessing — 基于進程的并行
- concurrent 包
- concurrent.futures — 啟動并行任務
- subprocess — 子進程管理
- sched — 事件調度器
- queue — 一個同步的隊列類
- _thread — 底層多線程 API
- _dummy_thread — _thread 的替代模塊
- dummy_threading — 可直接替代 threading 模塊。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 網絡和進程間通信
- asyncio — 異步 I/O
- socket — 底層網絡接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高級 I/O 復用庫
- asyncore — 異步socket處理器
- asynchat — 異步 socket 指令/響應 處理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互聯網數據處理
- email — 電子郵件與 MIME 處理包
- json — JSON 編碼和解碼器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 數據編碼
- binhex — 對binhex4文件進行編碼和解碼
- binascii — 二進制和 ASCII 碼互轉
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 結構化標記處理工具
- html — 超文本標記語言支持
- html.parser — 簡單的 HTML 和 XHTML 解析器
- html.entities — HTML 一般實體的定義
- XML處理模塊
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互聯網協議和支持
- webbrowser — 方便的Web瀏覽器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 處理模塊
- urllib.request — 用于打開 URL 的可擴展庫
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模塊
- http.client — HTTP協議客戶端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP協議客戶端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服務器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服務端與客戶端模塊
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒體服務
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 讀寫 Sun AU 文件
- wave — 讀寫WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推測圖像類型
- sndhdr — 推測聲音文件的類型
- ossaudiodev — Access to OSS-compatible audio devices
- 國際化
- gettext — 多語種國際化服務
- locale — 國際化服務
- 程序框架
- turtle — 海龜繪圖
- cmd — 支持面向行的命令解釋器
- shlex — Simple lexical analysis
- Tk圖形用戶界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滾動文字控件
- IDLE
- 其他圖形用戶界面(GUI)包
- 開發工具
- typing — 類型標注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 單元測試框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自動將 Python 2 代碼轉為 Python 3 代碼
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 調試和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 測量小代碼片段的執行時間
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 軟件打包和分發
- distutils — 構建和安裝 Python 模塊
- ensurepip — Bootstrapping the pip installer
- venv — 創建虛擬環境
- zipapp — Manage executable Python zip archives
- Python運行時服務
- sys — 系統相關的參數和函數
- sysconfig — Provide access to Python's configuration information
- builtins — 內建對象
- main — 頂層腳本環境
- warnings — Warning control
- dataclasses — 數據類
- contextlib — Utilities for with-statement contexts
- abc — 抽象基類
- atexit — 退出處理器
- traceback — Print or retrieve a stack traceback
- future — Future 語句定義
- gc — 垃圾回收器接口
- inspect — 檢查對象
- site — Site-specific configuration hook
- 自定義 Python 解釋器
- code — Interpreter base classes
- codeop — Compile Python code
- 導入模塊
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找腳本使用的模塊
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 語言服務
- parser — Access Python parse trees
- ast — 抽象語法樹
- symtable — Access to the compiler's symbol tables
- symbol — 與 Python 解析樹一起使用的常量
- token — 與Python解析樹一起使用的常量
- keyword — 檢驗Python關鍵字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊縮進檢測
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字節碼反匯編器
- pickletools — Tools for pickle developers
- 雜項服務
- formatter — Generic output formatting
- Windows系統相關模塊
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注冊表訪問
- winsound — Sound-playing interface for Windows
- Unix 專有服務
- posix — The most common POSIX system calls
- pwd — 用戶密碼數據庫
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 終端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 庫例程
- 被取代的模塊
- optparse — Parser for command line options
- imp — Access the import internals
- 未創建文檔的模塊
- 平臺特定模塊
- 擴展和嵌入 Python 解釋器
- 推薦的第三方工具
- 不使用第三方工具創建擴展
- 使用 C 或 C++ 擴展 Python
- 自定義擴展類型:教程
- 定義擴展類型:已分類主題
- 構建C/C++擴展
- 在Windows平臺編譯C和C++擴展
- 在更大的應用程序中嵌入 CPython 運行時
- Embedding Python in Another Application
- Python/C API 參考手冊
- 概述
- 代碼標準
- 包含文件
- 有用的宏
- 對象、類型和引用計數
- 異常
- 嵌入Python
- 調試構建
- 穩定的應用程序二進制接口
- The Very High Level Layer
- Reference Counting
- 異常處理
- Printing and clearing
- 拋出異常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 標準異常
- 標準警告類別
- 工具
- 操作系統實用程序
- 系統功能
- 過程控制
- 導入模塊
- Data marshalling support
- 語句解釋及變量編譯
- 字符串轉換與格式化
- 反射
- 編解碼器注冊與支持功能
- 抽象對象層
- Object Protocol
- 數字協議
- Sequence Protocol
- Mapping Protocol
- 迭代器協議
- 緩沖協議
- Old Buffer Protocol
- 具體的對象層
- 基本對象
- 數值對象
- 序列對象
- 容器對象
- 函數對象
- 其他對象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置變量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 內存管理
- 概述
- 原始內存接口
- Memory Interface
- 對象分配器
- 默認內存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 對象實現支持
- 在堆中分配對象
- Common Object Structures
- Type 對象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使對象類型支持循環垃圾回收
- API 和 ABI 版本管理
- 分發 Python 模塊
- 關鍵術語
- 開源許可與協作
- 安裝工具
- 閱讀指南
- 我該如何...?
- ...為我的項目選擇一個名字?
- ...創建和分發二進制擴展?
- 安裝 Python 模塊
- 關鍵術語
- 基本使用
- 我應如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安裝 pip ?
- ... 只為當前用戶安裝軟件包?
- ... 安裝科學計算類 Python 軟件包?
- ... 使用并行安裝的多個 Python 版本?
- 常見的安裝問題
- 在 Linux 的系統 Python 版本上安裝
- 未安裝 pip
- 安裝二進制編譯擴展
- Python 常用指引
- 將 Python 2 代碼遷移到 Python 3
- 簡要說明
- 詳情
- 將擴展模塊移植到 Python 3
- 條件編譯
- 對象API的更改
- 模塊初始化和狀態
- CObject 替換為 Capsule
- 其他選項
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 實現描述器
- 摘要
- 定義和簡介
- 描述器協議
- 發起調用描述符
- 描述符示例
- Properties
- 函數和方法
- Static Methods and Class Methods
- 函數式編程指引
- 概述
- 迭代器
- 生成器表達式和列表推導式
- 生成器
- 內置函數
- itertools 模塊
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文獻
- 日志 HOWTO
- 日志基礎教程
- 進階日志教程
- 日志級別
- 有用的處理程序
- 記錄日志中引發的異常
- 使用任意對象作為消息
- 優化
- 日志操作手冊
- 在多個模塊中使用日志
- 在多線程中使用日志
- 使用多個日志處理器和多種格式化
- 在多個地方記錄日志
- 日志服務器配置示例
- 處理日志處理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正則表達式HOWTO
- 概述
- 簡單模式
- 使用正則表達式
- 更多模式能力
- 修改字符串
- 常見問題
- 反饋
- 套接字編程指南
- 套接字
- 創建套接字
- 使用一個套接字
- 斷開連接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 關鍵函數
- Operator 模塊函數
- 升序和降序
- 排序穩定性和排序復雜度
- 使用裝飾-排序-去裝飾的舊方法
- 使用 cmp 參數的舊方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包獲取網絡資源
- 概述
- Fetching URLs
- 處理異常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 腳注
- Argparse 教程
- 概念
- 基礎
- 位置參數介紹
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模塊介紹
- 創建 Address/Network/Interface 對象
- 審查 Address/Network/Interface 對象
- Network 作為 Address 列表
- 比較
- 將IP地址與其他模塊一起使用
- 實例創建失敗時獲取更多詳細信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 檢測CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常見問題
- Python常見問題
- 一般信息
- 現實世界中的 Python
- 編程常見問題
- 一般問題
- 核心語言
- 數字和字符串
- 性能
- 序列(元組/列表)
- 對象
- 模塊
- 設計和歷史常見問題
- 為什么Python使用縮進來分組語句?
- 為什么簡單的算術運算得到奇怪的結果?
- 為什么浮點計算不準確?
- 為什么Python字符串是不可變的?
- 為什么必須在方法定義和調用中顯式使用“self”?
- 為什么不能在表達式中賦值?
- 為什么Python對某些功能(例如list.index())使用方法來實現,而其他功能(例如len(List))使用函數實現?
- 為什么 join()是一個字符串方法而不是列表或元組方法?
- 異常有多快?
- 為什么Python中沒有switch或case語句?
- 難道不能在解釋器中模擬線程,而非得依賴特定于操作系統的線程實現嗎?
- 為什么lambda表達式不能包含語句?
- 可以將Python編譯為機器代碼,C或其他語言嗎?
- Python如何管理內存?
- 為什么CPython不使用更傳統的垃圾回收方案?
- CPython退出時為什么不釋放所有內存?
- 為什么有單獨的元組和列表數據類型?
- 列表是如何在CPython中實現的?
- 字典是如何在CPython中實現的?
- 為什么字典key必須是不可變的?
- 為什么 list.sort() 沒有返回排序列表?
- 如何在Python中指定和實施接口規范?
- 為什么沒有goto?
- 為什么原始字符串(r-strings)不能以反斜杠結尾?
- 為什么Python沒有屬性賦值的“with”語句?
- 為什么 if/while/def/class語句需要冒號?
- 為什么Python在列表和元組的末尾允許使用逗號?
- 代碼庫和插件 FAQ
- 通用的代碼庫問題
- 通用任務
- 線程相關
- 輸入輸出
- 網絡 / Internet 編程
- 數據庫
- 數學和數字
- 擴展/嵌入常見問題
- 可以使用C語言中創建自己的函數嗎?
- 可以使用C++語言中創建自己的函數嗎?
- C很難寫,有沒有其他選擇?
- 如何從C執行任意Python語句?
- 如何從C中評估任意Python表達式?
- 如何從Python對象中提取C的值?
- 如何使用Py_BuildValue()創建任意長度的元組?
- 如何從C調用對象的方法?
- 如何捕獲PyErr_Print()(或打印到stdout / stderr的任何內容)的輸出?
- 如何從C訪問用Python編寫的模塊?
- 如何從Python接口到C ++對象?
- 我使用Setup文件添加了一個模塊,為什么make失敗了?
- 如何調試擴展?
- 我想在Linux系統上編譯一個Python模塊,但是缺少一些文件。為什么?
- 如何區分“輸入不完整”和“輸入無效”?
- 如何找到未定義的g++符號__builtin_new或__pure_virtual?
- 能否創建一個對象類,其中部分方法在C中實現,而其他方法在Python中實現(例如通過繼承)?
- Python在Windows上的常見問題
- 我怎樣在Windows下運行一個Python程序?
- 我怎么讓 Python 腳本可執行?
- 為什么有時候 Python 程序會啟動緩慢?
- 我怎樣使用Python腳本制作可執行文件?
- *.pyd 文件和DLL文件相同嗎?
- 我怎樣將Python嵌入一個Windows程序?
- 如何讓編輯器不要在我的 Python 源代碼中插入 tab ?
- 如何在不阻塞的情況下檢查按鍵?
- 圖形用戶界面(GUI)常見問題
- 圖形界面常見問題
- Python 是否有平臺無關的圖形界面工具包?
- 有哪些Python的GUI工具是某個平臺專用的?
- 有關Tkinter的問題
- “為什么我的電腦上安裝了 Python ?”
- 什么是Python?
- 為什么我的電腦上安裝了 Python ?
- 我能刪除 Python 嗎?
- 術語對照表
- 文檔說明
- Python 文檔貢獻者
- 解決 Bug
- 文檔錯誤
- 使用 Python 的錯誤追蹤系統
- 開始為 Python 貢獻您的知識
- 版權
- 歷史和許可證
- 軟件歷史
- 訪問Python或以其他方式使用Python的條款和條件
- Python 3.7.3 的 PSF 許可協議
- Python 2.0 的 BeOpen.com 許可協議
- Python 1.6.1 的 CNRI 許可協議
- Python 0.9.0 至 1.2 的 CWI 許可協議
- 集成軟件的許可和認可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec