### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](copyreg.xhtml "copyreg --- Register pickle support functions") |
- [上一頁](persistence.xhtml "數據持久化") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 標準庫](index.xhtml) ?
- [數據持久化](persistence.xhtml) ?
- $('.inline-search').show(0); |
# [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") —— Python 對象序列化
**源代碼:** [Lib/pickle.py](https://github.com/python/cpython/tree/3.7/Lib/pickle.py) \[https://github.com/python/cpython/tree/3.7/Lib/pickle.py\]
- - - - - -
模塊 [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") 實現了對一個 Python 對象結構的二進制序列化和反序列化。 *"Pickling"* 是將 Python 對象和所擁有的層次結構被轉化為一個字節流的過程,而 *"unpickling"* 是相反的操作,會將(來自一個 [binary file](../glossary.xhtml#term-binary-file) 或者 [bytes-like object](../glossary.xhtml#term-bytes-like-object) 的)字節流轉化回一個對象層次結構。Pickling(和 unpickling)也被稱為“序列化”, “編組” [1](#id6) 或者 “平面化”。而為了避免混亂,此處采用術語 “pickling” 和 “unpickling”。
警告
[`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") 模塊在接受被錯誤地構造或者被惡意地構造的數據時不安全。永遠不要 unpickle 來自于不受信任的或者未經驗證的來源的數據。
## 與其他 Python 模塊間的關系
### 與 `marshal` 間的關系
Python 有一個更原始的序列化模塊稱為 [`marshal`](marshal.xhtml#module-marshal "marshal: Convert Python objects to streams of bytes and back (with different constraints)."),但一般地 [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") 應該是序列化 Python 對象時的首選。[`marshal`](marshal.xhtml#module-marshal "marshal: Convert Python objects to streams of bytes and back (with different constraints).") 存在主要是為了支持 Python 的 `.pyc` 文件.
[`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") 模塊與 [`marshal`](marshal.xhtml#module-marshal "marshal: Convert Python objects to streams of bytes and back (with different constraints).") 在如下幾方面顯著地不同:
- [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") 模塊會跟蹤已被序列化的對象,所以該對象之后再次被引用時不會再次被序列化。[`marshal`](marshal.xhtml#module-marshal "marshal: Convert Python objects to streams of bytes and back (with different constraints).") 不會這么做。
這隱含了遞歸對象和共享對象。遞歸對象指包含對自己的引用的對象。這種對象并不會被 marshal 接受,并且實際上嘗試 marshal 遞歸對象會讓你的 Python 解釋器崩潰。對象共享發生在對象層級中存在多處引用同一對象時。[`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") 只會存儲這些對象一次,并確保其他的引用指向同一個主副本。共享對象將保持共享,這可能對可變對象非常重要。
- [`marshal`](marshal.xhtml#module-marshal "marshal: Convert Python objects to streams of bytes and back (with different constraints).") 不能被用于序列化用戶定義類及其實例。[`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") 能夠透明地存儲并保存類實例,然而此時類定義必須能夠從與被存儲時相同的模塊被引入。
- The [`marshal`](marshal.xhtml#module-marshal "marshal: Convert Python objects to streams of bytes and back (with different constraints).") serialization format is not guaranteed to be portable across Python versions. Because its primary job in life is to support `.pyc` files, the Python implementers reserve the right to change the serialization format in non-backwards compatible ways should the need arise. The [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") serialization format is guaranteed to be backwards compatible across Python releases provided a compatible pickle protocol is chosen and pickling and unpickling code deals with Python 2 to Python 3 type differences if your data is crossing that unique breaking change language boundary.
### 與 `json` 模塊的比較
Pickle 協議和 [JSON (JavaScript Object Notation)](http://json.org) \[http://json.org\] 間有著本質的不同:
- JSON 是一個文本序列化格式(它輸出 unicode 文本,盡管在大多數時候它會接著以 `utf-8` 編碼),而 pickle 是一個二進制序列化格式;
- JSON is human-readable, while pickle is not;
- JSON is interoperable and widely used outside of the Python ecosystem, while pickle is Python-specific;
- JSON, by default, can only represent a subset of the Python built-in types, and no custom classes; pickle can represent an extremely large number of Python types (many of them automatically, by clever usage of Python's introspection facilities; complex cases can be tackled by implementing [specific object APIs](#pickle-inst)).
參見
The [`json`](json.xhtml#module-json "json: Encode and decode the JSON format.") module: a standard library module allowing JSON serialization and deserialization.
## Data stream format
The data format used by [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") is Python-specific. This has the advantage that there are no restrictions imposed by external standards such as JSON or XDR (which can't represent pointer sharing); however it means that non-Python programs may not be able to reconstruct pickled Python objects.
By default, the [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") data format uses a relatively compact binary representation. If you need optimal size characteristics, you can efficiently [compress](archiving.xhtml) pickled data.
The module [`pickletools`](pickletools.xhtml#module-pickletools "pickletools: Contains extensive comments about the pickle protocols and pickle-machine opcodes, as well as some useful functions.") contains tools for analyzing data streams generated by [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back."). [`pickletools`](pickletools.xhtml#module-pickletools "pickletools: Contains extensive comments about the pickle protocols and pickle-machine opcodes, as well as some useful functions.") source code has extensive comments about opcodes used by pickle protocols.
There are currently 5 different protocols which can be used for pickling. The higher the protocol used, the more recent the version of Python needed to read the pickle produced.
- Protocol version 0 is the original "human-readable" protocol and is backwards compatible with earlier versions of Python.
- Protocol version 1 is an old binary format which is also compatible with earlier versions of Python.
- Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of [new-style class](../glossary.xhtml#term-new-style-class)es. Refer to [**PEP 307**](https://www.python.org/dev/peps/pep-0307) \[https://www.python.org/dev/peps/pep-0307\] for information about improvements brought by protocol 2.
- Protocol version 3 was added in Python 3.0. It has explicit support for [`bytes`](stdtypes.xhtml#bytes "bytes") objects and cannot be unpickled by Python 2.x. This is the default protocol, and the recommended protocol when compatibility with other Python 3 versions is required.
- Protocol version 4 was added in Python 3.4. It adds support for very large objects, pickling more kinds of objects, and some data format optimizations. Refer to [**PEP 3154**](https://www.python.org/dev/peps/pep-3154) \[https://www.python.org/dev/peps/pep-3154\] for information about improvements brought by protocol 4.
注解
Serialization is a more primitive notion than persistence; although [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") reads and writes file objects, it does not handle the issue of naming persistent objects, nor the (even more complicated) issue of concurrent access to persistent objects. The [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") module can transform a complex object into a byte stream and it can transform the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do with these byte streams is to write them onto a file, but it is also conceivable to send them across a network or store them in a database. The [`shelve`](shelve.xhtml#module-shelve "shelve: Python object persistence.")module provides a simple interface to pickle and unpickle objects on DBM-style database files.
## Module Interface
To serialize an object hierarchy, you simply call the [`dumps()`](#pickle.dumps "pickle.dumps") function. Similarly, to de-serialize a data stream, you call the [`loads()`](#pickle.loads "pickle.loads") function. However, if you want more control over serialization and de-serialization, you can create a [`Pickler`](#pickle.Pickler "pickle.Pickler") or an [`Unpickler`](#pickle.Unpickler "pickle.Unpickler") object, respectively.
The [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") module provides the following constants:
`pickle.``HIGHEST_PROTOCOL`An integer, the highest [protocol version](#pickle-protocols)available. This value can be passed as a *protocol* value to functions [`dump()`](#pickle.dump "pickle.dump") and [`dumps()`](#pickle.dumps "pickle.dumps") as well as the [`Pickler`](#pickle.Pickler "pickle.Pickler")constructor.
`pickle.``DEFAULT_PROTOCOL`An integer, the default [protocol version](#pickle-protocols) used for pickling. May be less than [`HIGHEST_PROTOCOL`](#pickle.HIGHEST_PROTOCOL "pickle.HIGHEST_PROTOCOL"). Currently the default protocol is 3, a new protocol designed for Python 3.
The [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") module provides the following functions to make the pickling process more convenient:
`pickle.``dump`(*obj*, *file*, *protocol=None*, *\**, *fix\_imports=True*)Write a pickled representation of *obj* to the open [file object](../glossary.xhtml#term-file-object) *file*. This is equivalent to `Pickler(file, protocol).dump(obj)`.
The optional *protocol* argument, an integer, tells the pickler to use the given protocol; supported protocols are 0 to [`HIGHEST_PROTOCOL`](#pickle.HIGHEST_PROTOCOL "pickle.HIGHEST_PROTOCOL"). If not specified, the default is [`DEFAULT_PROTOCOL`](#pickle.DEFAULT_PROTOCOL "pickle.DEFAULT_PROTOCOL"). If a negative number is specified, [`HIGHEST_PROTOCOL`](#pickle.HIGHEST_PROTOCOL "pickle.HIGHEST_PROTOCOL") is selected.
The *file* argument must have a write() method that accepts a single bytes argument. It can thus be an on-disk file opened for binary writing, an [`io.BytesIO`](io.xhtml#io.BytesIO "io.BytesIO") instance, or any other custom object that meets this interface.
If *fix\_imports* is true and *protocol* is less than 3, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2.
`pickle.``dumps`(*obj*, *protocol=None*, *\**, *fix\_imports=True*)Return the pickled representation of the object as a [`bytes`](stdtypes.xhtml#bytes "bytes") object, instead of writing it to a file.
Arguments *protocol* and *fix\_imports* have the same meaning as in [`dump()`](#pickle.dump "pickle.dump").
`pickle.``load`(*file*, *\**, *fix\_imports=True*, *encoding="ASCII"*, *errors="strict"*)Read a pickled object representation from the open [file object](../glossary.xhtml#term-file-object)*file* and return the reconstituted object hierarchy specified therein. This is equivalent to `Unpickler(file).load()`.
The protocol version of the pickle is detected automatically, so no protocol argument is needed. Bytes past the pickled object's representation are ignored.
The argument *file* must have two methods, a read() method that takes an integer argument, and a readline() method that requires no arguments. Both methods should return bytes. Thus *file* can be an on-disk file opened for binary reading, an [`io.BytesIO`](io.xhtml#io.BytesIO "io.BytesIO") object, or any other custom object that meets this interface.
Optional keyword arguments are *fix\_imports*, *encoding* and *errors*, which are used to control compatibility support for pickle stream generated by Python 2. If *fix\_imports* is true, pickle will try to map the old Python 2 names to the new names used in Python 3. The *encoding* and *errors* tell pickle how to decode 8-bit string instances pickled by Python 2; these default to 'ASCII' and 'strict', respectively. The *encoding* can be 'bytes' to read these 8-bit string instances as bytes objects. Using `encoding='latin1'` is required for unpickling NumPy arrays and instances of [`datetime`](datetime.xhtml#datetime.datetime "datetime.datetime"), [`date`](datetime.xhtml#datetime.date "datetime.date") and [`time`](datetime.xhtml#datetime.time "datetime.time") pickled by Python 2.
`pickle.``loads`(*bytes\_object*, *\**, *fix\_imports=True*, *encoding="ASCII"*, *errors="strict"*)Read a pickled object hierarchy from a [`bytes`](stdtypes.xhtml#bytes "bytes") object and return the reconstituted object hierarchy specified therein.
The protocol version of the pickle is detected automatically, so no protocol argument is needed. Bytes past the pickled object's representation are ignored.
Optional keyword arguments are *fix\_imports*, *encoding* and *errors*, which are used to control compatibility support for pickle stream generated by Python 2. If *fix\_imports* is true, pickle will try to map the old Python 2 names to the new names used in Python 3. The *encoding* and *errors* tell pickle how to decode 8-bit string instances pickled by Python 2; these default to 'ASCII' and 'strict', respectively. The *encoding* can be 'bytes' to read these 8-bit string instances as bytes objects. Using `encoding='latin1'` is required for unpickling NumPy arrays and instances of [`datetime`](datetime.xhtml#datetime.datetime "datetime.datetime"), [`date`](datetime.xhtml#datetime.date "datetime.date") and [`time`](datetime.xhtml#datetime.time "datetime.time") pickled by Python 2.
The [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") module defines three exceptions:
*exception* `pickle.``PickleError`Common base class for the other pickling exceptions. It inherits [`Exception`](exceptions.xhtml#Exception "Exception").
*exception* `pickle.``PicklingError`Error raised when an unpicklable object is encountered by [`Pickler`](#pickle.Pickler "pickle.Pickler"). It inherits [`PickleError`](#pickle.PickleError "pickle.PickleError").
Refer to [What can be pickled and unpickled?](#pickle-picklable) to learn what kinds of objects can be pickled.
*exception* `pickle.``UnpicklingError`Error raised when there is a problem unpickling an object, such as a data corruption or a security violation. It inherits [`PickleError`](#pickle.PickleError "pickle.PickleError").
Note that other exceptions may also be raised during unpickling, including (but not necessarily limited to) AttributeError, EOFError, ImportError, and IndexError.
The [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") module exports two classes, [`Pickler`](#pickle.Pickler "pickle.Pickler") and [`Unpickler`](#pickle.Unpickler "pickle.Unpickler"):
*class* `pickle.``Pickler`(*file*, *protocol=None*, *\**, *fix\_imports=True*)This takes a binary file for writing a pickle data stream.
The optional *protocol* argument, an integer, tells the pickler to use the given protocol; supported protocols are 0 to [`HIGHEST_PROTOCOL`](#pickle.HIGHEST_PROTOCOL "pickle.HIGHEST_PROTOCOL"). If not specified, the default is [`DEFAULT_PROTOCOL`](#pickle.DEFAULT_PROTOCOL "pickle.DEFAULT_PROTOCOL"). If a negative number is specified, [`HIGHEST_PROTOCOL`](#pickle.HIGHEST_PROTOCOL "pickle.HIGHEST_PROTOCOL") is selected.
The *file* argument must have a write() method that accepts a single bytes argument. It can thus be an on-disk file opened for binary writing, an [`io.BytesIO`](io.xhtml#io.BytesIO "io.BytesIO") instance, or any other custom object that meets this interface.
If *fix\_imports* is true and *protocol* is less than 3, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2.
`dump`(*obj*)Write a pickled representation of *obj* to the open file object given in the constructor.
`persistent_id`(*obj*)Do nothing by default. This exists so a subclass can override it.
If [`persistent_id()`](#pickle.Pickler.persistent_id "pickle.Pickler.persistent_id") returns `None`, *obj* is pickled as usual. Any other value causes [`Pickler`](#pickle.Pickler "pickle.Pickler") to emit the returned value as a persistent ID for *obj*. The meaning of this persistent ID should be defined by [`Unpickler.persistent_load()`](#pickle.Unpickler.persistent_load "pickle.Unpickler.persistent_load"). Note that the value returned by [`persistent_id()`](#pickle.Pickler.persistent_id "pickle.Pickler.persistent_id") cannot itself have a persistent ID.
See [Persistence of External Objects](#pickle-persistent) for details and examples of uses.
`dispatch_table`A pickler object's dispatch table is a registry of *reduction functions* of the kind which can be declared using [`copyreg.pickle()`](copyreg.xhtml#copyreg.pickle "copyreg.pickle"). It is a mapping whose keys are classes and whose values are reduction functions. A reduction function takes a single argument of the associated class and should conform to the same interface as a [`__reduce__()`](#object.__reduce__ "object.__reduce__")method.
By default, a pickler object will not have a [`dispatch_table`](#pickle.Pickler.dispatch_table "pickle.Pickler.dispatch_table") attribute, and it will instead use the global dispatch table managed by the [`copyreg`](copyreg.xhtml#module-copyreg "copyreg: Register pickle support functions.") module. However, to customize the pickling for a specific pickler object one can set the [`dispatch_table`](#pickle.Pickler.dispatch_table "pickle.Pickler.dispatch_table") attribute to a dict-like object. Alternatively, if a subclass of [`Pickler`](#pickle.Pickler "pickle.Pickler") has a [`dispatch_table`](#pickle.Pickler.dispatch_table "pickle.Pickler.dispatch_table") attribute then this will be used as the default dispatch table for instances of that class.
See [Dispatch Tables](#pickle-dispatch) for usage examples.
3\.3 新版功能.
`fast`Deprecated. Enable fast mode if set to a true value. The fast mode disables the usage of memo, therefore speeding the pickling process by not generating superfluous PUT opcodes. It should not be used with self-referential objects, doing otherwise will cause [`Pickler`](#pickle.Pickler "pickle.Pickler") to recurse infinitely.
Use [`pickletools.optimize()`](pickletools.xhtml#pickletools.optimize "pickletools.optimize") if you need more compact pickles.
*class* `pickle.``Unpickler`(*file*, *\**, *fix\_imports=True*, *encoding="ASCII"*, *errors="strict"*)This takes a binary file for reading a pickle data stream.
The protocol version of the pickle is detected automatically, so no protocol argument is needed.
The argument *file* must have two methods, a read() method that takes an integer argument, and a readline() method that requires no arguments. Both methods should return bytes. Thus *file* can be an on-disk file object opened for binary reading, an [`io.BytesIO`](io.xhtml#io.BytesIO "io.BytesIO") object, or any other custom object that meets this interface.
Optional keyword arguments are *fix\_imports*, *encoding* and *errors*, which are used to control compatibility support for pickle stream generated by Python 2. If *fix\_imports* is true, pickle will try to map the old Python 2 names to the new names used in Python 3. The *encoding* and *errors* tell pickle how to decode 8-bit string instances pickled by Python 2; these default to 'ASCII' and 'strict', respectively. The *encoding* can be 'bytes' to read these 8-bit string instances as bytes objects.
`load`()Read a pickled object representation from the open file object given in the constructor, and return the reconstituted object hierarchy specified therein. Bytes past the pickled object's representation are ignored.
`persistent_load`(*pid*)Raise an [`UnpicklingError`](#pickle.UnpicklingError "pickle.UnpicklingError") by default.
If defined, [`persistent_load()`](#pickle.Unpickler.persistent_load "pickle.Unpickler.persistent_load") should return the object specified by the persistent ID *pid*. If an invalid persistent ID is encountered, an [`UnpicklingError`](#pickle.UnpicklingError "pickle.UnpicklingError") should be raised.
See [Persistence of External Objects](#pickle-persistent) for details and examples of uses.
`find_class`(*module*, *name*)Import *module* if necessary and return the object called *name* from it, where the *module* and *name* arguments are [`str`](stdtypes.xhtml#str "str") objects. Note, unlike its name suggests, [`find_class()`](#pickle.Unpickler.find_class "pickle.Unpickler.find_class") is also used for finding functions.
Subclasses may override this to gain control over what type of objects and how they can be loaded, potentially reducing security risks. Refer to [Restricting Globals](#pickle-restrict) for details.
## What can be pickled and unpickled?
The following types can be pickled:
- `None`, `True`, and `False`
- integers, floating point numbers, complex numbers
- strings, bytes, bytearrays
- tuples, lists, sets, and dictionaries containing only picklable objects
- functions defined at the top level of a module (using [`def`](../reference/compound_stmts.xhtml#def), not [`lambda`](../reference/expressions.xhtml#lambda))
- built-in functions defined at the top level of a module
- classes that are defined at the top level of a module
- instances of such classes whose [`__dict__`](stdtypes.xhtml#object.__dict__ "object.__dict__") or the result of calling [`__getstate__()`](#object.__getstate__ "object.__getstate__") is picklable (see section [Pickling Class Instances](#pickle-inst) for details).
Attempts to pickle unpicklable objects will raise the [`PicklingError`](#pickle.PicklingError "pickle.PicklingError")exception; when this happens, an unspecified number of bytes may have already been written to the underlying file. Trying to pickle a highly recursive data structure may exceed the maximum recursion depth, a [`RecursionError`](exceptions.xhtml#RecursionError "RecursionError") will be raised in this case. You can carefully raise this limit with [`sys.setrecursionlimit()`](sys.xhtml#sys.setrecursionlimit "sys.setrecursionlimit").
Note that functions (built-in and user-defined) are pickled by "fully qualified" name reference, not by value. [2](#id7) This means that only the function name is pickled, along with the name of the module the function is defined in. Neither the function's code, nor any of its function attributes are pickled. Thus the defining module must be importable in the unpickling environment, and the module must contain the named object, otherwise an exception will be raised. [3](#id8)
Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply. Note that none of the class's code or data is pickled, so in the following example the class attribute `attr` is not restored in the unpickling environment:
```
class Foo:
attr = 'A class attribute'
picklestring = pickle.dumps(Foo)
```
These restrictions are why picklable functions and classes must be defined in the top level of a module.
Similarly, when class instances are pickled, their class's code and data are not pickled along with them. Only the instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the class's [`__setstate__()`](#object.__setstate__ "object.__setstate__") method.
## Pickling Class Instances
In this section, we describe the general mechanisms available to you to define, customize, and control how class instances are pickled and unpickled.
In most cases, no additional code is needed to make instances picklable. By default, pickle will retrieve the class and the attributes of an instance via introspection. When a class instance is unpickled, its [`__init__()`](../reference/datamodel.xhtml#object.__init__ "object.__init__") method is usually *not* invoked. The default behaviour first creates an uninitialized instance and then restores the saved attributes. The following code shows an implementation of this behaviour:
```
def save(obj):
return (obj.__class__, obj.__dict__)
def load(cls, attributes):
obj = cls.__new__(cls)
obj.__dict__.update(attributes)
return obj
```
Classes can alter the default behaviour by providing one or several special methods:
`object.``__getnewargs_ex__`()In protocols 2 and newer, classes that implements the [`__getnewargs_ex__()`](#object.__getnewargs_ex__ "object.__getnewargs_ex__") method can dictate the values passed to the [`__new__()`](../reference/datamodel.xhtml#object.__new__ "object.__new__") method upon unpickling. The method must return a pair `(args, kwargs)` where *args* is a tuple of positional arguments and *kwargs* a dictionary of named arguments for constructing the object. Those will be passed to the [`__new__()`](../reference/datamodel.xhtml#object.__new__ "object.__new__") method upon unpickling.
You should implement this method if the [`__new__()`](../reference/datamodel.xhtml#object.__new__ "object.__new__") method of your class requires keyword-only arguments. Otherwise, it is recommended for compatibility to implement [`__getnewargs__()`](#object.__getnewargs__ "object.__getnewargs__").
在 3.6 版更改: [`__getnewargs_ex__()`](#object.__getnewargs_ex__ "object.__getnewargs_ex__") is now used in protocols 2 and 3.
`object.``__getnewargs__`()This method serves a similar purpose as [`__getnewargs_ex__()`](#object.__getnewargs_ex__ "object.__getnewargs_ex__"), but supports only positional arguments. It must return a tuple of arguments `args` which will be passed to the [`__new__()`](../reference/datamodel.xhtml#object.__new__ "object.__new__") method upon unpickling.
[`__getnewargs__()`](#object.__getnewargs__ "object.__getnewargs__") will not be called if [`__getnewargs_ex__()`](#object.__getnewargs_ex__ "object.__getnewargs_ex__") is defined.
在 3.6 版更改: Before Python 3.6, [`__getnewargs__()`](#object.__getnewargs__ "object.__getnewargs__") was called instead of [`__getnewargs_ex__()`](#object.__getnewargs_ex__ "object.__getnewargs_ex__") in protocols 2 and 3.
`object.``__getstate__`()Classes can further influence how their instances are pickled; if the class defines the method [`__getstate__()`](#object.__getstate__ "object.__getstate__"), it is called and the returned object is pickled as the contents for the instance, instead of the contents of the instance's dictionary. If the [`__getstate__()`](#object.__getstate__ "object.__getstate__") method is absent, the instance's [`__dict__`](stdtypes.xhtml#object.__dict__ "object.__dict__") is pickled as usual.
`object.``__setstate__`(*state*)Upon unpickling, if the class defines [`__setstate__()`](#object.__setstate__ "object.__setstate__"), it is called with the unpickled state. In that case, there is no requirement for the state object to be a dictionary. Otherwise, the pickled state must be a dictionary and its items are assigned to the new instance's dictionary.
注解
If [`__getstate__()`](#object.__getstate__ "object.__getstate__") returns a false value, the [`__setstate__()`](#object.__setstate__ "object.__setstate__")method will not be called upon unpickling.
Refer to the section [Handling Stateful Objects](#pickle-state) for more information about how to use the methods [`__getstate__()`](#object.__getstate__ "object.__getstate__") and [`__setstate__()`](#object.__setstate__ "object.__setstate__").
注解
At unpickling time, some methods like [`__getattr__()`](../reference/datamodel.xhtml#object.__getattr__ "object.__getattr__"), [`__getattribute__()`](../reference/datamodel.xhtml#object.__getattribute__ "object.__getattribute__"), or [`__setattr__()`](../reference/datamodel.xhtml#object.__setattr__ "object.__setattr__") may be called upon the instance. In case those methods rely on some internal invariant being true, the type should implement [`__getnewargs__()`](#object.__getnewargs__ "object.__getnewargs__") or [`__getnewargs_ex__()`](#object.__getnewargs_ex__ "object.__getnewargs_ex__") to establish such an invariant; otherwise, neither [`__new__()`](../reference/datamodel.xhtml#object.__new__ "object.__new__") nor [`__init__()`](../reference/datamodel.xhtml#object.__init__ "object.__init__") will be called.
As we shall see, pickle does not use directly the methods described above. In fact, these methods are part of the copy protocol which implements the [`__reduce__()`](#object.__reduce__ "object.__reduce__") special method. The copy protocol provides a unified interface for retrieving the data necessary for pickling and copying objects. [4](#id9)
Although powerful, implementing [`__reduce__()`](#object.__reduce__ "object.__reduce__") directly in your classes is error prone. For this reason, class designers should use the high-level interface (i.e., [`__getnewargs_ex__()`](#object.__getnewargs_ex__ "object.__getnewargs_ex__"), [`__getstate__()`](#object.__getstate__ "object.__getstate__") and [`__setstate__()`](#object.__setstate__ "object.__setstate__")) whenever possible. We will show, however, cases where using [`__reduce__()`](#object.__reduce__ "object.__reduce__") is the only option or leads to more efficient pickling or both.
`object.``__reduce__`()The interface is currently defined as follows. The [`__reduce__()`](#object.__reduce__ "object.__reduce__") method takes no argument and shall return either a string or preferably a tuple (the returned object is often referred to as the "reduce value").
If a string is returned, the string should be interpreted as the name of a global variable. It should be the object's local name relative to its module; the pickle module searches the module namespace to determine the object's module. This behaviour is typically useful for singletons.
When a tuple is returned, it must be between two and five items long. Optional items can either be omitted, or `None` can be provided as their value. The semantics of each item are in order:
- A callable object that will be called to create the initial version of the object.
- A tuple of arguments for the callable object. An empty tuple must be given if the callable does not accept any argument.
- Optionally, the object's state, which will be passed to the object's [`__setstate__()`](#object.__setstate__ "object.__setstate__") method as previously described. If the object has no such method then, the value must be a dictionary and it will be added to the object's [`__dict__`](stdtypes.xhtml#object.__dict__ "object.__dict__") attribute.
- Optionally, an iterator (and not a sequence) yielding successive items. These items will be appended to the object either using `obj.append(item)` or, in batch, using `obj.extend(list_of_items)`. This is primarily used for list subclasses, but may be used by other classes as long as they have `append()` and `extend()` methods with the appropriate signature. (Whether `append()` or `extend()` is used depends on which pickle protocol version is used as well as the number of items to append, so both must be supported.)
- Optionally, an iterator (not a sequence) yielding successive key-value pairs. These items will be stored to the object using
```
obj[key] =
value
```
. This is primarily used for dictionary subclasses, but may be used by other classes as long as they implement [`__setitem__()`](../reference/datamodel.xhtml#object.__setitem__ "object.__setitem__").
`object.``__reduce_ex__`(*protocol*)Alternatively, a [`__reduce_ex__()`](#object.__reduce_ex__ "object.__reduce_ex__") method may be defined. The only difference is this method should take a single integer argument, the protocol version. When defined, pickle will prefer it over the [`__reduce__()`](#object.__reduce__ "object.__reduce__")method. In addition, [`__reduce__()`](#object.__reduce__ "object.__reduce__") automatically becomes a synonym for the extended version. The main use for this method is to provide backwards-compatible reduce values for older Python releases.
### Persistence of External Objects
For the benefit of object persistence, the [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") module supports the notion of a reference to an object outside the pickled data stream. Such objects are referenced by a persistent ID, which should be either a string of alphanumeric characters (for protocol 0) [5](#id10) or just an arbitrary object (for any newer protocol).
The resolution of such persistent IDs is not defined by the [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.")module; it will delegate this resolution to the user defined methods on the pickler and unpickler, [`persistent_id()`](#pickle.Pickler.persistent_id "pickle.Pickler.persistent_id") and [`persistent_load()`](#pickle.Unpickler.persistent_load "pickle.Unpickler.persistent_load") respectively.
To pickle objects that have an external persistent id, the pickler must have a custom [`persistent_id()`](#pickle.Pickler.persistent_id "pickle.Pickler.persistent_id") method that takes an object as an argument and returns either `None` or the persistent id for that object. When `None` is returned, the pickler simply pickles the object as normal. When a persistent ID string is returned, the pickler will pickle that object, along with a marker so that the unpickler will recognize it as a persistent ID.
To unpickle external objects, the unpickler must have a custom [`persistent_load()`](#pickle.Unpickler.persistent_load "pickle.Unpickler.persistent_load") method that takes a persistent ID object and returns the referenced object.
Here is a comprehensive example presenting how persistent ID can be used to pickle external objects by reference.
```
# Simple example presenting how persistent ID can be used to pickle
# external objects by reference.
import pickle
import sqlite3
from collections import namedtuple
# Simple class representing a record in our database.
MemoRecord = namedtuple("MemoRecord", "key, task")
class DBPickler(pickle.Pickler):
def persistent_id(self, obj):
# Instead of pickling MemoRecord as a regular class instance, we emit a
# persistent ID.
if isinstance(obj, MemoRecord):
# Here, our persistent ID is simply a tuple, containing a tag and a
# key, which refers to a specific record in the database.
return ("MemoRecord", obj.key)
else:
# If obj does not have a persistent ID, return None. This means obj
# needs to be pickled as usual.
return None
class DBUnpickler(pickle.Unpickler):
def __init__(self, file, connection):
super().__init__(file)
self.connection = connection
def persistent_load(self, pid):
# This method is invoked whenever a persistent ID is encountered.
# Here, pid is the tuple returned by DBPickler.
cursor = self.connection.cursor()
type_tag, key_id = pid
if type_tag == "MemoRecord":
# Fetch the referenced record from the database and return it.
cursor.execute("SELECT * FROM memos WHERE key=?", (str(key_id),))
key, task = cursor.fetchone()
return MemoRecord(key, task)
else:
# Always raises an error if you cannot return the correct object.
# Otherwise, the unpickler will think None is the object referenced
# by the persistent ID.
raise pickle.UnpicklingError("unsupported persistent object")
def main():
import io
import pprint
# Initialize and populate our database.
conn = sqlite3.connect(":memory:")
cursor = conn.cursor()
cursor.execute("CREATE TABLE memos(key INTEGER PRIMARY KEY, task TEXT)")
tasks = (
'give food to fish',
'prepare group meeting',
'fight with a zebra',
)
for task in tasks:
cursor.execute("INSERT INTO memos VALUES(NULL, ?)", (task,))
# Fetch the records to be pickled.
cursor.execute("SELECT * FROM memos")
memos = [MemoRecord(key, task) for key, task in cursor]
# Save the records using our custom DBPickler.
file = io.BytesIO()
DBPickler(file).dump(memos)
print("Pickled records:")
pprint.pprint(memos)
# Update a record, just for good measure.
cursor.execute("UPDATE memos SET task='learn italian' WHERE key=1")
# Load the records from the pickle data stream.
file.seek(0)
memos = DBUnpickler(file, conn).load()
print("Unpickled records:")
pprint.pprint(memos)
if __name__ == '__main__':
main()
```
### Dispatch Tables
If one wants to customize pickling of some classes without disturbing any other code which depends on pickling, then one can create a pickler with a private dispatch table.
The global dispatch table managed by the [`copyreg`](copyreg.xhtml#module-copyreg "copyreg: Register pickle support functions.") module is available as `copyreg.dispatch_table`. Therefore, one may choose to use a modified copy of `copyreg.dispatch_table` as a private dispatch table.
For example
```
f = io.BytesIO()
p = pickle.Pickler(f)
p.dispatch_table = copyreg.dispatch_table.copy()
p.dispatch_table[SomeClass] = reduce_SomeClass
```
creates an instance of [`pickle.Pickler`](#pickle.Pickler "pickle.Pickler") with a private dispatch table which handles the `SomeClass` class specially. Alternatively, the code
```
class MyPickler(pickle.Pickler):
dispatch_table = copyreg.dispatch_table.copy()
dispatch_table[SomeClass] = reduce_SomeClass
f = io.BytesIO()
p = MyPickler(f)
```
does the same, but all instances of `MyPickler` will by default share the same dispatch table. The equivalent code using the [`copyreg`](copyreg.xhtml#module-copyreg "copyreg: Register pickle support functions.") module is
```
copyreg.pickle(SomeClass, reduce_SomeClass)
f = io.BytesIO()
p = pickle.Pickler(f)
```
### Handling Stateful Objects
Here's an example that shows how to modify pickling behavior for a class. The `TextReader` class opens a text file, and returns the line number and line contents each time its `readline()` method is called. If a `TextReader` instance is pickled, all attributes *except* the file object member are saved. When the instance is unpickled, the file is reopened, and reading resumes from the last location. The [`__setstate__()`](#object.__setstate__ "object.__setstate__") and [`__getstate__()`](#object.__getstate__ "object.__getstate__") methods are used to implement this behavior.
```
class TextReader:
"""Print and number lines in a text file."""
def __init__(self, filename):
self.filename = filename
self.file = open(filename)
self.lineno = 0
def readline(self):
self.lineno += 1
line = self.file.readline()
if not line:
return None
if line.endswith('\n'):
line = line[:-1]
return "%i: %s" % (self.lineno, line)
def __getstate__(self):
# Copy the object's state from self.__dict__ which contains
# all our instance attributes. Always use the dict.copy()
# method to avoid modifying the original state.
state = self.__dict__.copy()
# Remove the unpicklable entries.
del state['file']
return state
def __setstate__(self, state):
# Restore instance attributes (i.e., filename and lineno).
self.__dict__.update(state)
# Restore the previously opened file's state. To do so, we need to
# reopen it and read from it until the line count is restored.
file = open(self.filename)
for _ in range(self.lineno):
file.readline()
# Finally, save the file.
self.file = file
```
A sample usage might be something like this:
```
>>> reader = TextReader("hello.txt")
>>> reader.readline()
'1: Hello world!'
>>> reader.readline()
'2: I am line number two.'
>>> new_reader = pickle.loads(pickle.dumps(reader))
>>> new_reader.readline()
'3: Goodbye!'
```
## Restricting Globals
By default, unpickling will import any class or function that it finds in the pickle data. For many applications, this behaviour is unacceptable as it permits the unpickler to import and invoke arbitrary code. Just consider what this hand-crafted pickle data stream does when loaded:
```
>>> import pickle
>>> pickle.loads(b"cos\nsystem\n(S'echo hello world'\ntR.")
hello world
0
```
In this example, the unpickler imports the [`os.system()`](os.xhtml#os.system "os.system") function and then apply the string argument "echo hello world". Although this example is inoffensive, it is not difficult to imagine one that could damage your system.
For this reason, you may want to control what gets unpickled by customizing [`Unpickler.find_class()`](#pickle.Unpickler.find_class "pickle.Unpickler.find_class"). Unlike its name suggests, [`Unpickler.find_class()`](#pickle.Unpickler.find_class "pickle.Unpickler.find_class") is called whenever a global (i.e., a class or a function) is requested. Thus it is possible to either completely forbid globals or restrict them to a safe subset.
Here is an example of an unpickler allowing only few safe classes from the [`builtins`](builtins.xhtml#module-builtins "builtins: The module that provides the built-in namespace.") module to be loaded:
```
import builtins
import io
import pickle
safe_builtins = {
'range',
'complex',
'set',
'frozenset',
'slice',
}
class RestrictedUnpickler(pickle.Unpickler):
def find_class(self, module, name):
# Only allow safe classes from builtins.
if module == "builtins" and name in safe_builtins:
return getattr(builtins, name)
# Forbid everything else.
raise pickle.UnpicklingError("global '%s.%s' is forbidden" %
(module, name))
def restricted_loads(s):
"""Helper function analogous to pickle.loads()."""
return RestrictedUnpickler(io.BytesIO(s)).load()
```
A sample usage of our unpickler working has intended:
```
>>> restricted_loads(pickle.dumps([1, 2, range(15)]))
[1, 2, range(0, 15)]
>>> restricted_loads(b"cos\nsystem\n(S'echo hello world'\ntR.")
Traceback (most recent call last):
...
pickle.UnpicklingError: global 'os.system' is forbidden
>>> restricted_loads(b'cbuiltins\neval\n'
... b'(S\'getattr(__import__("os"), "system")'
... b'("echo hello world")\'\ntR.')
Traceback (most recent call last):
...
pickle.UnpicklingError: global 'builtins.eval' is forbidden
```
As our examples shows, you have to be careful with what you allow to be unpickled. Therefore if security is a concern, you may want to consider alternatives such as the marshalling API in [`xmlrpc.client`](xmlrpc.client.xhtml#module-xmlrpc.client "xmlrpc.client: XML-RPC client access.") or third-party solutions.
## 性能
Recent versions of the pickle protocol (from protocol 2 and upwards) feature efficient binary encodings for several common features and built-in types. Also, the [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.") module has a transparent optimizer written in C.
## 示例
For the simplest code, use the [`dump()`](#pickle.dump "pickle.dump") and [`load()`](#pickle.load "pickle.load") functions.
```
import pickle
# An arbitrary collection of objects supported by pickle.
data = {
'a': [1, 2.0, 3, 4+6j],
'b': ("character string", b"byte string"),
'c': {None, True, False}
}
with open('data.pickle', 'wb') as f:
# Pickle the 'data' dictionary using the highest protocol available.
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
```
The following example reads the resulting pickled data.
```
import pickle
with open('data.pickle', 'rb') as f:
# The protocol version used is detected automatically, so we do not
# have to specify it.
data = pickle.load(f)
```
參見
Module [`copyreg`](copyreg.xhtml#module-copyreg "copyreg: Register pickle support functions.")Pickle interface constructor registration for extension types.
Module [`pickletools`](pickletools.xhtml#module-pickletools "pickletools: Contains extensive comments about the pickle protocols and pickle-machine opcodes, as well as some useful functions.")Tools for working with and analyzing pickled data.
模塊 [`shelve`](shelve.xhtml#module-shelve "shelve: Python object persistence.")Indexed databases of objects; uses [`pickle`](#module-pickle "pickle: Convert Python objects to streams of bytes and back.").
Module [`copy`](copy.xhtml#module-copy "copy: Shallow and deep copy operations.")Shallow and deep object copying.
Module [`marshal`](marshal.xhtml#module-marshal "marshal: Convert Python objects to streams of bytes and back (with different constraints).")High-performance serialization of built-in types.
腳注
[1](#id1)Don't confuse this with the [`marshal`](marshal.xhtml#module-marshal "marshal: Convert Python objects to streams of bytes and back (with different constraints).") module
[2](#id2)This is why [`lambda`](../reference/expressions.xhtml#lambda) functions cannot be pickled: all `lambda` functions share the same name: `<lambda>`.
[3](#id3)The exception raised will likely be an [`ImportError`](exceptions.xhtml#ImportError "ImportError") or an [`AttributeError`](exceptions.xhtml#AttributeError "AttributeError") but it could be something else.
[4](#id4)The [`copy`](copy.xhtml#module-copy "copy: Shallow and deep copy operations.") module uses this protocol for shallow and deep copying operations.
[5](#id5)The limitation on alphanumeric characters is due to the fact the persistent IDs, in protocol 0, are delimited by the newline character. Therefore if any kind of newline characters occurs in persistent IDs, the resulting pickle will become unreadable.
### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](copyreg.xhtml "copyreg --- Register pickle support functions") |
- [上一頁](persistence.xhtml "數據持久化") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 標準庫](index.xhtml) ?
- [數據持久化](persistence.xhtml) ?
- $('.inline-search').show(0); |
? [版權所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 軟件基金會是一個非盈利組織。 [請捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [發現了問題](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 創建。
- Python文檔內容
- Python 有什么新變化?
- Python 3.7 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- C API 的改變
- 構建的改變
- 性能優化
- 其他 CPython 實現的改變
- 已棄用的 Python 行為
- 已棄用的 Python 模塊、函數和方法
- 已棄用的 C API 函數和類型
- 平臺支持的移除
- API 與特性的移除
- 移除的模塊
- Windows 專屬的改變
- 移植到 Python 3.7
- Python 3.7.1 中的重要變化
- Python 3.7.2 中的重要變化
- Python 3.6 有什么新變化A
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 其他改進
- 棄用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要變化
- Python 3.6.4 中的重要變化
- Python 3.6.5 中的重要變化
- Python 3.6.7 中的重要變化
- Python 3.5 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- Other module-level changes
- 性能優化
- Build and C API Changes
- 棄用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 發布重點
- 新的特性
- 新增模塊
- 改進的模塊
- CPython Implementation Changes
- 棄用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 發布重點
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他語言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 棄用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 多線程
- 性能優化
- Unicode
- Codecs
- 文檔
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 性能優化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他語言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新變化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他語言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他語言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推導式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最終版
- Python 3.7.3 發布候選版 1
- Python 3.7.2 最終版
- Python 3.7.2 發布候選版 1
- Python 3.7.1 最終版
- Python 3.7.1 RC 2版本
- Python 3.7.1 發布候選版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 課前甜點
- 使用 Python 解釋器
- 調用解釋器
- 解釋器的運行環境
- Python 的非正式介紹
- Python 作為計算器使用
- 走向編程的第一步
- 其他流程控制工具
- if 語句
- for 語句
- range() 函數
- break 和 continue 語句,以及循環中的 else 子句
- pass 語句
- 定義函數
- 函數定義的更多形式
- 小插曲:編碼風格
- 數據結構
- 列表的更多特性
- del 語句
- 元組和序列
- 集合
- 字典
- 循環的技巧
- 深入條件控制
- 序列和其它類型的比較
- 模塊
- 有關模塊的更多信息
- 標準模塊
- dir() 函數
- 包
- 輸入輸出
- 更漂亮的輸出格式
- 讀寫文件
- 錯誤和異常
- 語法錯誤
- 異常
- 處理異常
- 拋出異常
- 用戶自定義異常
- 定義清理操作
- 預定義的清理操作
- 類
- 名稱和對象
- Python 作用域和命名空間
- 初探類
- 補充說明
- 繼承
- 私有變量
- 雜項說明
- 迭代器
- 生成器
- 生成器表達式
- 標準庫簡介
- 操作系統接口
- 文件通配符
- 命令行參數
- 錯誤輸出重定向和程序終止
- 字符串模式匹配
- 數學
- 互聯網訪問
- 日期和時間
- 數據壓縮
- 性能測量
- 質量控制
- 自帶電池
- 標準庫簡介 —— 第二部分
- 格式化輸出
- 模板
- 使用二進制數據記錄格式
- 多線程
- 日志
- 弱引用
- 用于操作列表的工具
- 十進制浮點運算
- 虛擬環境和包
- 概述
- 創建虛擬環境
- 使用pip管理包
- 接下來?
- 交互式編輯和編輯歷史
- Tab 補全和編輯歷史
- 默認交互式解釋器的替代品
- 浮點算術:爭議和限制
- 表示性錯誤
- 附錄
- 交互模式
- 安裝和使用 Python
- 命令行與環境
- 命令行
- 環境變量
- 在Unix平臺中使用Python
- 獲取最新版本的Python
- 構建Python
- 與Python相關的路徑和文件
- 雜項
- 編輯器和集成開發環境
- 在Windows上使用 Python
- 完整安裝程序
- Microsoft Store包
- nuget.org 安裝包
- 可嵌入的包
- 替代捆綁包
- 配置Python
- 適用于Windows的Python啟動器
- 查找模塊
- 附加模塊
- 在Windows上編譯Python
- 其他平臺
- 在蘋果系統上使用 Python
- 獲取和安裝 MacPython
- IDE
- 安裝額外的 Python 包
- Mac 上的圖形界面編程
- 在 Mac 上分發 Python 應用程序
- 其他資源
- Python 語言參考
- 概述
- 其他實現
- 標注
- 詞法分析
- 行結構
- 其他形符
- 標識符和關鍵字
- 字面值
- 運算符
- 分隔符
- 數據模型
- 對象、值與類型
- 標準類型層級結構
- 特殊方法名稱
- 協程
- 執行模型
- 程序的結構
- 命名與綁定
- 異常
- 導入系統
- importlib
- 包
- 搜索
- 加載
- 基于路徑的查找器
- 替換標準導入系統
- Package Relative Imports
- 有關 main 的特殊事項
- 開放問題項
- 參考文獻
- 表達式
- 算術轉換
- 原子
- 原型
- await 表達式
- 冪運算符
- 一元算術和位運算
- 二元算術運算符
- 移位運算
- 二元位運算
- 比較運算
- 布爾運算
- 條件表達式
- lambda 表達式
- 表達式列表
- 求值順序
- 運算符優先級
- 簡單語句
- 表達式語句
- 賦值語句
- assert 語句
- pass 語句
- del 語句
- return 語句
- yield 語句
- raise 語句
- break 語句
- continue 語句
- import 語句
- global 語句
- nonlocal 語句
- 復合語句
- if 語句
- while 語句
- for 語句
- try 語句
- with 語句
- 函數定義
- 類定義
- 協程
- 最高層級組件
- 完整的 Python 程序
- 文件輸入
- 交互式輸入
- 表達式輸入
- 完整的語法規范
- Python 標準庫
- 概述
- 可用性注釋
- 內置函數
- 內置常量
- 由 site 模塊添加的常量
- 內置類型
- 邏輯值檢測
- 布爾運算 — and, or, not
- 比較
- 數字類型 — int, float, complex
- 迭代器類型
- 序列類型 — list, tuple, range
- 文本序列類型 — str
- 二進制序列類型 — bytes, bytearray, memoryview
- 集合類型 — set, frozenset
- 映射類型 — dict
- 上下文管理器類型
- 其他內置類型
- 特殊屬性
- 內置異常
- 基類
- 具體異常
- 警告
- 異常層次結構
- 文本處理服務
- string — 常見的字符串操作
- re — 正則表達式操作
- 模塊 difflib 是一個計算差異的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 數據庫
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函數
- 二進制數據服務
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 數據類型
- datetime — 基礎日期/時間數據類型
- calendar — General calendar-related functions
- collections — 容器數據類型
- collections.abc — 容器的抽象基類
- heapq — 堆隊列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 淺層 (shallow) 和深層 (deep) 復制操作
- pprint — 數據美化輸出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 數字和數學模塊
- numbers — 數字的抽象基類
- math — 數學函數
- cmath — Mathematical functions for complex numbers
- decimal — 十進制定點和浮點運算
- fractions — 分數
- random — 生成偽隨機數
- statistics — Mathematical statistics functions
- 函數式編程模塊
- itertools — 為高效循環而創建迭代器的函數
- functools — 高階函數和可調用對象上的操作
- operator — 標準運算符替代函數
- 文件和目錄訪問
- pathlib — 面向對象的文件系統路徑
- os.path — 常見路徑操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路徑操作函數
- 數據持久化
- pickle —— Python 對象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 數據庫 DB-API 2.0 接口模塊
- 數據壓縮和存檔
- zlib — 與 gzip 兼容的壓縮
- gzip — 對 gzip 格式的支持
- bz2 — 對 bzip2 壓縮算法的支持
- lzma — 用 LZMA 算法壓縮
- zipfile — 在 ZIP 歸檔中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件讀寫
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服務
- hashlib — 安全哈希與消息摘要
- hmac — 基于密鑰的消息驗證
- secrets — Generate secure random numbers for managing secrets
- 通用操作系統服務
- os — 操作系統接口模塊
- io — 處理流的核心工具
- time — 時間的訪問和轉換
- argparse — 命令行選項、參數和子命令解析器
- getopt — C-style parser for command line options
- 模塊 logging — Python 的日志記錄工具
- logging.config — 日志記錄配置
- logging.handlers — Logging handlers
- getpass — 便攜式密碼輸入工具
- curses — 終端字符單元顯示的處理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函數庫
- 并發執行
- threading — 基于線程的并行
- multiprocessing — 基于進程的并行
- concurrent 包
- concurrent.futures — 啟動并行任務
- subprocess — 子進程管理
- sched — 事件調度器
- queue — 一個同步的隊列類
- _thread — 底層多線程 API
- _dummy_thread — _thread 的替代模塊
- dummy_threading — 可直接替代 threading 模塊。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 網絡和進程間通信
- asyncio — 異步 I/O
- socket — 底層網絡接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高級 I/O 復用庫
- asyncore — 異步socket處理器
- asynchat — 異步 socket 指令/響應 處理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互聯網數據處理
- email — 電子郵件與 MIME 處理包
- json — JSON 編碼和解碼器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 數據編碼
- binhex — 對binhex4文件進行編碼和解碼
- binascii — 二進制和 ASCII 碼互轉
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 結構化標記處理工具
- html — 超文本標記語言支持
- html.parser — 簡單的 HTML 和 XHTML 解析器
- html.entities — HTML 一般實體的定義
- XML處理模塊
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互聯網協議和支持
- webbrowser — 方便的Web瀏覽器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 處理模塊
- urllib.request — 用于打開 URL 的可擴展庫
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模塊
- http.client — HTTP協議客戶端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP協議客戶端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服務器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服務端與客戶端模塊
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒體服務
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 讀寫 Sun AU 文件
- wave — 讀寫WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推測圖像類型
- sndhdr — 推測聲音文件的類型
- ossaudiodev — Access to OSS-compatible audio devices
- 國際化
- gettext — 多語種國際化服務
- locale — 國際化服務
- 程序框架
- turtle — 海龜繪圖
- cmd — 支持面向行的命令解釋器
- shlex — Simple lexical analysis
- Tk圖形用戶界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滾動文字控件
- IDLE
- 其他圖形用戶界面(GUI)包
- 開發工具
- typing — 類型標注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 單元測試框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自動將 Python 2 代碼轉為 Python 3 代碼
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 調試和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 測量小代碼片段的執行時間
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 軟件打包和分發
- distutils — 構建和安裝 Python 模塊
- ensurepip — Bootstrapping the pip installer
- venv — 創建虛擬環境
- zipapp — Manage executable Python zip archives
- Python運行時服務
- sys — 系統相關的參數和函數
- sysconfig — Provide access to Python's configuration information
- builtins — 內建對象
- main — 頂層腳本環境
- warnings — Warning control
- dataclasses — 數據類
- contextlib — Utilities for with-statement contexts
- abc — 抽象基類
- atexit — 退出處理器
- traceback — Print or retrieve a stack traceback
- future — Future 語句定義
- gc — 垃圾回收器接口
- inspect — 檢查對象
- site — Site-specific configuration hook
- 自定義 Python 解釋器
- code — Interpreter base classes
- codeop — Compile Python code
- 導入模塊
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找腳本使用的模塊
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 語言服務
- parser — Access Python parse trees
- ast — 抽象語法樹
- symtable — Access to the compiler's symbol tables
- symbol — 與 Python 解析樹一起使用的常量
- token — 與Python解析樹一起使用的常量
- keyword — 檢驗Python關鍵字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊縮進檢測
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字節碼反匯編器
- pickletools — Tools for pickle developers
- 雜項服務
- formatter — Generic output formatting
- Windows系統相關模塊
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注冊表訪問
- winsound — Sound-playing interface for Windows
- Unix 專有服務
- posix — The most common POSIX system calls
- pwd — 用戶密碼數據庫
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 終端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 庫例程
- 被取代的模塊
- optparse — Parser for command line options
- imp — Access the import internals
- 未創建文檔的模塊
- 平臺特定模塊
- 擴展和嵌入 Python 解釋器
- 推薦的第三方工具
- 不使用第三方工具創建擴展
- 使用 C 或 C++ 擴展 Python
- 自定義擴展類型:教程
- 定義擴展類型:已分類主題
- 構建C/C++擴展
- 在Windows平臺編譯C和C++擴展
- 在更大的應用程序中嵌入 CPython 運行時
- Embedding Python in Another Application
- Python/C API 參考手冊
- 概述
- 代碼標準
- 包含文件
- 有用的宏
- 對象、類型和引用計數
- 異常
- 嵌入Python
- 調試構建
- 穩定的應用程序二進制接口
- The Very High Level Layer
- Reference Counting
- 異常處理
- Printing and clearing
- 拋出異常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 標準異常
- 標準警告類別
- 工具
- 操作系統實用程序
- 系統功能
- 過程控制
- 導入模塊
- Data marshalling support
- 語句解釋及變量編譯
- 字符串轉換與格式化
- 反射
- 編解碼器注冊與支持功能
- 抽象對象層
- Object Protocol
- 數字協議
- Sequence Protocol
- Mapping Protocol
- 迭代器協議
- 緩沖協議
- Old Buffer Protocol
- 具體的對象層
- 基本對象
- 數值對象
- 序列對象
- 容器對象
- 函數對象
- 其他對象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置變量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 內存管理
- 概述
- 原始內存接口
- Memory Interface
- 對象分配器
- 默認內存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 對象實現支持
- 在堆中分配對象
- Common Object Structures
- Type 對象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使對象類型支持循環垃圾回收
- API 和 ABI 版本管理
- 分發 Python 模塊
- 關鍵術語
- 開源許可與協作
- 安裝工具
- 閱讀指南
- 我該如何...?
- ...為我的項目選擇一個名字?
- ...創建和分發二進制擴展?
- 安裝 Python 模塊
- 關鍵術語
- 基本使用
- 我應如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安裝 pip ?
- ... 只為當前用戶安裝軟件包?
- ... 安裝科學計算類 Python 軟件包?
- ... 使用并行安裝的多個 Python 版本?
- 常見的安裝問題
- 在 Linux 的系統 Python 版本上安裝
- 未安裝 pip
- 安裝二進制編譯擴展
- Python 常用指引
- 將 Python 2 代碼遷移到 Python 3
- 簡要說明
- 詳情
- 將擴展模塊移植到 Python 3
- 條件編譯
- 對象API的更改
- 模塊初始化和狀態
- CObject 替換為 Capsule
- 其他選項
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 實現描述器
- 摘要
- 定義和簡介
- 描述器協議
- 發起調用描述符
- 描述符示例
- Properties
- 函數和方法
- Static Methods and Class Methods
- 函數式編程指引
- 概述
- 迭代器
- 生成器表達式和列表推導式
- 生成器
- 內置函數
- itertools 模塊
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文獻
- 日志 HOWTO
- 日志基礎教程
- 進階日志教程
- 日志級別
- 有用的處理程序
- 記錄日志中引發的異常
- 使用任意對象作為消息
- 優化
- 日志操作手冊
- 在多個模塊中使用日志
- 在多線程中使用日志
- 使用多個日志處理器和多種格式化
- 在多個地方記錄日志
- 日志服務器配置示例
- 處理日志處理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正則表達式HOWTO
- 概述
- 簡單模式
- 使用正則表達式
- 更多模式能力
- 修改字符串
- 常見問題
- 反饋
- 套接字編程指南
- 套接字
- 創建套接字
- 使用一個套接字
- 斷開連接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 關鍵函數
- Operator 模塊函數
- 升序和降序
- 排序穩定性和排序復雜度
- 使用裝飾-排序-去裝飾的舊方法
- 使用 cmp 參數的舊方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包獲取網絡資源
- 概述
- Fetching URLs
- 處理異常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 腳注
- Argparse 教程
- 概念
- 基礎
- 位置參數介紹
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模塊介紹
- 創建 Address/Network/Interface 對象
- 審查 Address/Network/Interface 對象
- Network 作為 Address 列表
- 比較
- 將IP地址與其他模塊一起使用
- 實例創建失敗時獲取更多詳細信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 檢測CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常見問題
- Python常見問題
- 一般信息
- 現實世界中的 Python
- 編程常見問題
- 一般問題
- 核心語言
- 數字和字符串
- 性能
- 序列(元組/列表)
- 對象
- 模塊
- 設計和歷史常見問題
- 為什么Python使用縮進來分組語句?
- 為什么簡單的算術運算得到奇怪的結果?
- 為什么浮點計算不準確?
- 為什么Python字符串是不可變的?
- 為什么必須在方法定義和調用中顯式使用“self”?
- 為什么不能在表達式中賦值?
- 為什么Python對某些功能(例如list.index())使用方法來實現,而其他功能(例如len(List))使用函數實現?
- 為什么 join()是一個字符串方法而不是列表或元組方法?
- 異常有多快?
- 為什么Python中沒有switch或case語句?
- 難道不能在解釋器中模擬線程,而非得依賴特定于操作系統的線程實現嗎?
- 為什么lambda表達式不能包含語句?
- 可以將Python編譯為機器代碼,C或其他語言嗎?
- Python如何管理內存?
- 為什么CPython不使用更傳統的垃圾回收方案?
- CPython退出時為什么不釋放所有內存?
- 為什么有單獨的元組和列表數據類型?
- 列表是如何在CPython中實現的?
- 字典是如何在CPython中實現的?
- 為什么字典key必須是不可變的?
- 為什么 list.sort() 沒有返回排序列表?
- 如何在Python中指定和實施接口規范?
- 為什么沒有goto?
- 為什么原始字符串(r-strings)不能以反斜杠結尾?
- 為什么Python沒有屬性賦值的“with”語句?
- 為什么 if/while/def/class語句需要冒號?
- 為什么Python在列表和元組的末尾允許使用逗號?
- 代碼庫和插件 FAQ
- 通用的代碼庫問題
- 通用任務
- 線程相關
- 輸入輸出
- 網絡 / Internet 編程
- 數據庫
- 數學和數字
- 擴展/嵌入常見問題
- 可以使用C語言中創建自己的函數嗎?
- 可以使用C++語言中創建自己的函數嗎?
- C很難寫,有沒有其他選擇?
- 如何從C執行任意Python語句?
- 如何從C中評估任意Python表達式?
- 如何從Python對象中提取C的值?
- 如何使用Py_BuildValue()創建任意長度的元組?
- 如何從C調用對象的方法?
- 如何捕獲PyErr_Print()(或打印到stdout / stderr的任何內容)的輸出?
- 如何從C訪問用Python編寫的模塊?
- 如何從Python接口到C ++對象?
- 我使用Setup文件添加了一個模塊,為什么make失敗了?
- 如何調試擴展?
- 我想在Linux系統上編譯一個Python模塊,但是缺少一些文件。為什么?
- 如何區分“輸入不完整”和“輸入無效”?
- 如何找到未定義的g++符號__builtin_new或__pure_virtual?
- 能否創建一個對象類,其中部分方法在C中實現,而其他方法在Python中實現(例如通過繼承)?
- Python在Windows上的常見問題
- 我怎樣在Windows下運行一個Python程序?
- 我怎么讓 Python 腳本可執行?
- 為什么有時候 Python 程序會啟動緩慢?
- 我怎樣使用Python腳本制作可執行文件?
- *.pyd 文件和DLL文件相同嗎?
- 我怎樣將Python嵌入一個Windows程序?
- 如何讓編輯器不要在我的 Python 源代碼中插入 tab ?
- 如何在不阻塞的情況下檢查按鍵?
- 圖形用戶界面(GUI)常見問題
- 圖形界面常見問題
- Python 是否有平臺無關的圖形界面工具包?
- 有哪些Python的GUI工具是某個平臺專用的?
- 有關Tkinter的問題
- “為什么我的電腦上安裝了 Python ?”
- 什么是Python?
- 為什么我的電腦上安裝了 Python ?
- 我能刪除 Python 嗎?
- 術語對照表
- 文檔說明
- Python 文檔貢獻者
- 解決 Bug
- 文檔錯誤
- 使用 Python 的錯誤追蹤系統
- 開始為 Python 貢獻您的知識
- 版權
- 歷史和許可證
- 軟件歷史
- 訪問Python或以其他方式使用Python的條款和條件
- Python 3.7.3 的 PSF 許可協議
- Python 2.0 的 BeOpen.com 許可協議
- Python 1.6.1 的 CNRI 許可協議
- Python 0.9.0 至 1.2 的 CWI 許可協議
- 集成軟件的許可和認可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec