### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](distribution.xhtml "軟件打包和分發") |
- [上一頁](trace.xhtml "trace --- Trace or track Python statement execution") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 標準庫](index.xhtml) ?
- [調試和分析](debug.xhtml) ?
- $('.inline-search').show(0); |
# [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.") --- Trace memory allocations
3\.4 新版功能.
**Source code:** [Lib/tracemalloc.py](https://github.com/python/cpython/tree/3.7/Lib/tracemalloc.py) \[https://github.com/python/cpython/tree/3.7/Lib/tracemalloc.py\]
- - - - - -
The tracemalloc module is a debug tool to trace memory blocks allocated by Python. It provides the following information:
- Traceback where an object was allocated
- Statistics on allocated memory blocks per filename and per line number: total size, number and average size of allocated memory blocks
- Compute the differences between two snapshots to detect memory leaks
To trace most memory blocks allocated by Python, the module should be started as early as possible by setting the [`PYTHONTRACEMALLOC`](../using/cmdline.xhtml#envvar-PYTHONTRACEMALLOC) environment variable to `1`, or by using [`-X`](../using/cmdline.xhtml#id5)`tracemalloc` command line option. The [`tracemalloc.start()`](#tracemalloc.start "tracemalloc.start") function can be called at runtime to start tracing Python memory allocations.
By default, a trace of an allocated memory block only stores the most recent frame (1 frame). To store 25 frames at startup: set the [`PYTHONTRACEMALLOC`](../using/cmdline.xhtml#envvar-PYTHONTRACEMALLOC) environment variable to `25`, or use the [`-X`](../using/cmdline.xhtml#id5)`tracemalloc=25` command line option.
## 示例
### Display the top 10
Display the 10 files allocating the most memory:
```
import tracemalloc
tracemalloc.start()
# ... run your application ...
snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('lineno')
print("[ Top 10 ]")
for stat in top_stats[:10]:
print(stat)
```
Example of output of the Python test suite:
```
[ Top 10 ]
<frozen importlib._bootstrap>:716: size=4855 KiB, count=39328, average=126 B
<frozen importlib._bootstrap>:284: size=521 KiB, count=3199, average=167 B
/usr/lib/python3.4/collections/__init__.py:368: size=244 KiB, count=2315, average=108 B
/usr/lib/python3.4/unittest/case.py:381: size=185 KiB, count=779, average=243 B
/usr/lib/python3.4/unittest/case.py:402: size=154 KiB, count=378, average=416 B
/usr/lib/python3.4/abc.py:133: size=88.7 KiB, count=347, average=262 B
<frozen importlib._bootstrap>:1446: size=70.4 KiB, count=911, average=79 B
<frozen importlib._bootstrap>:1454: size=52.0 KiB, count=25, average=2131 B
<string>:5: size=49.7 KiB, count=148, average=344 B
/usr/lib/python3.4/sysconfig.py:411: size=48.0 KiB, count=1, average=48.0 KiB
```
We can see that Python loaded `4855 KiB` data (bytecode and constants) from modules and that the [`collections`](collections.xhtml#module-collections "collections: Container datatypes") module allocated `244 KiB` to build [`namedtuple`](collections.xhtml#collections.namedtuple "collections.namedtuple") types.
See [`Snapshot.statistics()`](#tracemalloc.Snapshot.statistics "tracemalloc.Snapshot.statistics") for more options.
### Compute differences
Take two snapshots and display the differences:
```
import tracemalloc
tracemalloc.start()
# ... start your application ...
snapshot1 = tracemalloc.take_snapshot()
# ... call the function leaking memory ...
snapshot2 = tracemalloc.take_snapshot()
top_stats = snapshot2.compare_to(snapshot1, 'lineno')
print("[ Top 10 differences ]")
for stat in top_stats[:10]:
print(stat)
```
Example of output before/after running some tests of the Python test suite:
```
[ Top 10 differences ]
<frozen importlib._bootstrap>:716: size=8173 KiB (+4428 KiB), count=71332 (+39369), average=117 B
/usr/lib/python3.4/linecache.py:127: size=940 KiB (+940 KiB), count=8106 (+8106), average=119 B
/usr/lib/python3.4/unittest/case.py:571: size=298 KiB (+298 KiB), count=589 (+589), average=519 B
<frozen importlib._bootstrap>:284: size=1005 KiB (+166 KiB), count=7423 (+1526), average=139 B
/usr/lib/python3.4/mimetypes.py:217: size=112 KiB (+112 KiB), count=1334 (+1334), average=86 B
/usr/lib/python3.4/http/server.py:848: size=96.0 KiB (+96.0 KiB), count=1 (+1), average=96.0 KiB
/usr/lib/python3.4/inspect.py:1465: size=83.5 KiB (+83.5 KiB), count=109 (+109), average=784 B
/usr/lib/python3.4/unittest/mock.py:491: size=77.7 KiB (+77.7 KiB), count=143 (+143), average=557 B
/usr/lib/python3.4/urllib/parse.py:476: size=71.8 KiB (+71.8 KiB), count=969 (+969), average=76 B
/usr/lib/python3.4/contextlib.py:38: size=67.2 KiB (+67.2 KiB), count=126 (+126), average=546 B
```
We can see that Python has loaded `8173 KiB` of module data (bytecode and constants), and that this is `4428 KiB` more than had been loaded before the tests, when the previous snapshot was taken. Similarly, the [`linecache`](linecache.xhtml#module-linecache "linecache: This module provides random access to individual lines from text files.")module has cached `940 KiB` of Python source code to format tracebacks, all of it since the previous snapshot.
If the system has little free memory, snapshots can be written on disk using the [`Snapshot.dump()`](#tracemalloc.Snapshot.dump "tracemalloc.Snapshot.dump") method to analyze the snapshot offline. Then use the [`Snapshot.load()`](#tracemalloc.Snapshot.load "tracemalloc.Snapshot.load") method reload the snapshot.
### Get the traceback of a memory block
Code to display the traceback of the biggest memory block:
```
import tracemalloc
# Store 25 frames
tracemalloc.start(25)
# ... run your application ...
snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('traceback')
# pick the biggest memory block
stat = top_stats[0]
print("%s memory blocks: %.1f KiB" % (stat.count, stat.size / 1024))
for line in stat.traceback.format():
print(line)
```
Example of output of the Python test suite (traceback limited to 25 frames):
```
903 memory blocks: 870.1 KiB
File "<frozen importlib._bootstrap>", line 716
File "<frozen importlib._bootstrap>", line 1036
File "<frozen importlib._bootstrap>", line 934
File "<frozen importlib._bootstrap>", line 1068
File "<frozen importlib._bootstrap>", line 619
File "<frozen importlib._bootstrap>", line 1581
File "<frozen importlib._bootstrap>", line 1614
File "/usr/lib/python3.4/doctest.py", line 101
import pdb
File "<frozen importlib._bootstrap>", line 284
File "<frozen importlib._bootstrap>", line 938
File "<frozen importlib._bootstrap>", line 1068
File "<frozen importlib._bootstrap>", line 619
File "<frozen importlib._bootstrap>", line 1581
File "<frozen importlib._bootstrap>", line 1614
File "/usr/lib/python3.4/test/support/__init__.py", line 1728
import doctest
File "/usr/lib/python3.4/test/test_pickletools.py", line 21
support.run_doctest(pickletools)
File "/usr/lib/python3.4/test/regrtest.py", line 1276
test_runner()
File "/usr/lib/python3.4/test/regrtest.py", line 976
display_failure=not verbose)
File "/usr/lib/python3.4/test/regrtest.py", line 761
match_tests=ns.match_tests)
File "/usr/lib/python3.4/test/regrtest.py", line 1563
main()
File "/usr/lib/python3.4/test/__main__.py", line 3
regrtest.main_in_temp_cwd()
File "/usr/lib/python3.4/runpy.py", line 73
exec(code, run_globals)
File "/usr/lib/python3.4/runpy.py", line 160
"__main__", fname, loader, pkg_name)
```
We can see that the most memory was allocated in the [`importlib`](importlib.xhtml#module-importlib "importlib: The implementation of the import machinery.") module to load data (bytecode and constants) from modules: `870.1 KiB`. The traceback is where the [`importlib`](importlib.xhtml#module-importlib "importlib: The implementation of the import machinery.") loaded data most recently: on the `import pdb`line of the [`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.") module. The traceback may change if a new module is loaded.
### Pretty top
Code to display the 10 lines allocating the most memory with a pretty output, ignoring `<frozen importlib._bootstrap>` and `<unknown>` files:
```
import linecache
import os
import tracemalloc
def display_top(snapshot, key_type='lineno', limit=10):
snapshot = snapshot.filter_traces((
tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
tracemalloc.Filter(False, "<unknown>"),
))
top_stats = snapshot.statistics(key_type)
print("Top %s lines" % limit)
for index, stat in enumerate(top_stats[:limit], 1):
frame = stat.traceback[0]
# replace "/path/to/module/file.py" with "module/file.py"
filename = os.sep.join(frame.filename.split(os.sep)[-2:])
print("#%s: %s:%s: %.1f KiB"
% (index, filename, frame.lineno, stat.size / 1024))
line = linecache.getline(frame.filename, frame.lineno).strip()
if line:
print(' %s' % line)
other = top_stats[limit:]
if other:
size = sum(stat.size for stat in other)
print("%s other: %.1f KiB" % (len(other), size / 1024))
total = sum(stat.size for stat in top_stats)
print("Total allocated size: %.1f KiB" % (total / 1024))
tracemalloc.start()
# ... run your application ...
snapshot = tracemalloc.take_snapshot()
display_top(snapshot)
```
Example of output of the Python test suite:
```
Top 10 lines
#1: Lib/base64.py:414: 419.8 KiB
_b85chars2 = [(a + b) for a in _b85chars for b in _b85chars]
#2: Lib/base64.py:306: 419.8 KiB
_a85chars2 = [(a + b) for a in _a85chars for b in _a85chars]
#3: collections/__init__.py:368: 293.6 KiB
exec(class_definition, namespace)
#4: Lib/abc.py:133: 115.2 KiB
cls = super().__new__(mcls, name, bases, namespace)
#5: unittest/case.py:574: 103.1 KiB
testMethod()
#6: Lib/linecache.py:127: 95.4 KiB
lines = fp.readlines()
#7: urllib/parse.py:476: 71.8 KiB
for a in _hexdig for b in _hexdig}
#8: <string>:5: 62.0 KiB
#9: Lib/_weakrefset.py:37: 60.0 KiB
self.data = set()
#10: Lib/base64.py:142: 59.8 KiB
_b32tab2 = [a + b for a in _b32tab for b in _b32tab]
6220 other: 3602.8 KiB
Total allocated size: 5303.1 KiB
```
See [`Snapshot.statistics()`](#tracemalloc.Snapshot.statistics "tracemalloc.Snapshot.statistics") for more options.
## API
### 函數
`tracemalloc.``clear_traces`()Clear traces of memory blocks allocated by Python.
See also [`stop()`](#tracemalloc.stop "tracemalloc.stop").
`tracemalloc.``get_object_traceback`(*obj*)Get the traceback where the Python object *obj* was allocated. Return a [`Traceback`](#tracemalloc.Traceback "tracemalloc.Traceback") instance, or `None` if the [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.")module is not tracing memory allocations or did not trace the allocation of the object.
See also [`gc.get_referrers()`](gc.xhtml#gc.get_referrers "gc.get_referrers") and [`sys.getsizeof()`](sys.xhtml#sys.getsizeof "sys.getsizeof") functions.
`tracemalloc.``get_traceback_limit`()Get the maximum number of frames stored in the traceback of a trace.
The [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.") module must be tracing memory allocations to get the limit, otherwise an exception is raised.
The limit is set by the [`start()`](#tracemalloc.start "tracemalloc.start") function.
`tracemalloc.``get_traced_memory`()Get the current size and peak size of memory blocks traced by the [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.") module as a tuple: `(current: int, peak: int)`.
`tracemalloc.``get_tracemalloc_memory`()Get the memory usage in bytes of the [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.") module used to store traces of memory blocks. Return an [`int`](functions.xhtml#int "int").
`tracemalloc.``is_tracing`()`True` if the [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.") module is tracing Python memory allocations, `False` otherwise.
See also [`start()`](#tracemalloc.start "tracemalloc.start") and [`stop()`](#tracemalloc.stop "tracemalloc.stop") functions.
`tracemalloc.``start`(*nframe: int=1*)Start tracing Python memory allocations: install hooks on Python memory allocators. Collected tracebacks of traces will be limited to *nframe*frames. By default, a trace of a memory block only stores the most recent frame: the limit is `1`. *nframe* must be greater or equal to `1`.
Storing more than `1` frame is only useful to compute statistics grouped by `'traceback'` or to compute cumulative statistics: see the [`Snapshot.compare_to()`](#tracemalloc.Snapshot.compare_to "tracemalloc.Snapshot.compare_to") and [`Snapshot.statistics()`](#tracemalloc.Snapshot.statistics "tracemalloc.Snapshot.statistics") methods.
Storing more frames increases the memory and CPU overhead of the [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.") module. Use the [`get_tracemalloc_memory()`](#tracemalloc.get_tracemalloc_memory "tracemalloc.get_tracemalloc_memory") function to measure how much memory is used by the [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.") module.
The [`PYTHONTRACEMALLOC`](../using/cmdline.xhtml#envvar-PYTHONTRACEMALLOC) environment variable (`PYTHONTRACEMALLOC=NFRAME`) and the [`-X`](../using/cmdline.xhtml#id5)`tracemalloc=NFRAME`command line option can be used to start tracing at startup.
See also [`stop()`](#tracemalloc.stop "tracemalloc.stop"), [`is_tracing()`](#tracemalloc.is_tracing "tracemalloc.is_tracing") and [`get_traceback_limit()`](#tracemalloc.get_traceback_limit "tracemalloc.get_traceback_limit")functions.
`tracemalloc.``stop`()Stop tracing Python memory allocations: uninstall hooks on Python memory allocators. Also clears all previously collected traces of memory blocks allocated by Python.
Call [`take_snapshot()`](#tracemalloc.take_snapshot "tracemalloc.take_snapshot") function to take a snapshot of traces before clearing them.
See also [`start()`](#tracemalloc.start "tracemalloc.start"), [`is_tracing()`](#tracemalloc.is_tracing "tracemalloc.is_tracing") and [`clear_traces()`](#tracemalloc.clear_traces "tracemalloc.clear_traces")functions.
`tracemalloc.``take_snapshot`()Take a snapshot of traces of memory blocks allocated by Python. Return a new [`Snapshot`](#tracemalloc.Snapshot "tracemalloc.Snapshot") instance.
The snapshot does not include memory blocks allocated before the [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.") module started to trace memory allocations.
Tracebacks of traces are limited to [`get_traceback_limit()`](#tracemalloc.get_traceback_limit "tracemalloc.get_traceback_limit") frames. Use the *nframe* parameter of the [`start()`](#tracemalloc.start "tracemalloc.start") function to store more frames.
The [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.") module must be tracing memory allocations to take a snapshot, see the [`start()`](#tracemalloc.start "tracemalloc.start") function.
See also the [`get_object_traceback()`](#tracemalloc.get_object_traceback "tracemalloc.get_object_traceback") function.
### DomainFilter
*class* `tracemalloc.``DomainFilter`(*inclusive: bool*, *domain: int*)Filter traces of memory blocks by their address space (domain).
3\.6 新版功能.
`inclusive`If *inclusive* is `True` (include), match memory blocks allocated in the address space [`domain`](#tracemalloc.DomainFilter.domain "tracemalloc.DomainFilter.domain").
If *inclusive* is `False` (exclude), match memory blocks not allocated in the address space [`domain`](#tracemalloc.DomainFilter.domain "tracemalloc.DomainFilter.domain").
`domain`Address space of a memory block (`int`). Read-only property.
### Filter
*class* `tracemalloc.``Filter`(*inclusive: bool*, *filename\_pattern: str*, *lineno: int=None*, *all\_frames: bool=False*, *domain: int=None*)Filter on traces of memory blocks.
See the [`fnmatch.fnmatch()`](fnmatch.xhtml#fnmatch.fnmatch "fnmatch.fnmatch") function for the syntax of *filename\_pattern*. The `'.pyc'` file extension is replaced with `'.py'`.
示例:
- `Filter(True, subprocess.__file__)` only includes traces of the [`subprocess`](subprocess.xhtml#module-subprocess "subprocess: Subprocess management.") module
- `Filter(False, tracemalloc.__file__)` excludes traces of the [`tracemalloc`](#module-tracemalloc "tracemalloc: Trace memory allocations.") module
- `Filter(False, "<unknown>")` excludes empty tracebacks
在 3.5 版更改: The `'.pyo'` file extension is no longer replaced with `'.py'`.
在 3.6 版更改: Added the [`domain`](#tracemalloc.Filter.domain "tracemalloc.Filter.domain") attribute.
`domain`Address space of a memory block (`int` or `None`).
tracemalloc uses the domain `0` to trace memory allocations made by Python. C extensions can use other domains to trace other resources.
`inclusive`If *inclusive* is `True` (include), only match memory blocks allocated in a file with a name matching [`filename_pattern`](#tracemalloc.Filter.filename_pattern "tracemalloc.Filter.filename_pattern") at line number [`lineno`](#tracemalloc.Filter.lineno "tracemalloc.Filter.lineno").
If *inclusive* is `False` (exclude), ignore memory blocks allocated in a file with a name matching [`filename_pattern`](#tracemalloc.Filter.filename_pattern "tracemalloc.Filter.filename_pattern") at line number [`lineno`](#tracemalloc.Filter.lineno "tracemalloc.Filter.lineno").
`lineno`Line number (`int`) of the filter. If *lineno* is `None`, the filter matches any line number.
`filename_pattern`Filename pattern of the filter (`str`). Read-only property.
`all_frames`If *all\_frames* is `True`, all frames of the traceback are checked. If *all\_frames* is `False`, only the most recent frame is checked.
This attribute has no effect if the traceback limit is `1`. See the [`get_traceback_limit()`](#tracemalloc.get_traceback_limit "tracemalloc.get_traceback_limit") function and [`Snapshot.traceback_limit`](#tracemalloc.Snapshot.traceback_limit "tracemalloc.Snapshot.traceback_limit")attribute.
### Frame
*class* `tracemalloc.``Frame`Frame of a traceback.
The [`Traceback`](#tracemalloc.Traceback "tracemalloc.Traceback") class is a sequence of [`Frame`](#tracemalloc.Frame "tracemalloc.Frame") instances.
`filename`Filename (`str`).
`lineno`Line number (`int`).
### Snapshot
*class* `tracemalloc.``Snapshot`Snapshot of traces of memory blocks allocated by Python.
The [`take_snapshot()`](#tracemalloc.take_snapshot "tracemalloc.take_snapshot") function creates a snapshot instance.
`compare_to`(*old\_snapshot: Snapshot*, *key\_type: str*, *cumulative: bool=False*)Compute the differences with an old snapshot. Get statistics as a sorted list of [`StatisticDiff`](#tracemalloc.StatisticDiff "tracemalloc.StatisticDiff") instances grouped by *key\_type*.
See the [`Snapshot.statistics()`](#tracemalloc.Snapshot.statistics "tracemalloc.Snapshot.statistics") method for *key\_type* and *cumulative*parameters.
The result is sorted from the biggest to the smallest by: absolute value of [`StatisticDiff.size_diff`](#tracemalloc.StatisticDiff.size_diff "tracemalloc.StatisticDiff.size_diff"), [`StatisticDiff.size`](#tracemalloc.StatisticDiff.size "tracemalloc.StatisticDiff.size"), absolute value of [`StatisticDiff.count_diff`](#tracemalloc.StatisticDiff.count_diff "tracemalloc.StatisticDiff.count_diff"), [`Statistic.count`](#tracemalloc.Statistic.count "tracemalloc.Statistic.count") and then by [`StatisticDiff.traceback`](#tracemalloc.StatisticDiff.traceback "tracemalloc.StatisticDiff.traceback").
`dump`(*filename*)Write the snapshot into a file.
Use [`load()`](#tracemalloc.Snapshot.load "tracemalloc.Snapshot.load") to reload the snapshot.
`filter_traces`(*filters*)Create a new [`Snapshot`](#tracemalloc.Snapshot "tracemalloc.Snapshot") instance with a filtered [`traces`](#tracemalloc.Snapshot.traces "tracemalloc.Snapshot.traces")sequence, *filters* is a list of [`DomainFilter`](#tracemalloc.DomainFilter "tracemalloc.DomainFilter") and [`Filter`](#tracemalloc.Filter "tracemalloc.Filter") instances. If *filters* is an empty list, return a new [`Snapshot`](#tracemalloc.Snapshot "tracemalloc.Snapshot") instance with a copy of the traces.
All inclusive filters are applied at once, a trace is ignored if no inclusive filters match it. A trace is ignored if at least one exclusive filter matches it.
在 3.6 版更改: [`DomainFilter`](#tracemalloc.DomainFilter "tracemalloc.DomainFilter") instances are now also accepted in *filters*.
*classmethod* `load`(*filename*)Load a snapshot from a file.
See also [`dump()`](#tracemalloc.Snapshot.dump "tracemalloc.Snapshot.dump").
`statistics`(*key\_type: str*, *cumulative: bool=False*)Get statistics as a sorted list of [`Statistic`](#tracemalloc.Statistic "tracemalloc.Statistic") instances grouped by *key\_type*:
key\_type
描述
`'filename'`
filename
`'lineno'`
filename and line number
`'traceback'`
traceback
If *cumulative* is `True`, cumulate size and count of memory blocks of all frames of the traceback of a trace, not only the most recent frame. The cumulative mode can only be used with *key\_type* equals to `'filename'` and `'lineno'`.
The result is sorted from the biggest to the smallest by: [`Statistic.size`](#tracemalloc.Statistic.size "tracemalloc.Statistic.size"), [`Statistic.count`](#tracemalloc.Statistic.count "tracemalloc.Statistic.count") and then by [`Statistic.traceback`](#tracemalloc.Statistic.traceback "tracemalloc.Statistic.traceback").
`traceback_limit`Maximum number of frames stored in the traceback of [`traces`](#tracemalloc.Snapshot.traces "tracemalloc.Snapshot.traces"): result of the [`get_traceback_limit()`](#tracemalloc.get_traceback_limit "tracemalloc.get_traceback_limit") when the snapshot was taken.
`traces`Traces of all memory blocks allocated by Python: sequence of [`Trace`](#tracemalloc.Trace "tracemalloc.Trace") instances.
The sequence has an undefined order. Use the [`Snapshot.statistics()`](#tracemalloc.Snapshot.statistics "tracemalloc.Snapshot.statistics")method to get a sorted list of statistics.
### Statistic
*class* `tracemalloc.``Statistic`Statistic on memory allocations.
[`Snapshot.statistics()`](#tracemalloc.Snapshot.statistics "tracemalloc.Snapshot.statistics") returns a list of [`Statistic`](#tracemalloc.Statistic "tracemalloc.Statistic") instances.
See also the [`StatisticDiff`](#tracemalloc.StatisticDiff "tracemalloc.StatisticDiff") class.
`count`Number of memory blocks (`int`).
`size`Total size of memory blocks in bytes (`int`).
`traceback`Traceback where the memory block was allocated, [`Traceback`](#tracemalloc.Traceback "tracemalloc.Traceback")instance.
### StatisticDiff
*class* `tracemalloc.``StatisticDiff`Statistic difference on memory allocations between an old and a new [`Snapshot`](#tracemalloc.Snapshot "tracemalloc.Snapshot") instance.
[`Snapshot.compare_to()`](#tracemalloc.Snapshot.compare_to "tracemalloc.Snapshot.compare_to") returns a list of [`StatisticDiff`](#tracemalloc.StatisticDiff "tracemalloc.StatisticDiff")instances. See also the [`Statistic`](#tracemalloc.Statistic "tracemalloc.Statistic") class.
`count`Number of memory blocks in the new snapshot (`int`): `0` if the memory blocks have been released in the new snapshot.
`count_diff`Difference of number of memory blocks between the old and the new snapshots (`int`): `0` if the memory blocks have been allocated in the new snapshot.
`size`Total size of memory blocks in bytes in the new snapshot (`int`): `0` if the memory blocks have been released in the new snapshot.
`size_diff`Difference of total size of memory blocks in bytes between the old and the new snapshots (`int`): `0` if the memory blocks have been allocated in the new snapshot.
`traceback`Traceback where the memory blocks were allocated, [`Traceback`](#tracemalloc.Traceback "tracemalloc.Traceback")instance.
### Trace
*class* `tracemalloc.``Trace`Trace of a memory block.
The [`Snapshot.traces`](#tracemalloc.Snapshot.traces "tracemalloc.Snapshot.traces") attribute is a sequence of [`Trace`](#tracemalloc.Trace "tracemalloc.Trace")instances.
在 3.6 版更改: Added the [`domain`](#tracemalloc.Trace.domain "tracemalloc.Trace.domain") attribute.
`domain`Address space of a memory block (`int`). Read-only property.
tracemalloc uses the domain `0` to trace memory allocations made by Python. C extensions can use other domains to trace other resources.
`size`Size of the memory block in bytes (`int`).
`traceback`Traceback where the memory block was allocated, [`Traceback`](#tracemalloc.Traceback "tracemalloc.Traceback")instance.
### Traceback
*class* `tracemalloc.``Traceback`Sequence of [`Frame`](#tracemalloc.Frame "tracemalloc.Frame") instances sorted from the oldest frame to the most recent frame.
A traceback contains at least `1` frame. If the `tracemalloc` module failed to get a frame, the filename `"<unknown>"` at line number `0` is used.
When a snapshot is taken, tracebacks of traces are limited to [`get_traceback_limit()`](#tracemalloc.get_traceback_limit "tracemalloc.get_traceback_limit") frames. See the [`take_snapshot()`](#tracemalloc.take_snapshot "tracemalloc.take_snapshot") function.
The [`Trace.traceback`](#tracemalloc.Trace.traceback "tracemalloc.Trace.traceback") attribute is an instance of [`Traceback`](#tracemalloc.Traceback "tracemalloc.Traceback")instance.
在 3.7 版更改: Frames are now sorted from the oldest to the most recent, instead of most recent to oldest.
`format`(*limit=None*, *most\_recent\_first=False*)Format the traceback as a list of lines with newlines. Use the [`linecache`](linecache.xhtml#module-linecache "linecache: This module provides random access to individual lines from text files.") module to retrieve lines from the source code. If *limit* is set, format the *limit* most recent frames if *limit*is positive. Otherwise, format the `abs(limit)` oldest frames. If *most\_recent\_first* is `True`, the order of the formatted frames is reversed, returning the most recent frame first instead of last.
Similar to the [`traceback.format_tb()`](traceback.xhtml#traceback.format_tb "traceback.format_tb") function, except that [`format()`](#tracemalloc.Traceback.format "tracemalloc.Traceback.format") does not include newlines.
示例:
```
print("Traceback (most recent call first):")
for line in traceback:
print(line)
```
輸出:
```
Traceback (most recent call first):
File "test.py", line 9
obj = Object()
File "test.py", line 12
tb = tracemalloc.get_object_traceback(f())
```
### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](distribution.xhtml "軟件打包和分發") |
- [上一頁](trace.xhtml "trace --- Trace or track Python statement execution") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 標準庫](index.xhtml) ?
- [調試和分析](debug.xhtml) ?
- $('.inline-search').show(0); |
? [版權所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 軟件基金會是一個非盈利組織。 [請捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [發現了問題](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 創建。
- Python文檔內容
- Python 有什么新變化?
- Python 3.7 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- C API 的改變
- 構建的改變
- 性能優化
- 其他 CPython 實現的改變
- 已棄用的 Python 行為
- 已棄用的 Python 模塊、函數和方法
- 已棄用的 C API 函數和類型
- 平臺支持的移除
- API 與特性的移除
- 移除的模塊
- Windows 專屬的改變
- 移植到 Python 3.7
- Python 3.7.1 中的重要變化
- Python 3.7.2 中的重要變化
- Python 3.6 有什么新變化A
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 其他改進
- 棄用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要變化
- Python 3.6.4 中的重要變化
- Python 3.6.5 中的重要變化
- Python 3.6.7 中的重要變化
- Python 3.5 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- Other module-level changes
- 性能優化
- Build and C API Changes
- 棄用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 發布重點
- 新的特性
- 新增模塊
- 改進的模塊
- CPython Implementation Changes
- 棄用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 發布重點
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他語言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 棄用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 多線程
- 性能優化
- Unicode
- Codecs
- 文檔
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 性能優化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他語言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新變化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他語言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他語言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推導式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最終版
- Python 3.7.3 發布候選版 1
- Python 3.7.2 最終版
- Python 3.7.2 發布候選版 1
- Python 3.7.1 最終版
- Python 3.7.1 RC 2版本
- Python 3.7.1 發布候選版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 課前甜點
- 使用 Python 解釋器
- 調用解釋器
- 解釋器的運行環境
- Python 的非正式介紹
- Python 作為計算器使用
- 走向編程的第一步
- 其他流程控制工具
- if 語句
- for 語句
- range() 函數
- break 和 continue 語句,以及循環中的 else 子句
- pass 語句
- 定義函數
- 函數定義的更多形式
- 小插曲:編碼風格
- 數據結構
- 列表的更多特性
- del 語句
- 元組和序列
- 集合
- 字典
- 循環的技巧
- 深入條件控制
- 序列和其它類型的比較
- 模塊
- 有關模塊的更多信息
- 標準模塊
- dir() 函數
- 包
- 輸入輸出
- 更漂亮的輸出格式
- 讀寫文件
- 錯誤和異常
- 語法錯誤
- 異常
- 處理異常
- 拋出異常
- 用戶自定義異常
- 定義清理操作
- 預定義的清理操作
- 類
- 名稱和對象
- Python 作用域和命名空間
- 初探類
- 補充說明
- 繼承
- 私有變量
- 雜項說明
- 迭代器
- 生成器
- 生成器表達式
- 標準庫簡介
- 操作系統接口
- 文件通配符
- 命令行參數
- 錯誤輸出重定向和程序終止
- 字符串模式匹配
- 數學
- 互聯網訪問
- 日期和時間
- 數據壓縮
- 性能測量
- 質量控制
- 自帶電池
- 標準庫簡介 —— 第二部分
- 格式化輸出
- 模板
- 使用二進制數據記錄格式
- 多線程
- 日志
- 弱引用
- 用于操作列表的工具
- 十進制浮點運算
- 虛擬環境和包
- 概述
- 創建虛擬環境
- 使用pip管理包
- 接下來?
- 交互式編輯和編輯歷史
- Tab 補全和編輯歷史
- 默認交互式解釋器的替代品
- 浮點算術:爭議和限制
- 表示性錯誤
- 附錄
- 交互模式
- 安裝和使用 Python
- 命令行與環境
- 命令行
- 環境變量
- 在Unix平臺中使用Python
- 獲取最新版本的Python
- 構建Python
- 與Python相關的路徑和文件
- 雜項
- 編輯器和集成開發環境
- 在Windows上使用 Python
- 完整安裝程序
- Microsoft Store包
- nuget.org 安裝包
- 可嵌入的包
- 替代捆綁包
- 配置Python
- 適用于Windows的Python啟動器
- 查找模塊
- 附加模塊
- 在Windows上編譯Python
- 其他平臺
- 在蘋果系統上使用 Python
- 獲取和安裝 MacPython
- IDE
- 安裝額外的 Python 包
- Mac 上的圖形界面編程
- 在 Mac 上分發 Python 應用程序
- 其他資源
- Python 語言參考
- 概述
- 其他實現
- 標注
- 詞法分析
- 行結構
- 其他形符
- 標識符和關鍵字
- 字面值
- 運算符
- 分隔符
- 數據模型
- 對象、值與類型
- 標準類型層級結構
- 特殊方法名稱
- 協程
- 執行模型
- 程序的結構
- 命名與綁定
- 異常
- 導入系統
- importlib
- 包
- 搜索
- 加載
- 基于路徑的查找器
- 替換標準導入系統
- Package Relative Imports
- 有關 main 的特殊事項
- 開放問題項
- 參考文獻
- 表達式
- 算術轉換
- 原子
- 原型
- await 表達式
- 冪運算符
- 一元算術和位運算
- 二元算術運算符
- 移位運算
- 二元位運算
- 比較運算
- 布爾運算
- 條件表達式
- lambda 表達式
- 表達式列表
- 求值順序
- 運算符優先級
- 簡單語句
- 表達式語句
- 賦值語句
- assert 語句
- pass 語句
- del 語句
- return 語句
- yield 語句
- raise 語句
- break 語句
- continue 語句
- import 語句
- global 語句
- nonlocal 語句
- 復合語句
- if 語句
- while 語句
- for 語句
- try 語句
- with 語句
- 函數定義
- 類定義
- 協程
- 最高層級組件
- 完整的 Python 程序
- 文件輸入
- 交互式輸入
- 表達式輸入
- 完整的語法規范
- Python 標準庫
- 概述
- 可用性注釋
- 內置函數
- 內置常量
- 由 site 模塊添加的常量
- 內置類型
- 邏輯值檢測
- 布爾運算 — and, or, not
- 比較
- 數字類型 — int, float, complex
- 迭代器類型
- 序列類型 — list, tuple, range
- 文本序列類型 — str
- 二進制序列類型 — bytes, bytearray, memoryview
- 集合類型 — set, frozenset
- 映射類型 — dict
- 上下文管理器類型
- 其他內置類型
- 特殊屬性
- 內置異常
- 基類
- 具體異常
- 警告
- 異常層次結構
- 文本處理服務
- string — 常見的字符串操作
- re — 正則表達式操作
- 模塊 difflib 是一個計算差異的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 數據庫
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函數
- 二進制數據服務
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 數據類型
- datetime — 基礎日期/時間數據類型
- calendar — General calendar-related functions
- collections — 容器數據類型
- collections.abc — 容器的抽象基類
- heapq — 堆隊列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 淺層 (shallow) 和深層 (deep) 復制操作
- pprint — 數據美化輸出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 數字和數學模塊
- numbers — 數字的抽象基類
- math — 數學函數
- cmath — Mathematical functions for complex numbers
- decimal — 十進制定點和浮點運算
- fractions — 分數
- random — 生成偽隨機數
- statistics — Mathematical statistics functions
- 函數式編程模塊
- itertools — 為高效循環而創建迭代器的函數
- functools — 高階函數和可調用對象上的操作
- operator — 標準運算符替代函數
- 文件和目錄訪問
- pathlib — 面向對象的文件系統路徑
- os.path — 常見路徑操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路徑操作函數
- 數據持久化
- pickle —— Python 對象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 數據庫 DB-API 2.0 接口模塊
- 數據壓縮和存檔
- zlib — 與 gzip 兼容的壓縮
- gzip — 對 gzip 格式的支持
- bz2 — 對 bzip2 壓縮算法的支持
- lzma — 用 LZMA 算法壓縮
- zipfile — 在 ZIP 歸檔中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件讀寫
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服務
- hashlib — 安全哈希與消息摘要
- hmac — 基于密鑰的消息驗證
- secrets — Generate secure random numbers for managing secrets
- 通用操作系統服務
- os — 操作系統接口模塊
- io — 處理流的核心工具
- time — 時間的訪問和轉換
- argparse — 命令行選項、參數和子命令解析器
- getopt — C-style parser for command line options
- 模塊 logging — Python 的日志記錄工具
- logging.config — 日志記錄配置
- logging.handlers — Logging handlers
- getpass — 便攜式密碼輸入工具
- curses — 終端字符單元顯示的處理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函數庫
- 并發執行
- threading — 基于線程的并行
- multiprocessing — 基于進程的并行
- concurrent 包
- concurrent.futures — 啟動并行任務
- subprocess — 子進程管理
- sched — 事件調度器
- queue — 一個同步的隊列類
- _thread — 底層多線程 API
- _dummy_thread — _thread 的替代模塊
- dummy_threading — 可直接替代 threading 模塊。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 網絡和進程間通信
- asyncio — 異步 I/O
- socket — 底層網絡接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高級 I/O 復用庫
- asyncore — 異步socket處理器
- asynchat — 異步 socket 指令/響應 處理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互聯網數據處理
- email — 電子郵件與 MIME 處理包
- json — JSON 編碼和解碼器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 數據編碼
- binhex — 對binhex4文件進行編碼和解碼
- binascii — 二進制和 ASCII 碼互轉
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 結構化標記處理工具
- html — 超文本標記語言支持
- html.parser — 簡單的 HTML 和 XHTML 解析器
- html.entities — HTML 一般實體的定義
- XML處理模塊
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互聯網協議和支持
- webbrowser — 方便的Web瀏覽器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 處理模塊
- urllib.request — 用于打開 URL 的可擴展庫
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模塊
- http.client — HTTP協議客戶端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP協議客戶端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服務器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服務端與客戶端模塊
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒體服務
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 讀寫 Sun AU 文件
- wave — 讀寫WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推測圖像類型
- sndhdr — 推測聲音文件的類型
- ossaudiodev — Access to OSS-compatible audio devices
- 國際化
- gettext — 多語種國際化服務
- locale — 國際化服務
- 程序框架
- turtle — 海龜繪圖
- cmd — 支持面向行的命令解釋器
- shlex — Simple lexical analysis
- Tk圖形用戶界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滾動文字控件
- IDLE
- 其他圖形用戶界面(GUI)包
- 開發工具
- typing — 類型標注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 單元測試框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自動將 Python 2 代碼轉為 Python 3 代碼
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 調試和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 測量小代碼片段的執行時間
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 軟件打包和分發
- distutils — 構建和安裝 Python 模塊
- ensurepip — Bootstrapping the pip installer
- venv — 創建虛擬環境
- zipapp — Manage executable Python zip archives
- Python運行時服務
- sys — 系統相關的參數和函數
- sysconfig — Provide access to Python's configuration information
- builtins — 內建對象
- main — 頂層腳本環境
- warnings — Warning control
- dataclasses — 數據類
- contextlib — Utilities for with-statement contexts
- abc — 抽象基類
- atexit — 退出處理器
- traceback — Print or retrieve a stack traceback
- future — Future 語句定義
- gc — 垃圾回收器接口
- inspect — 檢查對象
- site — Site-specific configuration hook
- 自定義 Python 解釋器
- code — Interpreter base classes
- codeop — Compile Python code
- 導入模塊
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找腳本使用的模塊
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 語言服務
- parser — Access Python parse trees
- ast — 抽象語法樹
- symtable — Access to the compiler's symbol tables
- symbol — 與 Python 解析樹一起使用的常量
- token — 與Python解析樹一起使用的常量
- keyword — 檢驗Python關鍵字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊縮進檢測
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字節碼反匯編器
- pickletools — Tools for pickle developers
- 雜項服務
- formatter — Generic output formatting
- Windows系統相關模塊
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注冊表訪問
- winsound — Sound-playing interface for Windows
- Unix 專有服務
- posix — The most common POSIX system calls
- pwd — 用戶密碼數據庫
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 終端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 庫例程
- 被取代的模塊
- optparse — Parser for command line options
- imp — Access the import internals
- 未創建文檔的模塊
- 平臺特定模塊
- 擴展和嵌入 Python 解釋器
- 推薦的第三方工具
- 不使用第三方工具創建擴展
- 使用 C 或 C++ 擴展 Python
- 自定義擴展類型:教程
- 定義擴展類型:已分類主題
- 構建C/C++擴展
- 在Windows平臺編譯C和C++擴展
- 在更大的應用程序中嵌入 CPython 運行時
- Embedding Python in Another Application
- Python/C API 參考手冊
- 概述
- 代碼標準
- 包含文件
- 有用的宏
- 對象、類型和引用計數
- 異常
- 嵌入Python
- 調試構建
- 穩定的應用程序二進制接口
- The Very High Level Layer
- Reference Counting
- 異常處理
- Printing and clearing
- 拋出異常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 標準異常
- 標準警告類別
- 工具
- 操作系統實用程序
- 系統功能
- 過程控制
- 導入模塊
- Data marshalling support
- 語句解釋及變量編譯
- 字符串轉換與格式化
- 反射
- 編解碼器注冊與支持功能
- 抽象對象層
- Object Protocol
- 數字協議
- Sequence Protocol
- Mapping Protocol
- 迭代器協議
- 緩沖協議
- Old Buffer Protocol
- 具體的對象層
- 基本對象
- 數值對象
- 序列對象
- 容器對象
- 函數對象
- 其他對象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置變量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 內存管理
- 概述
- 原始內存接口
- Memory Interface
- 對象分配器
- 默認內存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 對象實現支持
- 在堆中分配對象
- Common Object Structures
- Type 對象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使對象類型支持循環垃圾回收
- API 和 ABI 版本管理
- 分發 Python 模塊
- 關鍵術語
- 開源許可與協作
- 安裝工具
- 閱讀指南
- 我該如何...?
- ...為我的項目選擇一個名字?
- ...創建和分發二進制擴展?
- 安裝 Python 模塊
- 關鍵術語
- 基本使用
- 我應如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安裝 pip ?
- ... 只為當前用戶安裝軟件包?
- ... 安裝科學計算類 Python 軟件包?
- ... 使用并行安裝的多個 Python 版本?
- 常見的安裝問題
- 在 Linux 的系統 Python 版本上安裝
- 未安裝 pip
- 安裝二進制編譯擴展
- Python 常用指引
- 將 Python 2 代碼遷移到 Python 3
- 簡要說明
- 詳情
- 將擴展模塊移植到 Python 3
- 條件編譯
- 對象API的更改
- 模塊初始化和狀態
- CObject 替換為 Capsule
- 其他選項
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 實現描述器
- 摘要
- 定義和簡介
- 描述器協議
- 發起調用描述符
- 描述符示例
- Properties
- 函數和方法
- Static Methods and Class Methods
- 函數式編程指引
- 概述
- 迭代器
- 生成器表達式和列表推導式
- 生成器
- 內置函數
- itertools 模塊
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文獻
- 日志 HOWTO
- 日志基礎教程
- 進階日志教程
- 日志級別
- 有用的處理程序
- 記錄日志中引發的異常
- 使用任意對象作為消息
- 優化
- 日志操作手冊
- 在多個模塊中使用日志
- 在多線程中使用日志
- 使用多個日志處理器和多種格式化
- 在多個地方記錄日志
- 日志服務器配置示例
- 處理日志處理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正則表達式HOWTO
- 概述
- 簡單模式
- 使用正則表達式
- 更多模式能力
- 修改字符串
- 常見問題
- 反饋
- 套接字編程指南
- 套接字
- 創建套接字
- 使用一個套接字
- 斷開連接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 關鍵函數
- Operator 模塊函數
- 升序和降序
- 排序穩定性和排序復雜度
- 使用裝飾-排序-去裝飾的舊方法
- 使用 cmp 參數的舊方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包獲取網絡資源
- 概述
- Fetching URLs
- 處理異常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 腳注
- Argparse 教程
- 概念
- 基礎
- 位置參數介紹
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模塊介紹
- 創建 Address/Network/Interface 對象
- 審查 Address/Network/Interface 對象
- Network 作為 Address 列表
- 比較
- 將IP地址與其他模塊一起使用
- 實例創建失敗時獲取更多詳細信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 檢測CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常見問題
- Python常見問題
- 一般信息
- 現實世界中的 Python
- 編程常見問題
- 一般問題
- 核心語言
- 數字和字符串
- 性能
- 序列(元組/列表)
- 對象
- 模塊
- 設計和歷史常見問題
- 為什么Python使用縮進來分組語句?
- 為什么簡單的算術運算得到奇怪的結果?
- 為什么浮點計算不準確?
- 為什么Python字符串是不可變的?
- 為什么必須在方法定義和調用中顯式使用“self”?
- 為什么不能在表達式中賦值?
- 為什么Python對某些功能(例如list.index())使用方法來實現,而其他功能(例如len(List))使用函數實現?
- 為什么 join()是一個字符串方法而不是列表或元組方法?
- 異常有多快?
- 為什么Python中沒有switch或case語句?
- 難道不能在解釋器中模擬線程,而非得依賴特定于操作系統的線程實現嗎?
- 為什么lambda表達式不能包含語句?
- 可以將Python編譯為機器代碼,C或其他語言嗎?
- Python如何管理內存?
- 為什么CPython不使用更傳統的垃圾回收方案?
- CPython退出時為什么不釋放所有內存?
- 為什么有單獨的元組和列表數據類型?
- 列表是如何在CPython中實現的?
- 字典是如何在CPython中實現的?
- 為什么字典key必須是不可變的?
- 為什么 list.sort() 沒有返回排序列表?
- 如何在Python中指定和實施接口規范?
- 為什么沒有goto?
- 為什么原始字符串(r-strings)不能以反斜杠結尾?
- 為什么Python沒有屬性賦值的“with”語句?
- 為什么 if/while/def/class語句需要冒號?
- 為什么Python在列表和元組的末尾允許使用逗號?
- 代碼庫和插件 FAQ
- 通用的代碼庫問題
- 通用任務
- 線程相關
- 輸入輸出
- 網絡 / Internet 編程
- 數據庫
- 數學和數字
- 擴展/嵌入常見問題
- 可以使用C語言中創建自己的函數嗎?
- 可以使用C++語言中創建自己的函數嗎?
- C很難寫,有沒有其他選擇?
- 如何從C執行任意Python語句?
- 如何從C中評估任意Python表達式?
- 如何從Python對象中提取C的值?
- 如何使用Py_BuildValue()創建任意長度的元組?
- 如何從C調用對象的方法?
- 如何捕獲PyErr_Print()(或打印到stdout / stderr的任何內容)的輸出?
- 如何從C訪問用Python編寫的模塊?
- 如何從Python接口到C ++對象?
- 我使用Setup文件添加了一個模塊,為什么make失敗了?
- 如何調試擴展?
- 我想在Linux系統上編譯一個Python模塊,但是缺少一些文件。為什么?
- 如何區分“輸入不完整”和“輸入無效”?
- 如何找到未定義的g++符號__builtin_new或__pure_virtual?
- 能否創建一個對象類,其中部分方法在C中實現,而其他方法在Python中實現(例如通過繼承)?
- Python在Windows上的常見問題
- 我怎樣在Windows下運行一個Python程序?
- 我怎么讓 Python 腳本可執行?
- 為什么有時候 Python 程序會啟動緩慢?
- 我怎樣使用Python腳本制作可執行文件?
- *.pyd 文件和DLL文件相同嗎?
- 我怎樣將Python嵌入一個Windows程序?
- 如何讓編輯器不要在我的 Python 源代碼中插入 tab ?
- 如何在不阻塞的情況下檢查按鍵?
- 圖形用戶界面(GUI)常見問題
- 圖形界面常見問題
- Python 是否有平臺無關的圖形界面工具包?
- 有哪些Python的GUI工具是某個平臺專用的?
- 有關Tkinter的問題
- “為什么我的電腦上安裝了 Python ?”
- 什么是Python?
- 為什么我的電腦上安裝了 Python ?
- 我能刪除 Python 嗎?
- 術語對照表
- 文檔說明
- Python 文檔貢獻者
- 解決 Bug
- 文檔錯誤
- 使用 Python 的錯誤追蹤系統
- 開始為 Python 貢獻您的知識
- 版權
- 歷史和許可證
- 軟件歷史
- 訪問Python或以其他方式使用Python的條款和條件
- Python 3.7.3 的 PSF 許可協議
- Python 2.0 的 BeOpen.com 許可協議
- Python 1.6.1 的 CNRI 許可協議
- Python 0.9.0 至 1.2 的 CWI 許可協議
- 集成軟件的許可和認可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec