### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](ssl.xhtml "ssl --- TLS/SSL wrapper for socket objects") |
- [上一頁](asyncio-dev.xhtml "用 asyncio 開發") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 標準庫](index.xhtml) ?
- [網絡和進程間通信](ipc.xhtml) ?
- $('.inline-search').show(0); |
# [`socket`](#module-socket "socket: Low-level networking interface.") --- 底層網絡接口
**源代碼:** [Lib/socket.py](https://github.com/python/cpython/tree/3.7/Lib/socket.py) \[https://github.com/python/cpython/tree/3.7/Lib/socket.py\]
- - - - - -
這個模塊提供了訪問BSD\*套接字\*的接口。在所有現代Unix系統、Windows、macOS和其他一些平臺上可用。
注解
一些行為可能因平臺不同而異,因為調用的是操作系統的套接字API。
這個Python接口是用Python的面向對象風格對Unix系統調用和套接字庫接口的直譯:函數 [`socket()`](#socket.socket "socket.socket") 返回一個 *套接字對象* ,其方法是對各種套接字系統調用的實現。形參類型一般與C接口相比更高級:例如在Python文件 `read()` 和 `write()` 操作中,接收操作的緩沖區分配是自動的,發送操作的緩沖區長度是隱式的。
參見
模塊 [`socketserver`](socketserver.xhtml#module-socketserver "socketserver: A framework for network servers.")用于簡化網絡服務端編寫的類。
模塊 [`ssl`](ssl.xhtml#module-ssl "ssl: TLS/SSL wrapper for socket objects")套接字對象的TLS/SSL封裝。
## 套接字協議族
Depending on the system and the build options, various socket families are supported by this module.
The address format required by a particular socket object is automatically selected based on the address family specified when the socket object was created. Socket addresses are represented as follows:
- The address of an [`AF_UNIX`](#socket.AF_UNIX "socket.AF_UNIX") socket bound to a file system node is represented as a string, using the file system encoding and the `'surrogateescape'` error handler (see [**PEP 383**](https://www.python.org/dev/peps/pep-0383) \[https://www.python.org/dev/peps/pep-0383\]). An address in Linux's abstract namespace is returned as a [bytes-like object](../glossary.xhtml#term-bytes-like-object) with an initial null byte; note that sockets in this namespace can communicate with normal file system sockets, so programs intended to run on Linux may need to deal with both types of address. A string or bytes-like object can be used for either type of address when passing it as an argument.
> 在 3.3 版更改: Previously, [`AF_UNIX`](#socket.AF_UNIX "socket.AF_UNIX") socket paths were assumed to use UTF-8 encoding.
>
>
>
> 在 3.5 版更改: Writable [bytes-like object](../glossary.xhtml#term-bytes-like-object) is now accepted.
- A pair `(host, port)` is used for the [`AF_INET`](#socket.AF_INET "socket.AF_INET") address family, where *host* is a string representing either a hostname in Internet domain notation like `'daring.cwi.nl'` or an IPv4 address like `'100.50.200.5'`, and *port* is an integer.
- For IPv4 addresses, two special forms are accepted instead of a host address: `''` represents `INADDR_ANY`, which is used to bind to all interfaces, and the string `'<broadcast>'` represents `INADDR_BROADCAST`. This behavior is not compatible with IPv6, therefore, you may want to avoid these if you intend to support IPv6 with your Python programs.
- For [`AF_INET6`](#socket.AF_INET6 "socket.AF_INET6") address family, a four-tuple
```
(host, port, flowinfo,
scopeid)
```
is used, where *flowinfo* and *scopeid* represent the `sin6_flowinfo`and `sin6_scope_id` members in `struct sockaddr_in6` in C. For [`socket`](#module-socket "socket: Low-level networking interface.") module methods, *flowinfo* and *scopeid* can be omitted just for backward compatibility. Note, however, omission of *scopeid* can cause problems in manipulating scoped IPv6 addresses.
在 3.7 版更改: For multicast addresses (with *scopeid* meaningful) *address* may not contain `%scope` (or `zone id`) part. This information is superfluous and may be safely omitted (recommended).
- `AF_NETLINK` sockets are represented as pairs `(pid, groups)`.
- Linux-only support for TIPC is available using the `AF_TIPC`address family. TIPC is an open, non-IP based networked protocol designed for use in clustered computer environments. Addresses are represented by a tuple, and the fields depend on the address type. The general tuple form is `(addr_type, v1, v2, v3 [, scope])`, where:
- *addr\_type* is one of `TIPC_ADDR_NAMESEQ`, `TIPC_ADDR_NAME`, or `TIPC_ADDR_ID`.
- *scope* is one of `TIPC_ZONE_SCOPE`, `TIPC_CLUSTER_SCOPE`, and `TIPC_NODE_SCOPE`.
- If *addr\_type* is `TIPC_ADDR_NAME`, then *v1* is the server type, *v2* is the port identifier, and *v3* should be 0.
If *addr\_type* is `TIPC_ADDR_NAMESEQ`, then *v1* is the server type, *v2*is the lower port number, and *v3* is the upper port number.
If *addr\_type* is `TIPC_ADDR_ID`, then *v1* is the node, *v2* is the reference, and *v3* should be set to 0.
- A tuple `(interface, )` is used for the [`AF_CAN`](#socket.AF_CAN "socket.AF_CAN") address family, where *interface* is a string representing a network interface name like `'can0'`. The network interface name `''` can be used to receive packets from all network interfaces of this family.
- [`CAN_ISOTP`](#socket.CAN_ISOTP "socket.CAN_ISOTP") protocol require a tuple `(interface, rx_addr, tx_addr)`where both additional parameters are unsigned long integer that represent a CAN identifier (standard or extended).
- A string or a tuple `(id, unit)` is used for the `SYSPROTO_CONTROL`protocol of the `PF_SYSTEM` family. The string is the name of a kernel control using a dynamically-assigned ID. The tuple can be used if ID and unit number of the kernel control are known or if a registered ID is used.
3\.3 新版功能.
- `AF_BLUETOOTH` supports the following protocols and address formats:
- `BTPROTO_L2CAP` accepts `(bdaddr, psm)` where `bdaddr` is the Bluetooth address as a string and `psm` is an integer.
- `BTPROTO_RFCOMM` accepts `(bdaddr, channel)` where `bdaddr`is the Bluetooth address as a string and `channel` is an integer.
- `BTPROTO_HCI` accepts `(device_id,)` where `device_id` is either an integer or a string with the Bluetooth address of the interface. (This depends on your OS; NetBSD and DragonFlyBSD expect a Bluetooth address while everything else expects an integer.)
在 3.2 版更改: NetBSD and DragonFlyBSD support added.
- `BTPROTO_SCO` accepts `bdaddr` where `bdaddr` is a [`bytes`](stdtypes.xhtml#bytes "bytes") object containing the Bluetooth address in a string format. (ex. `b'12:23:34:45:56:67'`) This protocol is not supported under FreeBSD.
- [`AF_ALG`](#socket.AF_ALG "socket.AF_ALG") is a Linux-only socket based interface to Kernel cryptography. An algorithm socket is configured with a tuple of two to four elements `(type, name [, feat [, mask]])`, where:
- *type* is the algorithm type as string, e.g. `aead`, `hash`, `skcipher` or `rng`.
- *name* is the algorithm name and operation mode as string, e.g. `sha256`, `hmac(sha256)`, `cbc(aes)` or `drbg_nopr_ctr_aes256`.
- *feat* and *mask* are unsigned 32bit integers.
[Availability](intro.xhtml#availability): Linux 2.6.38, some algorithm types require more recent Kernels.
3\.6 新版功能.
- [`AF_VSOCK`](#socket.AF_VSOCK "socket.AF_VSOCK") allows communication between virtual machines and their hosts. The sockets are represented as a `(CID, port)` tuple where the context ID or CID and port are integers.
[Availability](intro.xhtml#availability): Linux >= 4.8 QEMU >= 2.8 ESX >= 4.0 ESX Workstation >= 6.5.
3\.7 新版功能.
- [`AF_PACKET`](#socket.AF_PACKET "socket.AF_PACKET") is a low-level interface directly to network devices. The packets are represented by the tuple `(ifname, proto[, pkttype[, hatype[, addr]]])` where:
- *ifname* - String specifying the device name.
- *proto* - An in network-byte-order integer specifying the Ethernet protocol number.
- *pkttype* - Optional integer specifying the packet type:
- `PACKET_HOST` (the default) - Packet addressed to the local host.
- `PACKET_BROADCAST` - Physical-layer broadcast packet.
- `PACKET_MULTIHOST` - Packet sent to a physical-layer multicast address.
- `PACKET_OTHERHOST` - Packet to some other host that has been caught by a device driver in promiscuous mode.
- `PACKET_OUTGOING` - Packet originating from the local host that is looped back to a packet socket.
- *hatype* - Optional integer specifying the ARP hardware address type.
- *addr* - Optional bytes-like object specifying the hardware physical address, whose interpretation depends on the device.
If you use a hostname in the *host* portion of IPv4/v6 socket address, the program may show a nondeterministic behavior, as Python uses the first address returned from the DNS resolution. The socket address will be resolved differently into an actual IPv4/v6 address, depending on the results from DNS resolution and/or the host configuration. For deterministic behavior use a numeric address in *host* portion.
All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be raised; starting from Python 3.3, errors related to socket or address semantics raise [`OSError`](exceptions.xhtml#OSError "OSError") or one of its subclasses (they used to raise [`socket.error`](#socket.error "socket.error")).
Non-blocking mode is supported through [`setblocking()`](#socket.socket.setblocking "socket.socket.setblocking"). A generalization of this based on timeouts is supported through [`settimeout()`](#socket.socket.settimeout "socket.socket.settimeout").
## Module contents
The module [`socket`](#module-socket "socket: Low-level networking interface.") exports the following elements.
### 異常
*exception* `socket.``error`A deprecated alias of [`OSError`](exceptions.xhtml#OSError "OSError").
在 3.3 版更改: Following [**PEP 3151**](https://www.python.org/dev/peps/pep-3151) \[https://www.python.org/dev/peps/pep-3151\], this class was made an alias of [`OSError`](exceptions.xhtml#OSError "OSError").
*exception* `socket.``herror`A subclass of [`OSError`](exceptions.xhtml#OSError "OSError"), this exception is raised for address-related errors, i.e. for functions that use *h\_errno* in the POSIX C API, including [`gethostbyname_ex()`](#socket.gethostbyname_ex "socket.gethostbyname_ex") and [`gethostbyaddr()`](#socket.gethostbyaddr "socket.gethostbyaddr"). The accompanying value is a pair `(h_errno, string)` representing an error returned by a library call. *h\_errno* is a numeric value, while *string* represents the description of *h\_errno*, as returned by the `hstrerror()` C function.
在 3.3 版更改: This class was made a subclass of [`OSError`](exceptions.xhtml#OSError "OSError").
*exception* `socket.``gaierror`A subclass of [`OSError`](exceptions.xhtml#OSError "OSError"), this exception is raised for address-related errors by [`getaddrinfo()`](#socket.getaddrinfo "socket.getaddrinfo") and [`getnameinfo()`](#socket.getnameinfo "socket.getnameinfo"). The accompanying value is a pair `(error, string)` representing an error returned by a library call. *string* represents the description of *error*, as returned by the `gai_strerror()` C function. The numeric *error* value will match one of the `EAI_*` constants defined in this module.
在 3.3 版更改: This class was made a subclass of [`OSError`](exceptions.xhtml#OSError "OSError").
*exception* `socket.``timeout`A subclass of [`OSError`](exceptions.xhtml#OSError "OSError"), this exception is raised when a timeout occurs on a socket which has had timeouts enabled via a prior call to [`settimeout()`](#socket.socket.settimeout "socket.socket.settimeout") (or implicitly through [`setdefaulttimeout()`](#socket.setdefaulttimeout "socket.setdefaulttimeout")). The accompanying value is a string whose value is currently always "timed out".
在 3.3 版更改: This class was made a subclass of [`OSError`](exceptions.xhtml#OSError "OSError").
### 常數
> The AF\_\* and SOCK\_\* constants are now `AddressFamily` and `SocketKind` [`IntEnum`](enum.xhtml#enum.IntEnum "enum.IntEnum") collections.
>
> 3\.4 新版功能.
`socket.``AF_UNIX``socket.``AF_INET``socket.``AF_INET6`These constants represent the address (and protocol) families, used for the first argument to [`socket()`](#socket.socket "socket.socket"). If the [`AF_UNIX`](#socket.AF_UNIX "socket.AF_UNIX") constant is not defined then this protocol is unsupported. More constants may be available depending on the system.
`socket.``SOCK_STREAM``socket.``SOCK_DGRAM``socket.``SOCK_RAW``socket.``SOCK_RDM``socket.``SOCK_SEQPACKET`These constants represent the socket types, used for the second argument to [`socket()`](#socket.socket "socket.socket"). More constants may be available depending on the system. (Only [`SOCK_STREAM`](#socket.SOCK_STREAM "socket.SOCK_STREAM") and [`SOCK_DGRAM`](#socket.SOCK_DGRAM "socket.SOCK_DGRAM") appear to be generally useful.)
`socket.``SOCK_CLOEXEC``socket.``SOCK_NONBLOCK`These two constants, if defined, can be combined with the socket types and allow you to set some flags atomically (thus avoiding possible race conditions and the need for separate calls).
參見
[Secure File Descriptor Handling](http://udrepper.livejournal.com/20407.html) \[http://udrepper.livejournal.com/20407.html\]for a more thorough explanation.
[Availability](intro.xhtml#availability): Linux >= 2.6.27.
3\.2 新版功能.
`SO_*``socket.``SOMAXCONN``MSG_*``SOL_*``SCM_*``IPPROTO_*``IPPORT_*``INADDR_*``IP_*``IPV6_*``EAI_*``AI_*``NI_*``TCP_*`Many constants of these forms, documented in the Unix documentation on sockets and/or the IP protocol, are also defined in the socket module. They are generally used in arguments to the `setsockopt()` and `getsockopt()`methods of socket objects. In most cases, only those symbols that are defined in the Unix header files are defined; for a few symbols, default values are provided.
在 3.6 版更改: `SO_DOMAIN`, `SO_PROTOCOL`, `SO_PEERSEC`, `SO_PASSSEC`, `TCP_USER_TIMEOUT`, `TCP_CONGESTION` were added.
在 3.6.5 版更改: On Windows, `TCP_FASTOPEN`, `TCP_KEEPCNT` appear if run-time Windows supports.
在 3.7 版更改: `TCP_NOTSENT_LOWAT` was added.
On Windows, `TCP_KEEPIDLE`, `TCP_KEEPINTVL` appear if run-time Windows supports.
`socket.``AF_CAN``socket.``PF_CAN``SOL_CAN_*``CAN_*`Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.
[Availability](intro.xhtml#availability): Linux >= 2.6.25.
3\.3 新版功能.
`socket.``CAN_BCM``CAN_BCM_*`CAN\_BCM, in the CAN protocol family, is the broadcast manager (BCM) protocol. Broadcast manager constants, documented in the Linux documentation, are also defined in the socket module.
[Availability](intro.xhtml#availability): Linux >= 2.6.25.
3\.4 新版功能.
`socket.``CAN_RAW_FD_FRAMES`Enables CAN FD support in a CAN\_RAW socket. This is disabled by default. This allows your application to send both CAN and CAN FD frames; however, you one must accept both CAN and CAN FD frames when reading from the socket.
This constant is documented in the Linux documentation.
[Availability](intro.xhtml#availability): Linux >= 3.6.
3\.5 新版功能.
`socket.``CAN_ISOTP`CAN\_ISOTP, in the CAN protocol family, is the ISO-TP (ISO 15765-2) protocol. ISO-TP constants, documented in the Linux documentation.
[Availability](intro.xhtml#availability): Linux >= 2.6.25.
3\.7 新版功能.
`socket.``AF_PACKET``socket.``PF_PACKET``PACKET_*`Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.
[Availability](intro.xhtml#availability): Linux >= 2.2.
`socket.``AF_RDS``socket.``PF_RDS``socket.``SOL_RDS``RDS_*`Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.
[Availability](intro.xhtml#availability): Linux >= 2.6.30.
3\.3 新版功能.
`socket.``SIO_RCVALL``socket.``SIO_KEEPALIVE_VALS``socket.``SIO_LOOPBACK_FAST_PATH``RCVALL_*`Constants for Windows' WSAIoctl(). The constants are used as arguments to the [`ioctl()`](#socket.socket.ioctl "socket.socket.ioctl") method of socket objects.
在 3.6 版更改: `SIO_LOOPBACK_FAST_PATH` was added.
`TIPC_*`TIPC related constants, matching the ones exported by the C socket API. See the TIPC documentation for more information.
`socket.``AF_ALG``socket.``SOL_ALG``ALG_*`Constants for Linux Kernel cryptography.
[Availability](intro.xhtml#availability): Linux >= 2.6.38.
3\.6 新版功能.
`socket.``AF_VSOCK``socket.``IOCTL_VM_SOCKETS_GET_LOCAL_CID``VMADDR*``SO_VM*`Constants for Linux host/guest communication.
[Availability](intro.xhtml#availability): Linux >= 4.8.
3\.7 新版功能.
`socket.``AF_LINK`[Availability](intro.xhtml#availability): BSD, OSX.
3\.4 新版功能.
`socket.``has_ipv6`This constant contains a boolean value which indicates if IPv6 is supported on this platform.
`socket.``BDADDR_ANY``socket.``BDADDR_LOCAL`These are string constants containing Bluetooth addresses with special meanings. For example, [`BDADDR_ANY`](#socket.BDADDR_ANY "socket.BDADDR_ANY") can be used to indicate any address when specifying the binding socket with `BTPROTO_RFCOMM`.
`socket.``HCI_FILTER``socket.``HCI_TIME_STAMP``socket.``HCI_DATA_DIR`For use with `BTPROTO_HCI`. [`HCI_FILTER`](#socket.HCI_FILTER "socket.HCI_FILTER") is not available for NetBSD or DragonFlyBSD. [`HCI_TIME_STAMP`](#socket.HCI_TIME_STAMP "socket.HCI_TIME_STAMP") and [`HCI_DATA_DIR`](#socket.HCI_DATA_DIR "socket.HCI_DATA_DIR") are not available for FreeBSD, NetBSD, or DragonFlyBSD.
### 函數
#### Creating sockets
The following functions all create [socket objects](#socket-objects).
`socket.``socket`(*family=AF\_INET*, *type=SOCK\_STREAM*, *proto=0*, *fileno=None*)Create a new socket using the given address family, socket type and protocol number. The address family should be [`AF_INET`](#socket.AF_INET "socket.AF_INET") (the default), [`AF_INET6`](#socket.AF_INET6 "socket.AF_INET6"), [`AF_UNIX`](#socket.AF_UNIX "socket.AF_UNIX"), [`AF_CAN`](#socket.AF_CAN "socket.AF_CAN"), [`AF_PACKET`](#socket.AF_PACKET "socket.AF_PACKET"), or [`AF_RDS`](#socket.AF_RDS "socket.AF_RDS"). The socket type should be [`SOCK_STREAM`](#socket.SOCK_STREAM "socket.SOCK_STREAM") (the default), [`SOCK_DGRAM`](#socket.SOCK_DGRAM "socket.SOCK_DGRAM"), [`SOCK_RAW`](#socket.SOCK_RAW "socket.SOCK_RAW") or perhaps one of the other `SOCK_` constants. The protocol number is usually zero and may be omitted or in the case where the address family is [`AF_CAN`](#socket.AF_CAN "socket.AF_CAN") the protocol should be one of `CAN_RAW`, [`CAN_BCM`](#socket.CAN_BCM "socket.CAN_BCM") or [`CAN_ISOTP`](#socket.CAN_ISOTP "socket.CAN_ISOTP").
If *fileno* is specified, the values for *family*, *type*, and *proto* are auto-detected from the specified file descriptor. Auto-detection can be overruled by calling the function with explicit *family*, *type*, or *proto*arguments. This only affects how Python represents e.g. the return value of [`socket.getpeername()`](#socket.socket.getpeername "socket.socket.getpeername") but not the actual OS resource. Unlike [`socket.fromfd()`](#socket.fromfd "socket.fromfd"), *fileno* will return the same socket and not a duplicate. This may help close a detached socket using [`socket.close()`](#socket.close "socket.close").
The newly created socket is [non-inheritable](os.xhtml#fd-inheritance).
在 3.3 版更改: The AF\_CAN family was added. The AF\_RDS family was added.
在 3.4 版更改: The CAN\_BCM protocol was added.
在 3.4 版更改: The returned socket is now non-inheritable.
在 3.7 版更改: The CAN\_ISOTP protocol was added.
在 3.7 版更改: When [`SOCK_NONBLOCK`](#socket.SOCK_NONBLOCK "socket.SOCK_NONBLOCK") or [`SOCK_CLOEXEC`](#socket.SOCK_CLOEXEC "socket.SOCK_CLOEXEC")bit flags are applied to *type* they are cleared, and [`socket.type`](#socket.socket.type "socket.socket.type") will not reflect them. They are still passed to the underlying system socket() call. Therefore::
> sock = socket.socket(socket.AF\_INET, socket.SOCK\_STREAM | socket.SOCK\_NONBLOCK)
will still create a non-blocking socket on OSes that support `SOCK_NONBLOCK`, but `sock.type` will be set to `socket.SOCK_STREAM`.
`socket.``socketpair`(\[*family*\[, *type*\[, *proto*\]\]\])Build a pair of connected socket objects using the given address family, socket type, and protocol number. Address family, socket type, and protocol number are as for the [`socket()`](#socket.socket "socket.socket") function above. The default family is [`AF_UNIX`](#socket.AF_UNIX "socket.AF_UNIX")if defined on the platform; otherwise, the default is [`AF_INET`](#socket.AF_INET "socket.AF_INET").
The newly created sockets are [non-inheritable](os.xhtml#fd-inheritance).
在 3.2 版更改: The returned socket objects now support the whole socket API, rather than a subset.
在 3.4 版更改: The returned sockets are now non-inheritable.
在 3.5 版更改: Windows support added.
`socket.``create_connection`(*address*\[, *timeout*\[, *source\_address*\]\])Connect to a TCP service listening on the Internet *address* (a 2-tuple `(host, port)`), and return the socket object. This is a higher-level function than [`socket.connect()`](#socket.socket.connect "socket.socket.connect"): if *host* is a non-numeric hostname, it will try to resolve it for both [`AF_INET`](#socket.AF_INET "socket.AF_INET") and [`AF_INET6`](#socket.AF_INET6 "socket.AF_INET6"), and then try to connect to all possible addresses in turn until a connection succeeds. This makes it easy to write clients that are compatible to both IPv4 and IPv6.
Passing the optional *timeout* parameter will set the timeout on the socket instance before attempting to connect. If no *timeout* is supplied, the global default timeout setting returned by [`getdefaulttimeout()`](#socket.getdefaulttimeout "socket.getdefaulttimeout") is used.
If supplied, *source\_address* must be a 2-tuple `(host, port)` for the socket to bind to as its source address before connecting. If host or port are '' or 0 respectively the OS default behavior will be used.
在 3.2 版更改: 添加了 *source\_address*。
`socket.``fromfd`(*fd*, *family*, *type*, *proto=0*)Duplicate the file descriptor *fd* (an integer as returned by a file object's `fileno()` method) and build a socket object from the result. Address family, socket type and protocol number are as for the [`socket()`](#socket.socket "socket.socket") function above. The file descriptor should refer to a socket, but this is not checked --- subsequent operations on the object may fail if the file descriptor is invalid. This function is rarely needed, but can be used to get or set socket options on a socket passed to a program as standard input or output (such as a server started by the Unix inet daemon). The socket is assumed to be in blocking mode.
The newly created socket is [non-inheritable](os.xhtml#fd-inheritance).
在 3.4 版更改: The returned socket is now non-inheritable.
`socket.``fromshare`(*data*)Instantiate a socket from data obtained from the [`socket.share()`](#socket.socket.share "socket.socket.share")method. The socket is assumed to be in blocking mode.
[可用性](intro.xhtml#availability): Windows。
3\.3 新版功能.
`socket.``SocketType`This is a Python type object that represents the socket object type. It is the same as `type(socket(...))`.
#### 其他功能
The [`socket`](#module-socket "socket: Low-level networking interface.") module also offers various network-related services:
`socket.``close`(*fd*)Close a socket file descriptor. This is like [`os.close()`](os.xhtml#os.close "os.close"), but for sockets. On some platforms (most noticeable Windows) [`os.close()`](os.xhtml#os.close "os.close")does not work for socket file descriptors.
3\.7 新版功能.
`socket.``getaddrinfo`(*host*, *port*, *family=0*, *type=0*, *proto=0*, *flags=0*)Translate the *host*/*port* argument into a sequence of 5-tuples that contain all the necessary arguments for creating a socket connected to that service. *host* is a domain name, a string representation of an IPv4/v6 address or `None`. *port* is a string service name such as `'http'`, a numeric port number or `None`. By passing `None` as the value of *host*and *port*, you can pass `NULL` to the underlying C API.
The *family*, *type* and *proto* arguments can be optionally specified in order to narrow the list of addresses returned. Passing zero as a value for each of these arguments selects the full range of results. The *flags* argument can be one or several of the `AI_*` constants, and will influence how results are computed and returned. For example, `AI_NUMERICHOST` will disable domain name resolution and will raise an error if *host* is a domain name.
The function returns a list of 5-tuples with the following structure:
`(family, type, proto, canonname, sockaddr)`
In these tuples, *family*, *type*, *proto* are all integers and are meant to be passed to the [`socket()`](#socket.socket "socket.socket") function. *canonname* will be a string representing the canonical name of the *host* if `AI_CANONNAME` is part of the *flags* argument; else *canonname*will be empty. *sockaddr* is a tuple describing a socket address, whose format depends on the returned *family* (a `(address, port)` 2-tuple for [`AF_INET`](#socket.AF_INET "socket.AF_INET"), a `(address, port, flow info, scope id)` 4-tuple for [`AF_INET6`](#socket.AF_INET6 "socket.AF_INET6")), and is meant to be passed to the [`socket.connect()`](#socket.socket.connect "socket.socket.connect")method.
The following example fetches address information for a hypothetical TCP connection to `example.org` on port 80 (results may differ on your system if IPv6 isn't enabled):
```
>>> socket.getaddrinfo("example.org", 80, proto=socket.IPPROTO_TCP)
[(<AddressFamily.AF_INET6: 10>, <SocketType.SOCK_STREAM: 1>,
6, '', ('2606:2800:220:1:248:1893:25c8:1946', 80, 0, 0)),
(<AddressFamily.AF_INET: 2>, <SocketType.SOCK_STREAM: 1>,
6, '', ('93.184.216.34', 80))]
```
在 3.2 版更改: parameters can now be passed using keyword arguments.
在 3.7 版更改: for IPv6 multicast addresses, string representing an address will not contain `%scope` part.
`socket.``getfqdn`(\[*name*\])Return a fully qualified domain name for *name*. If *name* is omitted or empty, it is interpreted as the local host. To find the fully qualified name, the hostname returned by [`gethostbyaddr()`](#socket.gethostbyaddr "socket.gethostbyaddr") is checked, followed by aliases for the host, if available. The first name which includes a period is selected. In case no fully qualified domain name is available, the hostname as returned by [`gethostname()`](#socket.gethostname "socket.gethostname") is returned.
`socket.``gethostbyname`(*hostname*)Translate a host name to IPv4 address format. The IPv4 address is returned as a string, such as `'100.50.200.5'`. If the host name is an IPv4 address itself it is returned unchanged. See [`gethostbyname_ex()`](#socket.gethostbyname_ex "socket.gethostbyname_ex") for a more complete interface. [`gethostbyname()`](#socket.gethostbyname "socket.gethostbyname") does not support IPv6 name resolution, and [`getaddrinfo()`](#socket.getaddrinfo "socket.getaddrinfo") should be used instead for IPv4/v6 dual stack support.
`socket.``gethostbyname_ex`(*hostname*)Translate a host name to IPv4 address format, extended interface. Return a triple `(hostname, aliaslist, ipaddrlist)` where *hostname* is the primary host name responding to the given *ip\_address*, *aliaslist* is a (possibly empty) list of alternative host names for the same address, and *ipaddrlist* is a list of IPv4 addresses for the same interface on the same host (often but not always a single address). [`gethostbyname_ex()`](#socket.gethostbyname_ex "socket.gethostbyname_ex") does not support IPv6 name resolution, and [`getaddrinfo()`](#socket.getaddrinfo "socket.getaddrinfo") should be used instead for IPv4/v6 dual stack support.
`socket.``gethostname`()Return a string containing the hostname of the machine where the Python interpreter is currently executing.
Note: [`gethostname()`](#socket.gethostname "socket.gethostname") doesn't always return the fully qualified domain name; use [`getfqdn()`](#socket.getfqdn "socket.getfqdn") for that.
`socket.``gethostbyaddr`(*ip\_address*)Return a triple `(hostname, aliaslist, ipaddrlist)` where *hostname* is the primary host name responding to the given *ip\_address*, *aliaslist* is a (possibly empty) list of alternative host names for the same address, and *ipaddrlist* is a list of IPv4/v6 addresses for the same interface on the same host (most likely containing only a single address). To find the fully qualified domain name, use the function [`getfqdn()`](#socket.getfqdn "socket.getfqdn"). [`gethostbyaddr()`](#socket.gethostbyaddr "socket.gethostbyaddr") supports both IPv4 and IPv6.
`socket.``getnameinfo`(*sockaddr*, *flags*)Translate a socket address *sockaddr* into a 2-tuple `(host, port)`. Depending on the settings of *flags*, the result can contain a fully-qualified domain name or numeric address representation in *host*. Similarly, *port* can contain a string port name or a numeric port number.
For IPv6 addresses, `%scope` is appended to the host part if *sockaddr*contains meaningful *scopeid*. Usually this happens for multicast addresses.
`socket.``getprotobyname`(*protocolname*)Translate an Internet protocol name (for example, `'icmp'`) to a constant suitable for passing as the (optional) third argument to the [`socket()`](#socket.socket "socket.socket")function. This is usually only needed for sockets opened in "raw" mode ([`SOCK_RAW`](#socket.SOCK_RAW "socket.SOCK_RAW")); for the normal socket modes, the correct protocol is chosen automatically if the protocol is omitted or zero.
`socket.``getservbyname`(*servicename*\[, *protocolname*\])Translate an Internet service name and protocol name to a port number for that service. The optional protocol name, if given, should be `'tcp'` or `'udp'`, otherwise any protocol will match.
`socket.``getservbyport`(*port*\[, *protocolname*\])Translate an Internet port number and protocol name to a service name for that service. The optional protocol name, if given, should be `'tcp'` or `'udp'`, otherwise any protocol will match.
`socket.``ntohl`(*x*)Convert 32-bit positive integers from network to host byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.
`socket.``ntohs`(*x*)Convert 16-bit positive integers from network to host byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.
3\.7 版后已移除: In case *x* does not fit in 16-bit unsigned integer, but does fit in a positive C int, it is silently truncated to 16-bit unsigned integer. This silent truncation feature is deprecated, and will raise an exception in future versions of Python.
`socket.``htonl`(*x*)Convert 32-bit positive integers from host to network byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.
`socket.``htons`(*x*)Convert 16-bit positive integers from host to network byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.
3\.7 版后已移除: In case *x* does not fit in 16-bit unsigned integer, but does fit in a positive C int, it is silently truncated to 16-bit unsigned integer. This silent truncation feature is deprecated, and will raise an exception in future versions of Python.
`socket.``inet_aton`(*ip\_string*)Convert an IPv4 address from dotted-quad string format (for example, '123.45.67.89') to 32-bit packed binary format, as a bytes object four characters in length. This is useful when conversing with a program that uses the standard C library and needs objects of type `struct in_addr`, which is the C type for the 32-bit packed binary this function returns.
[`inet_aton()`](#socket.inet_aton "socket.inet_aton") also accepts strings with less than three dots; see the Unix manual page *inet(3)* for details.
If the IPv4 address string passed to this function is invalid, [`OSError`](exceptions.xhtml#OSError "OSError") will be raised. Note that exactly what is valid depends on the underlying C implementation of `inet_aton()`.
[`inet_aton()`](#socket.inet_aton "socket.inet_aton") does not support IPv6, and [`inet_pton()`](#socket.inet_pton "socket.inet_pton") should be used instead for IPv4/v6 dual stack support.
`socket.``inet_ntoa`(*packed\_ip*)Convert a 32-bit packed IPv4 address (a [bytes-like object](../glossary.xhtml#term-bytes-like-object) four bytes in length) to its standard dotted-quad string representation (for example, '123.45.67.89'). This is useful when conversing with a program that uses the standard C library and needs objects of type `struct in_addr`, which is the C type for the 32-bit packed binary data this function takes as an argument.
If the byte sequence passed to this function is not exactly 4 bytes in length, [`OSError`](exceptions.xhtml#OSError "OSError") will be raised. [`inet_ntoa()`](#socket.inet_ntoa "socket.inet_ntoa") does not support IPv6, and [`inet_ntop()`](#socket.inet_ntop "socket.inet_ntop") should be used instead for IPv4/v6 dual stack support.
在 3.5 版更改: Writable [bytes-like object](../glossary.xhtml#term-bytes-like-object) is now accepted.
`socket.``inet_pton`(*address\_family*, *ip\_string*)Convert an IP address from its family-specific string format to a packed, binary format. [`inet_pton()`](#socket.inet_pton "socket.inet_pton") is useful when a library or network protocol calls for an object of type `struct in_addr` (similar to [`inet_aton()`](#socket.inet_aton "socket.inet_aton")) or `struct in6_addr`.
Supported values for *address\_family* are currently [`AF_INET`](#socket.AF_INET "socket.AF_INET") and [`AF_INET6`](#socket.AF_INET6 "socket.AF_INET6"). If the IP address string *ip\_string* is invalid, [`OSError`](exceptions.xhtml#OSError "OSError") will be raised. Note that exactly what is valid depends on both the value of *address\_family* and the underlying implementation of `inet_pton()`.
[Availability](intro.xhtml#availability): Unix (maybe not all platforms), Windows.
在 3.4 版更改: Windows support added
`socket.``inet_ntop`(*address\_family*, *packed\_ip*)Convert a packed IP address (a [bytes-like object](../glossary.xhtml#term-bytes-like-object) of some number of bytes) to its standard, family-specific string representation (for example, `'7.10.0.5'` or `'5aef:2b::8'`). [`inet_ntop()`](#socket.inet_ntop "socket.inet_ntop") is useful when a library or network protocol returns an object of type `struct in_addr` (similar to [`inet_ntoa()`](#socket.inet_ntoa "socket.inet_ntoa")) or `struct in6_addr`.
Supported values for *address\_family* are currently [`AF_INET`](#socket.AF_INET "socket.AF_INET") and [`AF_INET6`](#socket.AF_INET6 "socket.AF_INET6"). If the bytes object *packed\_ip* is not the correct length for the specified address family, [`ValueError`](exceptions.xhtml#ValueError "ValueError") will be raised. [`OSError`](exceptions.xhtml#OSError "OSError") is raised for errors from the call to [`inet_ntop()`](#socket.inet_ntop "socket.inet_ntop").
[Availability](intro.xhtml#availability): Unix (maybe not all platforms), Windows.
在 3.4 版更改: Windows support added
在 3.5 版更改: Writable [bytes-like object](../glossary.xhtml#term-bytes-like-object) is now accepted.
`socket.``CMSG_LEN`(*length*)Return the total length, without trailing padding, of an ancillary data item with associated data of the given *length*. This value can often be used as the buffer size for [`recvmsg()`](#socket.socket.recvmsg "socket.socket.recvmsg") to receive a single item of ancillary data, but [**RFC 3542**](https://tools.ietf.org/html/rfc3542.html) \[https://tools.ietf.org/html/rfc3542.html\] requires portable applications to use [`CMSG_SPACE()`](#socket.CMSG_SPACE "socket.CMSG_SPACE") and thus include space for padding, even when the item will be the last in the buffer. Raises [`OverflowError`](exceptions.xhtml#OverflowError "OverflowError") if *length* is outside the permissible range of values.
[Availability](intro.xhtml#availability): most Unix platforms, possibly others.
3\.3 新版功能.
`socket.``CMSG_SPACE`(*length*)Return the buffer size needed for [`recvmsg()`](#socket.socket.recvmsg "socket.socket.recvmsg") to receive an ancillary data item with associated data of the given *length*, along with any trailing padding. The buffer space needed to receive multiple items is the sum of the [`CMSG_SPACE()`](#socket.CMSG_SPACE "socket.CMSG_SPACE")values for their associated data lengths. Raises [`OverflowError`](exceptions.xhtml#OverflowError "OverflowError") if *length* is outside the permissible range of values.
Note that some systems might support ancillary data without providing this function. Also note that setting the buffer size using the results of this function may not precisely limit the amount of ancillary data that can be received, since additional data may be able to fit into the padding area.
[Availability](intro.xhtml#availability): most Unix platforms, possibly others.
3\.3 新版功能.
`socket.``getdefaulttimeout`()Return the default timeout in seconds (float) for new socket objects. A value of `None` indicates that new socket objects have no timeout. When the socket module is first imported, the default is `None`.
`socket.``setdefaulttimeout`(*timeout*)Set the default timeout in seconds (float) for new socket objects. When the socket module is first imported, the default is `None`. See [`settimeout()`](#socket.socket.settimeout "socket.socket.settimeout") for possible values and their respective meanings.
`socket.``sethostname`(*name*)Set the machine's hostname to *name*. This will raise an [`OSError`](exceptions.xhtml#OSError "OSError") if you don't have enough rights.
[Availability](intro.xhtml#availability): Unix.
3\.3 新版功能.
`socket.``if_nameindex`()Return a list of network interface information (index int, name string) tuples. [`OSError`](exceptions.xhtml#OSError "OSError") if the system call fails.
[Availability](intro.xhtml#availability): Unix.
3\.3 新版功能.
`socket.``if_nametoindex`(*if\_name*)Return a network interface index number corresponding to an interface name. [`OSError`](exceptions.xhtml#OSError "OSError") if no interface with the given name exists.
[Availability](intro.xhtml#availability): Unix.
3\.3 新版功能.
`socket.``if_indextoname`(*if\_index*)Return a network interface name corresponding to an interface index number. [`OSError`](exceptions.xhtml#OSError "OSError") if no interface with the given index exists.
[Availability](intro.xhtml#availability): Unix.
3\.3 新版功能.
## Socket Objects
Socket objects have the following methods. Except for [`makefile()`](#socket.socket.makefile "socket.socket.makefile"), these correspond to Unix system calls applicable to sockets.
在 3.2 版更改: Support for the [context manager](../glossary.xhtml#term-context-manager) protocol was added. Exiting the context manager is equivalent to calling [`close()`](#socket.close "socket.close").
`socket.``accept`()Accept a connection. The socket must be bound to an address and listening for connections. The return value is a pair `(conn, address)` where *conn* is a *new* socket object usable to send and receive data on the connection, and *address* is the address bound to the socket on the other end of the connection.
The newly created socket is [non-inheritable](os.xhtml#fd-inheritance).
在 3.4 版更改: The socket is now non-inheritable.
在 3.5 版更改: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an [`InterruptedError`](exceptions.xhtml#InterruptedError "InterruptedError") exception (see [**PEP 475**](https://www.python.org/dev/peps/pep-0475) \[https://www.python.org/dev/peps/pep-0475\] for the rationale).
`socket.``bind`(*address*)Bind the socket to *address*. The socket must not already be bound. (The format of *address* depends on the address family --- see above.)
`socket.``close`()Mark the socket closed. The underlying system resource (e.g. a file descriptor) is also closed when all file objects from [`makefile()`](#socket.socket.makefile "socket.socket.makefile")are closed. Once that happens, all future operations on the socket object will fail. The remote end will receive no more data (after queued data is flushed).
Sockets are automatically closed when they are garbage-collected, but it is recommended to [`close()`](#socket.close "socket.close") them explicitly, or to use a [`with`](../reference/compound_stmts.xhtml#with) statement around them.
在 3.6 版更改: [`OSError`](exceptions.xhtml#OSError "OSError") is now raised if an error occurs when the underlying `close()` call is made.
注解
[`close()`](#socket.close "socket.close") releases the resource associated with a connection but does not necessarily close the connection immediately. If you want to close the connection in a timely fashion, call [`shutdown()`](#socket.socket.shutdown "socket.socket.shutdown")before [`close()`](#socket.close "socket.close").
`socket.``connect`(*address*)Connect to a remote socket at *address*. (The format of *address* depends on the address family --- see above.)
If the connection is interrupted by a signal, the method waits until the connection completes, or raise a [`socket.timeout`](#socket.timeout "socket.timeout") on timeout, if the signal handler doesn't raise an exception and the socket is blocking or has a timeout. For non-blocking sockets, the method raises an [`InterruptedError`](exceptions.xhtml#InterruptedError "InterruptedError") exception if the connection is interrupted by a signal (or the exception raised by the signal handler).
在 3.5 版更改: The method now waits until the connection completes instead of raising an [`InterruptedError`](exceptions.xhtml#InterruptedError "InterruptedError") exception if the connection is interrupted by a signal, the signal handler doesn't raise an exception and the socket is blocking or has a timeout (see the [**PEP 475**](https://www.python.org/dev/peps/pep-0475) \[https://www.python.org/dev/peps/pep-0475\] for the rationale).
`socket.``connect_ex`(*address*)Like `connect(address)`, but return an error indicator instead of raising an exception for errors returned by the C-level `connect()` call (other problems, such as "host not found," can still raise exceptions). The error indicator is `0` if the operation succeeded, otherwise the value of the `errno` variable. This is useful to support, for example, asynchronous connects.
`socket.``detach`()Put the socket object into closed state without actually closing the underlying file descriptor. The file descriptor is returned, and can be reused for other purposes.
3\.2 新版功能.
`socket.``dup`()Duplicate the socket.
The newly created socket is [non-inheritable](os.xhtml#fd-inheritance).
在 3.4 版更改: The socket is now non-inheritable.
`socket.``fileno`()Return the socket's file descriptor (a small integer), or -1 on failure. This is useful with [`select.select()`](select.xhtml#select.select "select.select").
Under Windows the small integer returned by this method cannot be used where a file descriptor can be used (such as [`os.fdopen()`](os.xhtml#os.fdopen "os.fdopen")). Unix does not have this limitation.
`socket.``get_inheritable`()Get the [inheritable flag](os.xhtml#fd-inheritance) of the socket's file descriptor or socket's handle: `True` if the socket can be inherited in child processes, `False` if it cannot.
3\.4 新版功能.
`socket.``getpeername`()Return the remote address to which the socket is connected. This is useful to find out the port number of a remote IPv4/v6 socket, for instance. (The format of the address returned depends on the address family --- see above.) On some systems this function is not supported.
`socket.``getsockname`()Return the socket's own address. This is useful to find out the port number of an IPv4/v6 socket, for instance. (The format of the address returned depends on the address family --- see above.)
`socket.``getsockopt`(*level*, *optname*\[, *buflen*\])Return the value of the given socket option (see the Unix man page *getsockopt(2)*). The needed symbolic constants (`SO_*` etc.) are defined in this module. If *buflen* is absent, an integer option is assumed and its integer value is returned by the function. If *buflen* is present, it specifies the maximum length of the buffer used to receive the option in, and this buffer is returned as a bytes object. It is up to the caller to decode the contents of the buffer (see the optional built-in module [`struct`](struct.xhtml#module-struct "struct: Interpret bytes as packed binary data.") for a way to decode C structures encoded as byte strings).
`socket.``getblocking`()Return `True` if socket is in blocking mode, `False` if in non-blocking.
This is equivalent to checking `socket.gettimeout() == 0`.
3\.7 新版功能.
`socket.``gettimeout`()Return the timeout in seconds (float) associated with socket operations, or `None` if no timeout is set. This reflects the last call to [`setblocking()`](#socket.socket.setblocking "socket.socket.setblocking") or [`settimeout()`](#socket.socket.settimeout "socket.socket.settimeout").
`socket.``ioctl`(*control*, *option*)PlatformWindows
The [`ioctl()`](#socket.socket.ioctl "socket.socket.ioctl") method is a limited interface to the WSAIoctl system interface. Please refer to the [Win32 documentation](https://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx) \[https://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx\] for more information.
On other platforms, the generic [`fcntl.fcntl()`](fcntl.xhtml#fcntl.fcntl "fcntl.fcntl") and [`fcntl.ioctl()`](fcntl.xhtml#fcntl.ioctl "fcntl.ioctl")functions may be used; they accept a socket object as their first argument.
Currently only the following control codes are supported: `SIO_RCVALL`, `SIO_KEEPALIVE_VALS`, and `SIO_LOOPBACK_FAST_PATH`.
在 3.6 版更改: `SIO_LOOPBACK_FAST_PATH` was added.
`socket.``listen`(\[*backlog*\])Enable a server to accept connections. If *backlog* is specified, it must be at least 0 (if it is lower, it is set to 0); it specifies the number of unaccepted connections that the system will allow before refusing new connections. If not specified, a default reasonable value is chosen.
在 3.5 版更改: The *backlog* parameter is now optional.
`socket.``makefile`(*mode='r'*, *buffering=None*, *\**, *encoding=None*, *errors=None*, *newline=None*)Return a [file object](../glossary.xhtml#term-file-object) associated with the socket. The exact returned type depends on the arguments given to [`makefile()`](#socket.socket.makefile "socket.socket.makefile"). These arguments are interpreted the same way as by the built-in [`open()`](functions.xhtml#open "open") function, except the only supported *mode* values are `'r'` (default), `'w'` and `'b'`.
The socket must be in blocking mode; it can have a timeout, but the file object's internal buffer may end up in an inconsistent state if a timeout occurs.
Closing the file object returned by [`makefile()`](#socket.socket.makefile "socket.socket.makefile") won't close the original socket unless all other file objects have been closed and [`socket.close()`](#socket.close "socket.close") has been called on the socket object.
注解
On Windows, the file-like object created by [`makefile()`](#socket.socket.makefile "socket.socket.makefile") cannot be used where a file object with a file descriptor is expected, such as the stream arguments of [`subprocess.Popen()`](subprocess.xhtml#subprocess.Popen "subprocess.Popen").
`socket.``recv`(*bufsize*\[, *flags*\])Receive data from the socket. The return value is a bytes object representing the data received. The maximum amount of data to be received at once is specified by *bufsize*. See the Unix manual page *recv(2)* for the meaning of the optional argument *flags*; it defaults to zero.
注解
For best match with hardware and network realities, the value of *bufsize*should be a relatively small power of 2, for example, 4096.
在 3.5 版更改: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an [`InterruptedError`](exceptions.xhtml#InterruptedError "InterruptedError") exception (see [**PEP 475**](https://www.python.org/dev/peps/pep-0475) \[https://www.python.org/dev/peps/pep-0475\] for the rationale).
`socket.``recvfrom`(*bufsize*\[, *flags*\])Receive data from the socket. The return value is a pair `(bytes, address)`where *bytes* is a bytes object representing the data received and *address* is the address of the socket sending the data. See the Unix manual page *recv(2)* for the meaning of the optional argument *flags*; it defaults to zero. (The format of *address* depends on the address family --- see above.)
在 3.5 版更改: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an [`InterruptedError`](exceptions.xhtml#InterruptedError "InterruptedError") exception (see [**PEP 475**](https://www.python.org/dev/peps/pep-0475) \[https://www.python.org/dev/peps/pep-0475\] for the rationale).
在 3.7 版更改: For multicast IPv6 address, first item of *address* does not contain `%scope` part anymore. In order to get full IPv6 address use [`getnameinfo()`](#socket.getnameinfo "socket.getnameinfo").
`socket.``recvmsg`(*bufsize*\[, *ancbufsize*\[, *flags*\]\])Receive normal data (up to *bufsize* bytes) and ancillary data from the socket. The *ancbufsize* argument sets the size in bytes of the internal buffer used to receive the ancillary data; it defaults to 0, meaning that no ancillary data will be received. Appropriate buffer sizes for ancillary data can be calculated using [`CMSG_SPACE()`](#socket.CMSG_SPACE "socket.CMSG_SPACE") or [`CMSG_LEN()`](#socket.CMSG_LEN "socket.CMSG_LEN"), and items which do not fit into the buffer might be truncated or discarded. The *flags*argument defaults to 0 and has the same meaning as for [`recv()`](#socket.socket.recv "socket.socket.recv").
The return value is a 4-tuple:
```
(data, ancdata, msg_flags,
address)
```
. The *data* item is a [`bytes`](stdtypes.xhtml#bytes "bytes") object holding the non-ancillary data received. The *ancdata* item is a list of zero or more tuples `(cmsg_level, cmsg_type, cmsg_data)` representing the ancillary data (control messages) received: *cmsg\_level* and *cmsg\_type* are integers specifying the protocol level and protocol-specific type respectively, and *cmsg\_data* is a [`bytes`](stdtypes.xhtml#bytes "bytes") object holding the associated data. The *msg\_flags*item is the bitwise OR of various flags indicating conditions on the received message; see your system documentation for details. If the receiving socket is unconnected, *address* is the address of the sending socket, if available; otherwise, its value is unspecified.
On some systems, [`sendmsg()`](#socket.socket.sendmsg "socket.socket.sendmsg") and [`recvmsg()`](#socket.socket.recvmsg "socket.socket.recvmsg") can be used to pass file descriptors between processes over an [`AF_UNIX`](#socket.AF_UNIX "socket.AF_UNIX")socket. When this facility is used (it is often restricted to [`SOCK_STREAM`](#socket.SOCK_STREAM "socket.SOCK_STREAM") sockets), [`recvmsg()`](#socket.socket.recvmsg "socket.socket.recvmsg") will return, in its ancillary data, items of the form
```
(socket.SOL_SOCKET,
socket.SCM_RIGHTS, fds)
```
, where *fds* is a [`bytes`](stdtypes.xhtml#bytes "bytes") object representing the new file descriptors as a binary array of the native C `int` type. If [`recvmsg()`](#socket.socket.recvmsg "socket.socket.recvmsg") raises an exception after the system call returns, it will first attempt to close any file descriptors received via this mechanism.
Some systems do not indicate the truncated length of ancillary data items which have been only partially received. If an item appears to extend beyond the end of the buffer, [`recvmsg()`](#socket.socket.recvmsg "socket.socket.recvmsg") will issue a [`RuntimeWarning`](exceptions.xhtml#RuntimeWarning "RuntimeWarning"), and will return the part of it which is inside the buffer provided it has not been truncated before the start of its associated data.
On systems which support the `SCM_RIGHTS` mechanism, the following function will receive up to *maxfds* file descriptors, returning the message data and a list containing the descriptors (while ignoring unexpected conditions such as unrelated control messages being received). See also [`sendmsg()`](#socket.socket.sendmsg "socket.socket.sendmsg").
```
import socket, array
def recv_fds(sock, msglen, maxfds):
fds = array.array("i") # Array of ints
msg, ancdata, flags, addr = sock.recvmsg(msglen, socket.CMSG_LEN(maxfds * fds.itemsize))
for cmsg_level, cmsg_type, cmsg_data in ancdata:
if (cmsg_level == socket.SOL_SOCKET and cmsg_type == socket.SCM_RIGHTS):
# Append data, ignoring any truncated integers at the end.
fds.fromstring(cmsg_data[:len(cmsg_data) - (len(cmsg_data) % fds.itemsize)])
return msg, list(fds)
```
[Availability](intro.xhtml#availability): most Unix platforms, possibly others.
3\.3 新版功能.
在 3.5 版更改: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an [`InterruptedError`](exceptions.xhtml#InterruptedError "InterruptedError") exception (see [**PEP 475**](https://www.python.org/dev/peps/pep-0475) \[https://www.python.org/dev/peps/pep-0475\] for the rationale).
`socket.``recvmsg_into`(*buffers*\[, *ancbufsize*\[, *flags*\]\])Receive normal data and ancillary data from the socket, behaving as [`recvmsg()`](#socket.socket.recvmsg "socket.socket.recvmsg") would, but scatter the non-ancillary data into a series of buffers instead of returning a new bytes object. The *buffers* argument must be an iterable of objects that export writable buffers (e.g. [`bytearray`](stdtypes.xhtml#bytearray "bytearray") objects); these will be filled with successive chunks of the non-ancillary data until it has all been written or there are no more buffers. The operating system may set a limit ([`sysconf()`](os.xhtml#os.sysconf "os.sysconf") value `SC_IOV_MAX`) on the number of buffers that can be used. The *ancbufsize* and *flags* arguments have the same meaning as for [`recvmsg()`](#socket.socket.recvmsg "socket.socket.recvmsg").
The return value is a 4-tuple:
```
(nbytes, ancdata, msg_flags,
address)
```
, where *nbytes* is the total number of bytes of non-ancillary data written into the buffers, and *ancdata*, *msg\_flags* and *address* are the same as for [`recvmsg()`](#socket.socket.recvmsg "socket.socket.recvmsg").
示例:
```
>>> import socket
>>> s1, s2 = socket.socketpair()
>>> b1 = bytearray(b'----')
>>> b2 = bytearray(b'0123456789')
>>> b3 = bytearray(b'--------------')
>>> s1.send(b'Mary had a little lamb')
22
>>> s2.recvmsg_into([b1, memoryview(b2)[2:9], b3])
(22, [], 0, None)
>>> [b1, b2, b3]
[bytearray(b'Mary'), bytearray(b'01 had a 9'), bytearray(b'little lamb---')]
```
[Availability](intro.xhtml#availability): most Unix platforms, possibly others.
3\.3 新版功能.
`socket.``recvfrom_into`(*buffer*\[, *nbytes*\[, *flags*\]\])Receive data from the socket, writing it into *buffer* instead of creating a new bytestring. The return value is a pair `(nbytes, address)` where *nbytes* is the number of bytes received and *address* is the address of the socket sending the data. See the Unix manual page *recv(2)* for the meaning of the optional argument *flags*; it defaults to zero. (The format of *address*depends on the address family --- see above.)
`socket.``recv_into`(*buffer*\[, *nbytes*\[, *flags*\]\])Receive up to *nbytes* bytes from the socket, storing the data into a buffer rather than creating a new bytestring. If *nbytes* is not specified (or 0), receive up to the size available in the given buffer. Returns the number of bytes received. See the Unix manual page *recv(2)* for the meaning of the optional argument *flags*; it defaults to zero.
`socket.``send`(*bytes*\[, *flags*\])Send data to the socket. The socket must be connected to a remote socket. The optional *flags* argument has the same meaning as for [`recv()`](#socket.socket.recv "socket.socket.recv") above. Returns the number of bytes sent. Applications are responsible for checking that all data has been sent; if only some of the data was transmitted, the application needs to attempt delivery of the remaining data. For further information on this topic, consult the [套接字編程指南](../howto/sockets.xhtml#socket-howto).
在 3.5 版更改: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an [`InterruptedError`](exceptions.xhtml#InterruptedError "InterruptedError") exception (see [**PEP 475**](https://www.python.org/dev/peps/pep-0475) \[https://www.python.org/dev/peps/pep-0475\] for the rationale).
`socket.``sendall`(*bytes*\[, *flags*\])Send data to the socket. The socket must be connected to a remote socket. The optional *flags* argument has the same meaning as for [`recv()`](#socket.socket.recv "socket.socket.recv") above. Unlike [`send()`](#socket.socket.send "socket.socket.send"), this method continues to send data from *bytes* until either all data has been sent or an error occurs. `None` is returned on success. On error, an exception is raised, and there is no way to determine how much data, if any, was successfully sent.
在 3.5 版更改: The socket timeout is no more reset each time data is sent successfully. The socket timeout is now the maximum total duration to send all data.
在 3.5 版更改: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an [`InterruptedError`](exceptions.xhtml#InterruptedError "InterruptedError") exception (see [**PEP 475**](https://www.python.org/dev/peps/pep-0475) \[https://www.python.org/dev/peps/pep-0475\] for the rationale).
`socket.``sendto`(*bytes*, *address*)`socket.``sendto`(*bytes*, *flags*, *address*)Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is specified by *address*. The optional *flags*argument has the same meaning as for [`recv()`](#socket.socket.recv "socket.socket.recv") above. Return the number of bytes sent. (The format of *address* depends on the address family --- see above.)
在 3.5 版更改: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an [`InterruptedError`](exceptions.xhtml#InterruptedError "InterruptedError") exception (see [**PEP 475**](https://www.python.org/dev/peps/pep-0475) \[https://www.python.org/dev/peps/pep-0475\] for the rationale).
`socket.``sendmsg`(*buffers*\[, *ancdata*\[, *flags*\[, *address*\]\]\])Send normal and ancillary data to the socket, gathering the non-ancillary data from a series of buffers and concatenating it into a single message. The *buffers* argument specifies the non-ancillary data as an iterable of [bytes-like objects](../glossary.xhtml#term-bytes-like-object)(e.g. [`bytes`](stdtypes.xhtml#bytes "bytes") objects); the operating system may set a limit ([`sysconf()`](os.xhtml#os.sysconf "os.sysconf") value `SC_IOV_MAX`) on the number of buffers that can be used. The *ancdata* argument specifies the ancillary data (control messages) as an iterable of zero or more tuples `(cmsg_level, cmsg_type, cmsg_data)`, where *cmsg\_level* and *cmsg\_type* are integers specifying the protocol level and protocol-specific type respectively, and *cmsg\_data* is a bytes-like object holding the associated data. Note that some systems (in particular, systems without [`CMSG_SPACE()`](#socket.CMSG_SPACE "socket.CMSG_SPACE")) might support sending only one control message per call. The *flags* argument defaults to 0 and has the same meaning as for [`send()`](#socket.socket.send "socket.socket.send"). If *address* is supplied and not `None`, it sets a destination address for the message. The return value is the number of bytes of non-ancillary data sent.
The following function sends the list of file descriptors *fds*over an [`AF_UNIX`](#socket.AF_UNIX "socket.AF_UNIX") socket, on systems which support the `SCM_RIGHTS` mechanism. See also [`recvmsg()`](#socket.socket.recvmsg "socket.socket.recvmsg").
```
import socket, array
def send_fds(sock, msg, fds):
return sock.sendmsg([msg], [(socket.SOL_SOCKET, socket.SCM_RIGHTS, array.array("i", fds))])
```
[Availability](intro.xhtml#availability): most Unix platforms, possibly others.
3\.3 新版功能.
在 3.5 版更改: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an [`InterruptedError`](exceptions.xhtml#InterruptedError "InterruptedError") exception (see [**PEP 475**](https://www.python.org/dev/peps/pep-0475) \[https://www.python.org/dev/peps/pep-0475\] for the rationale).
`socket.``sendmsg_afalg`(\[*msg*, \]*\**, *op*\[, *iv*\[, *assoclen*\[, *flags*\]\]\])Specialized version of [`sendmsg()`](#socket.socket.sendmsg "socket.socket.sendmsg") for [`AF_ALG`](#socket.AF_ALG "socket.AF_ALG") socket. Set mode, IV, AEAD associated data length and flags for [`AF_ALG`](#socket.AF_ALG "socket.AF_ALG") socket.
[Availability](intro.xhtml#availability): Linux >= 2.6.38.
3\.6 新版功能.
`socket.``sendfile`(*file*, *offset=0*, *count=None*)Send a file until EOF is reached by using high-performance [`os.sendfile`](os.xhtml#os.sendfile "os.sendfile") and return the total number of bytes which were sent. *file* must be a regular file object opened in binary mode. If [`os.sendfile`](os.xhtml#os.sendfile "os.sendfile") is not available (e.g. Windows) or *file* is not a regular file [`send()`](#socket.socket.send "socket.socket.send") will be used instead. *offset* tells from where to start reading the file. If specified, *count* is the total number of bytes to transmit as opposed to sending the file until EOF is reached. File position is updated on return or also in case of error in which case [`file.tell()`](io.xhtml#io.IOBase.tell "io.IOBase.tell") can be used to figure out the number of bytes which were sent. The socket must be of [`SOCK_STREAM`](#socket.SOCK_STREAM "socket.SOCK_STREAM") type. Non-blocking sockets are not supported.
3\.5 新版功能.
`socket.``set_inheritable`(*inheritable*)Set the [inheritable flag](os.xhtml#fd-inheritance) of the socket's file descriptor or socket's handle.
3\.4 新版功能.
`socket.``setblocking`(*flag*)Set blocking or non-blocking mode of the socket: if *flag* is false, the socket is set to non-blocking, else to blocking mode.
This method is a shorthand for certain [`settimeout()`](#socket.socket.settimeout "socket.socket.settimeout") calls:
- `sock.setblocking(True)` is equivalent to `sock.settimeout(None)`
- `sock.setblocking(False)` is equivalent to `sock.settimeout(0.0)`
在 3.7 版更改: The method no longer applies [`SOCK_NONBLOCK`](#socket.SOCK_NONBLOCK "socket.SOCK_NONBLOCK") flag on [`socket.type`](#socket.socket.type "socket.socket.type").
`socket.``settimeout`(*value*)Set a timeout on blocking socket operations. The *value* argument can be a nonnegative floating point number expressing seconds, or `None`. If a non-zero value is given, subsequent socket operations will raise a [`timeout`](#socket.timeout "socket.timeout") exception if the timeout period *value* has elapsed before the operation has completed. If zero is given, the socket is put in non-blocking mode. If `None` is given, the socket is put in blocking mode.
For further information, please consult the [notes on socket timeouts](#socket-timeouts).
在 3.7 版更改: The method no longer toggles [`SOCK_NONBLOCK`](#socket.SOCK_NONBLOCK "socket.SOCK_NONBLOCK") flag on [`socket.type`](#socket.socket.type "socket.socket.type").
`socket.``setsockopt`(*level*, *optname*, *value: int*)`socket.``setsockopt`(*level*, *optname*, *value: buffer*)`socket.``setsockopt`(*level*, *optname*, *None*, *optlen: int*)Set the value of the given socket option (see the Unix manual page *setsockopt(2)*). The needed symbolic constants are defined in the [`socket`](#module-socket "socket: Low-level networking interface.") module (`SO_*` etc.). The value can be an integer, `None` or a [bytes-like object](../glossary.xhtml#term-bytes-like-object) representing a buffer. In the later case it is up to the caller to ensure that the bytestring contains the proper bits (see the optional built-in module [`struct`](struct.xhtml#module-struct "struct: Interpret bytes as packed binary data.") for a way to encode C structures as bytestrings). When value is set to `None`, optlen argument is required. It's equivalent to call setsockopt C function with optval=NULL and optlen=optlen.
在 3.5 版更改: Writable [bytes-like object](../glossary.xhtml#term-bytes-like-object) is now accepted.
在 3.6 版更改: setsockopt(level, optname, None, optlen: int) form added.
`socket.``shutdown`(*how*)Shut down one or both halves of the connection. If *how* is `SHUT_RD`, further receives are disallowed. If *how* is `SHUT_WR`, further sends are disallowed. If *how* is `SHUT_RDWR`, further sends and receives are disallowed.
`socket.``share`(*process\_id*)Duplicate a socket and prepare it for sharing with a target process. The target process must be provided with *process\_id*. The resulting bytes object can then be passed to the target process using some form of interprocess communication and the socket can be recreated there using [`fromshare()`](#socket.fromshare "socket.fromshare"). Once this method has been called, it is safe to close the socket since the operating system has already duplicated it for the target process.
[可用性](intro.xhtml#availability): Windows。
3\.3 新版功能.
Note that there are no methods `read()` or `write()`; use [`recv()`](#socket.socket.recv "socket.socket.recv") and [`send()`](#socket.socket.send "socket.socket.send") without *flags* argument instead.
Socket objects also have these (read-only) attributes that correspond to the values given to the [`socket`](#socket.socket "socket.socket") constructor.
`socket.``family`The socket family.
`socket.``type`The socket type.
`socket.``proto`The socket protocol.
## Notes on socket timeouts
A socket object can be in one of three modes: blocking, non-blocking, or timeout. Sockets are by default always created in blocking mode, but this can be changed by calling [`setdefaulttimeout()`](#socket.setdefaulttimeout "socket.setdefaulttimeout").
- In *blocking mode*, operations block until complete or the system returns an error (such as connection timed out).
- In *non-blocking mode*, operations fail (with an error that is unfortunately system-dependent) if they cannot be completed immediately: functions from the [`select`](select.xhtml#module-select "select: Wait for I/O completion on multiple streams.") can be used to know when and whether a socket is available for reading or writing.
- In *timeout mode*, operations fail if they cannot be completed within the timeout specified for the socket (they raise a [`timeout`](#socket.timeout "socket.timeout") exception) or if the system returns an error.
注解
At the operating system level, sockets in *timeout mode* are internally set in non-blocking mode. Also, the blocking and timeout modes are shared between file descriptors and socket objects that refer to the same network endpoint. This implementation detail can have visible consequences if e.g. you decide to use the [`fileno()`](#socket.socket.fileno "socket.socket.fileno") of a socket.
### Timeouts and the `connect` method
The [`connect()`](#socket.socket.connect "socket.socket.connect") operation is also subject to the timeout setting, and in general it is recommended to call [`settimeout()`](#socket.socket.settimeout "socket.socket.settimeout")before calling [`connect()`](#socket.socket.connect "socket.socket.connect") or pass a timeout parameter to [`create_connection()`](#socket.create_connection "socket.create_connection"). However, the system network stack may also return a connection timeout error of its own regardless of any Python socket timeout setting.
### Timeouts and the `accept` method
If [`getdefaulttimeout()`](#socket.getdefaulttimeout "socket.getdefaulttimeout") is not [`None`](constants.xhtml#None "None"), sockets returned by the [`accept()`](#socket.socket.accept "socket.socket.accept") method inherit that timeout. Otherwise, the behaviour depends on settings of the listening socket:
- if the listening socket is in *blocking mode* or in *timeout mode*, the socket returned by [`accept()`](#socket.socket.accept "socket.socket.accept") is in *blocking mode*;
- if the listening socket is in *non-blocking mode*, whether the socket returned by [`accept()`](#socket.socket.accept "socket.socket.accept") is in blocking or non-blocking mode is operating system-dependent. If you want to ensure cross-platform behaviour, it is recommended you manually override this setting.
## 示例
Here are four minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives back (servicing only one client), and a client using it. Note that a server must perform the sequence [`socket()`](#socket.socket "socket.socket"), [`bind()`](#socket.socket.bind "socket.socket.bind"), [`listen()`](#socket.socket.listen "socket.socket.listen"), [`accept()`](#socket.socket.accept "socket.socket.accept") (possibly repeating the [`accept()`](#socket.socket.accept "socket.socket.accept") to service more than one client), while a client only needs the sequence [`socket()`](#socket.socket "socket.socket"), [`connect()`](#socket.socket.connect "socket.socket.connect"). Also note that the server does not [`sendall()`](#socket.socket.sendall "socket.socket.sendall")/[`recv()`](#socket.socket.recv "socket.socket.recv") on the socket it is listening on but on the new socket returned by [`accept()`](#socket.socket.accept "socket.socket.accept").
The first two examples support IPv4 only.
```
# Echo server program
import socket
HOST = '' # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
with conn:
print('Connected by', addr)
while True:
data = conn.recv(1024)
if not data: break
conn.sendall(data)
```
```
# Echo client program
import socket
HOST = 'daring.cwi.nl' # The remote host
PORT = 50007 # The same port as used by the server
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.connect((HOST, PORT))
s.sendall(b'Hello, world')
data = s.recv(1024)
print('Received', repr(data))
```
The next two examples are identical to the above two, but support both IPv4 and IPv6. The server side will listen to the first address family available (it should listen to both instead). On most of IPv6-ready systems, IPv6 will take precedence and the server may not accept IPv4 traffic. The client side will try to connect to the all addresses returned as a result of the name resolution, and sends traffic to the first one connected successfully.
```
# Echo server program
import socket
import sys
HOST = None # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC,
socket.SOCK_STREAM, 0, socket.AI_PASSIVE):
af, socktype, proto, canonname, sa = res
try:
s = socket.socket(af, socktype, proto)
except OSError as msg:
s = None
continue
try:
s.bind(sa)
s.listen(1)
except OSError as msg:
s.close()
s = None
continue
break
if s is None:
print('could not open socket')
sys.exit(1)
conn, addr = s.accept()
with conn:
print('Connected by', addr)
while True:
data = conn.recv(1024)
if not data: break
conn.send(data)
```
```
# Echo client program
import socket
import sys
HOST = 'daring.cwi.nl' # The remote host
PORT = 50007 # The same port as used by the server
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM):
af, socktype, proto, canonname, sa = res
try:
s = socket.socket(af, socktype, proto)
except OSError as msg:
s = None
continue
try:
s.connect(sa)
except OSError as msg:
s.close()
s = None
continue
break
if s is None:
print('could not open socket')
sys.exit(1)
with s:
s.sendall(b'Hello, world')
data = s.recv(1024)
print('Received', repr(data))
```
The next example shows how to write a very simple network sniffer with raw sockets on Windows. The example requires administrator privileges to modify the interface:
```
import socket
# the public network interface
HOST = socket.gethostbyname(socket.gethostname())
# create a raw socket and bind it to the public interface
s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP)
s.bind((HOST, 0))
# Include IP headers
s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)
# receive all packages
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)
# receive a package
print(s.recvfrom(65565))
# disabled promiscuous mode
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)
```
The next example shows how to use the socket interface to communicate to a CAN network using the raw socket protocol. To use CAN with the broadcast manager protocol instead, open a socket with:
```
socket.socket(socket.AF_CAN, socket.SOCK_DGRAM, socket.CAN_BCM)
```
After binding (`CAN_RAW`) or connecting ([`CAN_BCM`](#socket.CAN_BCM "socket.CAN_BCM")) the socket, you can use the [`socket.send()`](#socket.socket.send "socket.socket.send"), and the [`socket.recv()`](#socket.socket.recv "socket.socket.recv") operations (and their counterparts) on the socket object as usual.
This last example might require special privileges:
```
import socket
import struct
# CAN frame packing/unpacking (see 'struct can_frame' in <linux/can.h>)
can_frame_fmt = "=IB3x8s"
can_frame_size = struct.calcsize(can_frame_fmt)
def build_can_frame(can_id, data):
can_dlc = len(data)
data = data.ljust(8, b'\x00')
return struct.pack(can_frame_fmt, can_id, can_dlc, data)
def dissect_can_frame(frame):
can_id, can_dlc, data = struct.unpack(can_frame_fmt, frame)
return (can_id, can_dlc, data[:can_dlc])
# create a raw socket and bind it to the 'vcan0' interface
s = socket.socket(socket.AF_CAN, socket.SOCK_RAW, socket.CAN_RAW)
s.bind(('vcan0',))
while True:
cf, addr = s.recvfrom(can_frame_size)
print('Received: can_id=%x, can_dlc=%x, data=%s' % dissect_can_frame(cf))
try:
s.send(cf)
except OSError:
print('Error sending CAN frame')
try:
s.send(build_can_frame(0x01, b'\x01\x02\x03'))
except OSError:
print('Error sending CAN frame')
```
Running an example several times with too small delay between executions, could lead to this error:
```
OSError: [Errno 98] Address already in use
```
This is because the previous execution has left the socket in a `TIME_WAIT`state, and can't be immediately reused.
There is a [`socket`](#module-socket "socket: Low-level networking interface.") flag to set, in order to prevent this, `socket.SO_REUSEADDR`:
```
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((HOST, PORT))
```
the `SO_REUSEADDR` flag tells the kernel to reuse a local socket in `TIME_WAIT` state, without waiting for its natural timeout to expire.
參見
For an introduction to socket programming (in C), see the following papers:
- *An Introductory 4.3BSD Interprocess Communication Tutorial*, by Stuart Sechrest
- *An Advanced 4.3BSD Interprocess Communication Tutorial*, by Samuel J. Leffler et al,
both in the UNIX Programmer's Manual, Supplementary Documents 1 (sections PS1:7 and PS1:8). The platform-specific reference material for the various socket-related system calls are also a valuable source of information on the details of socket semantics. For Unix, refer to the manual pages; for Windows, see the WinSock (or Winsock 2) specification. For IPv6-ready APIs, readers may want to refer to [**RFC 3493**](https://tools.ietf.org/html/rfc3493.html) \[https://tools.ietf.org/html/rfc3493.html\] titled Basic Socket Interface Extensions for IPv6.
### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](ssl.xhtml "ssl --- TLS/SSL wrapper for socket objects") |
- [上一頁](asyncio-dev.xhtml "用 asyncio 開發") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 標準庫](index.xhtml) ?
- [網絡和進程間通信](ipc.xhtml) ?
- $('.inline-search').show(0); |
? [版權所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 軟件基金會是一個非盈利組織。 [請捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [發現了問題](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 創建。
- Python文檔內容
- Python 有什么新變化?
- Python 3.7 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- C API 的改變
- 構建的改變
- 性能優化
- 其他 CPython 實現的改變
- 已棄用的 Python 行為
- 已棄用的 Python 模塊、函數和方法
- 已棄用的 C API 函數和類型
- 平臺支持的移除
- API 與特性的移除
- 移除的模塊
- Windows 專屬的改變
- 移植到 Python 3.7
- Python 3.7.1 中的重要變化
- Python 3.7.2 中的重要變化
- Python 3.6 有什么新變化A
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 其他改進
- 棄用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要變化
- Python 3.6.4 中的重要變化
- Python 3.6.5 中的重要變化
- Python 3.6.7 中的重要變化
- Python 3.5 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- Other module-level changes
- 性能優化
- Build and C API Changes
- 棄用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 發布重點
- 新的特性
- 新增模塊
- 改進的模塊
- CPython Implementation Changes
- 棄用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 發布重點
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他語言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 棄用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 多線程
- 性能優化
- Unicode
- Codecs
- 文檔
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 性能優化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他語言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新變化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他語言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他語言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推導式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最終版
- Python 3.7.3 發布候選版 1
- Python 3.7.2 最終版
- Python 3.7.2 發布候選版 1
- Python 3.7.1 最終版
- Python 3.7.1 RC 2版本
- Python 3.7.1 發布候選版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 課前甜點
- 使用 Python 解釋器
- 調用解釋器
- 解釋器的運行環境
- Python 的非正式介紹
- Python 作為計算器使用
- 走向編程的第一步
- 其他流程控制工具
- if 語句
- for 語句
- range() 函數
- break 和 continue 語句,以及循環中的 else 子句
- pass 語句
- 定義函數
- 函數定義的更多形式
- 小插曲:編碼風格
- 數據結構
- 列表的更多特性
- del 語句
- 元組和序列
- 集合
- 字典
- 循環的技巧
- 深入條件控制
- 序列和其它類型的比較
- 模塊
- 有關模塊的更多信息
- 標準模塊
- dir() 函數
- 包
- 輸入輸出
- 更漂亮的輸出格式
- 讀寫文件
- 錯誤和異常
- 語法錯誤
- 異常
- 處理異常
- 拋出異常
- 用戶自定義異常
- 定義清理操作
- 預定義的清理操作
- 類
- 名稱和對象
- Python 作用域和命名空間
- 初探類
- 補充說明
- 繼承
- 私有變量
- 雜項說明
- 迭代器
- 生成器
- 生成器表達式
- 標準庫簡介
- 操作系統接口
- 文件通配符
- 命令行參數
- 錯誤輸出重定向和程序終止
- 字符串模式匹配
- 數學
- 互聯網訪問
- 日期和時間
- 數據壓縮
- 性能測量
- 質量控制
- 自帶電池
- 標準庫簡介 —— 第二部分
- 格式化輸出
- 模板
- 使用二進制數據記錄格式
- 多線程
- 日志
- 弱引用
- 用于操作列表的工具
- 十進制浮點運算
- 虛擬環境和包
- 概述
- 創建虛擬環境
- 使用pip管理包
- 接下來?
- 交互式編輯和編輯歷史
- Tab 補全和編輯歷史
- 默認交互式解釋器的替代品
- 浮點算術:爭議和限制
- 表示性錯誤
- 附錄
- 交互模式
- 安裝和使用 Python
- 命令行與環境
- 命令行
- 環境變量
- 在Unix平臺中使用Python
- 獲取最新版本的Python
- 構建Python
- 與Python相關的路徑和文件
- 雜項
- 編輯器和集成開發環境
- 在Windows上使用 Python
- 完整安裝程序
- Microsoft Store包
- nuget.org 安裝包
- 可嵌入的包
- 替代捆綁包
- 配置Python
- 適用于Windows的Python啟動器
- 查找模塊
- 附加模塊
- 在Windows上編譯Python
- 其他平臺
- 在蘋果系統上使用 Python
- 獲取和安裝 MacPython
- IDE
- 安裝額外的 Python 包
- Mac 上的圖形界面編程
- 在 Mac 上分發 Python 應用程序
- 其他資源
- Python 語言參考
- 概述
- 其他實現
- 標注
- 詞法分析
- 行結構
- 其他形符
- 標識符和關鍵字
- 字面值
- 運算符
- 分隔符
- 數據模型
- 對象、值與類型
- 標準類型層級結構
- 特殊方法名稱
- 協程
- 執行模型
- 程序的結構
- 命名與綁定
- 異常
- 導入系統
- importlib
- 包
- 搜索
- 加載
- 基于路徑的查找器
- 替換標準導入系統
- Package Relative Imports
- 有關 main 的特殊事項
- 開放問題項
- 參考文獻
- 表達式
- 算術轉換
- 原子
- 原型
- await 表達式
- 冪運算符
- 一元算術和位運算
- 二元算術運算符
- 移位運算
- 二元位運算
- 比較運算
- 布爾運算
- 條件表達式
- lambda 表達式
- 表達式列表
- 求值順序
- 運算符優先級
- 簡單語句
- 表達式語句
- 賦值語句
- assert 語句
- pass 語句
- del 語句
- return 語句
- yield 語句
- raise 語句
- break 語句
- continue 語句
- import 語句
- global 語句
- nonlocal 語句
- 復合語句
- if 語句
- while 語句
- for 語句
- try 語句
- with 語句
- 函數定義
- 類定義
- 協程
- 最高層級組件
- 完整的 Python 程序
- 文件輸入
- 交互式輸入
- 表達式輸入
- 完整的語法規范
- Python 標準庫
- 概述
- 可用性注釋
- 內置函數
- 內置常量
- 由 site 模塊添加的常量
- 內置類型
- 邏輯值檢測
- 布爾運算 — and, or, not
- 比較
- 數字類型 — int, float, complex
- 迭代器類型
- 序列類型 — list, tuple, range
- 文本序列類型 — str
- 二進制序列類型 — bytes, bytearray, memoryview
- 集合類型 — set, frozenset
- 映射類型 — dict
- 上下文管理器類型
- 其他內置類型
- 特殊屬性
- 內置異常
- 基類
- 具體異常
- 警告
- 異常層次結構
- 文本處理服務
- string — 常見的字符串操作
- re — 正則表達式操作
- 模塊 difflib 是一個計算差異的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 數據庫
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函數
- 二進制數據服務
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 數據類型
- datetime — 基礎日期/時間數據類型
- calendar — General calendar-related functions
- collections — 容器數據類型
- collections.abc — 容器的抽象基類
- heapq — 堆隊列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 淺層 (shallow) 和深層 (deep) 復制操作
- pprint — 數據美化輸出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 數字和數學模塊
- numbers — 數字的抽象基類
- math — 數學函數
- cmath — Mathematical functions for complex numbers
- decimal — 十進制定點和浮點運算
- fractions — 分數
- random — 生成偽隨機數
- statistics — Mathematical statistics functions
- 函數式編程模塊
- itertools — 為高效循環而創建迭代器的函數
- functools — 高階函數和可調用對象上的操作
- operator — 標準運算符替代函數
- 文件和目錄訪問
- pathlib — 面向對象的文件系統路徑
- os.path — 常見路徑操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路徑操作函數
- 數據持久化
- pickle —— Python 對象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 數據庫 DB-API 2.0 接口模塊
- 數據壓縮和存檔
- zlib — 與 gzip 兼容的壓縮
- gzip — 對 gzip 格式的支持
- bz2 — 對 bzip2 壓縮算法的支持
- lzma — 用 LZMA 算法壓縮
- zipfile — 在 ZIP 歸檔中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件讀寫
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服務
- hashlib — 安全哈希與消息摘要
- hmac — 基于密鑰的消息驗證
- secrets — Generate secure random numbers for managing secrets
- 通用操作系統服務
- os — 操作系統接口模塊
- io — 處理流的核心工具
- time — 時間的訪問和轉換
- argparse — 命令行選項、參數和子命令解析器
- getopt — C-style parser for command line options
- 模塊 logging — Python 的日志記錄工具
- logging.config — 日志記錄配置
- logging.handlers — Logging handlers
- getpass — 便攜式密碼輸入工具
- curses — 終端字符單元顯示的處理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函數庫
- 并發執行
- threading — 基于線程的并行
- multiprocessing — 基于進程的并行
- concurrent 包
- concurrent.futures — 啟動并行任務
- subprocess — 子進程管理
- sched — 事件調度器
- queue — 一個同步的隊列類
- _thread — 底層多線程 API
- _dummy_thread — _thread 的替代模塊
- dummy_threading — 可直接替代 threading 模塊。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 網絡和進程間通信
- asyncio — 異步 I/O
- socket — 底層網絡接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高級 I/O 復用庫
- asyncore — 異步socket處理器
- asynchat — 異步 socket 指令/響應 處理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互聯網數據處理
- email — 電子郵件與 MIME 處理包
- json — JSON 編碼和解碼器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 數據編碼
- binhex — 對binhex4文件進行編碼和解碼
- binascii — 二進制和 ASCII 碼互轉
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 結構化標記處理工具
- html — 超文本標記語言支持
- html.parser — 簡單的 HTML 和 XHTML 解析器
- html.entities — HTML 一般實體的定義
- XML處理模塊
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互聯網協議和支持
- webbrowser — 方便的Web瀏覽器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 處理模塊
- urllib.request — 用于打開 URL 的可擴展庫
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模塊
- http.client — HTTP協議客戶端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP協議客戶端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服務器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服務端與客戶端模塊
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒體服務
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 讀寫 Sun AU 文件
- wave — 讀寫WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推測圖像類型
- sndhdr — 推測聲音文件的類型
- ossaudiodev — Access to OSS-compatible audio devices
- 國際化
- gettext — 多語種國際化服務
- locale — 國際化服務
- 程序框架
- turtle — 海龜繪圖
- cmd — 支持面向行的命令解釋器
- shlex — Simple lexical analysis
- Tk圖形用戶界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滾動文字控件
- IDLE
- 其他圖形用戶界面(GUI)包
- 開發工具
- typing — 類型標注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 單元測試框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自動將 Python 2 代碼轉為 Python 3 代碼
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 調試和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 測量小代碼片段的執行時間
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 軟件打包和分發
- distutils — 構建和安裝 Python 模塊
- ensurepip — Bootstrapping the pip installer
- venv — 創建虛擬環境
- zipapp — Manage executable Python zip archives
- Python運行時服務
- sys — 系統相關的參數和函數
- sysconfig — Provide access to Python's configuration information
- builtins — 內建對象
- main — 頂層腳本環境
- warnings — Warning control
- dataclasses — 數據類
- contextlib — Utilities for with-statement contexts
- abc — 抽象基類
- atexit — 退出處理器
- traceback — Print or retrieve a stack traceback
- future — Future 語句定義
- gc — 垃圾回收器接口
- inspect — 檢查對象
- site — Site-specific configuration hook
- 自定義 Python 解釋器
- code — Interpreter base classes
- codeop — Compile Python code
- 導入模塊
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找腳本使用的模塊
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 語言服務
- parser — Access Python parse trees
- ast — 抽象語法樹
- symtable — Access to the compiler's symbol tables
- symbol — 與 Python 解析樹一起使用的常量
- token — 與Python解析樹一起使用的常量
- keyword — 檢驗Python關鍵字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊縮進檢測
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字節碼反匯編器
- pickletools — Tools for pickle developers
- 雜項服務
- formatter — Generic output formatting
- Windows系統相關模塊
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注冊表訪問
- winsound — Sound-playing interface for Windows
- Unix 專有服務
- posix — The most common POSIX system calls
- pwd — 用戶密碼數據庫
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 終端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 庫例程
- 被取代的模塊
- optparse — Parser for command line options
- imp — Access the import internals
- 未創建文檔的模塊
- 平臺特定模塊
- 擴展和嵌入 Python 解釋器
- 推薦的第三方工具
- 不使用第三方工具創建擴展
- 使用 C 或 C++ 擴展 Python
- 自定義擴展類型:教程
- 定義擴展類型:已分類主題
- 構建C/C++擴展
- 在Windows平臺編譯C和C++擴展
- 在更大的應用程序中嵌入 CPython 運行時
- Embedding Python in Another Application
- Python/C API 參考手冊
- 概述
- 代碼標準
- 包含文件
- 有用的宏
- 對象、類型和引用計數
- 異常
- 嵌入Python
- 調試構建
- 穩定的應用程序二進制接口
- The Very High Level Layer
- Reference Counting
- 異常處理
- Printing and clearing
- 拋出異常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 標準異常
- 標準警告類別
- 工具
- 操作系統實用程序
- 系統功能
- 過程控制
- 導入模塊
- Data marshalling support
- 語句解釋及變量編譯
- 字符串轉換與格式化
- 反射
- 編解碼器注冊與支持功能
- 抽象對象層
- Object Protocol
- 數字協議
- Sequence Protocol
- Mapping Protocol
- 迭代器協議
- 緩沖協議
- Old Buffer Protocol
- 具體的對象層
- 基本對象
- 數值對象
- 序列對象
- 容器對象
- 函數對象
- 其他對象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置變量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 內存管理
- 概述
- 原始內存接口
- Memory Interface
- 對象分配器
- 默認內存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 對象實現支持
- 在堆中分配對象
- Common Object Structures
- Type 對象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使對象類型支持循環垃圾回收
- API 和 ABI 版本管理
- 分發 Python 模塊
- 關鍵術語
- 開源許可與協作
- 安裝工具
- 閱讀指南
- 我該如何...?
- ...為我的項目選擇一個名字?
- ...創建和分發二進制擴展?
- 安裝 Python 模塊
- 關鍵術語
- 基本使用
- 我應如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安裝 pip ?
- ... 只為當前用戶安裝軟件包?
- ... 安裝科學計算類 Python 軟件包?
- ... 使用并行安裝的多個 Python 版本?
- 常見的安裝問題
- 在 Linux 的系統 Python 版本上安裝
- 未安裝 pip
- 安裝二進制編譯擴展
- Python 常用指引
- 將 Python 2 代碼遷移到 Python 3
- 簡要說明
- 詳情
- 將擴展模塊移植到 Python 3
- 條件編譯
- 對象API的更改
- 模塊初始化和狀態
- CObject 替換為 Capsule
- 其他選項
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 實現描述器
- 摘要
- 定義和簡介
- 描述器協議
- 發起調用描述符
- 描述符示例
- Properties
- 函數和方法
- Static Methods and Class Methods
- 函數式編程指引
- 概述
- 迭代器
- 生成器表達式和列表推導式
- 生成器
- 內置函數
- itertools 模塊
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文獻
- 日志 HOWTO
- 日志基礎教程
- 進階日志教程
- 日志級別
- 有用的處理程序
- 記錄日志中引發的異常
- 使用任意對象作為消息
- 優化
- 日志操作手冊
- 在多個模塊中使用日志
- 在多線程中使用日志
- 使用多個日志處理器和多種格式化
- 在多個地方記錄日志
- 日志服務器配置示例
- 處理日志處理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正則表達式HOWTO
- 概述
- 簡單模式
- 使用正則表達式
- 更多模式能力
- 修改字符串
- 常見問題
- 反饋
- 套接字編程指南
- 套接字
- 創建套接字
- 使用一個套接字
- 斷開連接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 關鍵函數
- Operator 模塊函數
- 升序和降序
- 排序穩定性和排序復雜度
- 使用裝飾-排序-去裝飾的舊方法
- 使用 cmp 參數的舊方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包獲取網絡資源
- 概述
- Fetching URLs
- 處理異常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 腳注
- Argparse 教程
- 概念
- 基礎
- 位置參數介紹
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模塊介紹
- 創建 Address/Network/Interface 對象
- 審查 Address/Network/Interface 對象
- Network 作為 Address 列表
- 比較
- 將IP地址與其他模塊一起使用
- 實例創建失敗時獲取更多詳細信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 檢測CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常見問題
- Python常見問題
- 一般信息
- 現實世界中的 Python
- 編程常見問題
- 一般問題
- 核心語言
- 數字和字符串
- 性能
- 序列(元組/列表)
- 對象
- 模塊
- 設計和歷史常見問題
- 為什么Python使用縮進來分組語句?
- 為什么簡單的算術運算得到奇怪的結果?
- 為什么浮點計算不準確?
- 為什么Python字符串是不可變的?
- 為什么必須在方法定義和調用中顯式使用“self”?
- 為什么不能在表達式中賦值?
- 為什么Python對某些功能(例如list.index())使用方法來實現,而其他功能(例如len(List))使用函數實現?
- 為什么 join()是一個字符串方法而不是列表或元組方法?
- 異常有多快?
- 為什么Python中沒有switch或case語句?
- 難道不能在解釋器中模擬線程,而非得依賴特定于操作系統的線程實現嗎?
- 為什么lambda表達式不能包含語句?
- 可以將Python編譯為機器代碼,C或其他語言嗎?
- Python如何管理內存?
- 為什么CPython不使用更傳統的垃圾回收方案?
- CPython退出時為什么不釋放所有內存?
- 為什么有單獨的元組和列表數據類型?
- 列表是如何在CPython中實現的?
- 字典是如何在CPython中實現的?
- 為什么字典key必須是不可變的?
- 為什么 list.sort() 沒有返回排序列表?
- 如何在Python中指定和實施接口規范?
- 為什么沒有goto?
- 為什么原始字符串(r-strings)不能以反斜杠結尾?
- 為什么Python沒有屬性賦值的“with”語句?
- 為什么 if/while/def/class語句需要冒號?
- 為什么Python在列表和元組的末尾允許使用逗號?
- 代碼庫和插件 FAQ
- 通用的代碼庫問題
- 通用任務
- 線程相關
- 輸入輸出
- 網絡 / Internet 編程
- 數據庫
- 數學和數字
- 擴展/嵌入常見問題
- 可以使用C語言中創建自己的函數嗎?
- 可以使用C++語言中創建自己的函數嗎?
- C很難寫,有沒有其他選擇?
- 如何從C執行任意Python語句?
- 如何從C中評估任意Python表達式?
- 如何從Python對象中提取C的值?
- 如何使用Py_BuildValue()創建任意長度的元組?
- 如何從C調用對象的方法?
- 如何捕獲PyErr_Print()(或打印到stdout / stderr的任何內容)的輸出?
- 如何從C訪問用Python編寫的模塊?
- 如何從Python接口到C ++對象?
- 我使用Setup文件添加了一個模塊,為什么make失敗了?
- 如何調試擴展?
- 我想在Linux系統上編譯一個Python模塊,但是缺少一些文件。為什么?
- 如何區分“輸入不完整”和“輸入無效”?
- 如何找到未定義的g++符號__builtin_new或__pure_virtual?
- 能否創建一個對象類,其中部分方法在C中實現,而其他方法在Python中實現(例如通過繼承)?
- Python在Windows上的常見問題
- 我怎樣在Windows下運行一個Python程序?
- 我怎么讓 Python 腳本可執行?
- 為什么有時候 Python 程序會啟動緩慢?
- 我怎樣使用Python腳本制作可執行文件?
- *.pyd 文件和DLL文件相同嗎?
- 我怎樣將Python嵌入一個Windows程序?
- 如何讓編輯器不要在我的 Python 源代碼中插入 tab ?
- 如何在不阻塞的情況下檢查按鍵?
- 圖形用戶界面(GUI)常見問題
- 圖形界面常見問題
- Python 是否有平臺無關的圖形界面工具包?
- 有哪些Python的GUI工具是某個平臺專用的?
- 有關Tkinter的問題
- “為什么我的電腦上安裝了 Python ?”
- 什么是Python?
- 為什么我的電腦上安裝了 Python ?
- 我能刪除 Python 嗎?
- 術語對照表
- 文檔說明
- Python 文檔貢獻者
- 解決 Bug
- 文檔錯誤
- 使用 Python 的錯誤追蹤系統
- 開始為 Python 貢獻您的知識
- 版權
- 歷史和許可證
- 軟件歷史
- 訪問Python或以其他方式使用Python的條款和條件
- Python 3.7.3 的 PSF 許可協議
- Python 2.0 的 BeOpen.com 許可協議
- Python 1.6.1 的 CNRI 許可協議
- Python 0.9.0 至 1.2 的 CWI 許可協議
- 集成軟件的許可和認可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec