### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](concurrency.xhtml "并發執行") |
- [上一頁](errno.xhtml "errno --- Standard errno system symbols") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 標準庫](index.xhtml) ?
- [通用操作系統服務](allos.xhtml) ?
- $('.inline-search').show(0); |
# [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") --- Python 的外部函數庫
- - - - - -
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 是 Python 的外部函數庫。它提供了與 C 兼容的數據類型,并允許調用 DLL 或共享庫中的函數。可使用該模塊以純 Python 形式對這些庫進行封裝。
## ctypes 教程
注意:在本教程中的示例代碼使用 [`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.") 進行過測試,保證其正確運行。由于有些代碼在Linux,Windows或Mac OS X下的表現不同,這些代碼會在 doctest 中包含相關的指令注解。
注意:部分示例代碼引用了 ctypes [`c_int`](#ctypes.c_int "ctypes.c_int") 類型。在 `sizeof(long) == sizeof(int)` 的平臺上此類型是 [`c_long`](#ctypes.c_long "ctypes.c_long") 的一個別名。所以,在程序輸出 [`c_long`](#ctypes.c_long "ctypes.c_long") 而不是你期望的 [`c_int`](#ctypes.c_int "ctypes.c_int") 時不必感到迷惑 --- 它們實際上是同一種類型。
### 載入動態連接庫
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 導出了 *cdll* 對象,在 Windows 系統中還導出了 *windll* 和 *oledll* 對象用于載入動態連接庫。
通過操作這些對象的屬性,你可以載入外部的動態鏈接庫。*cdll* 載入按標準的 `cdecl` 調用協議導出的函數,而 *windll* 導入的庫按 `stdcall` 調用協議調用其中的函數。 *oledll* 也按 `stdcall` 調用協議調用其中的函數,并假定該函數返回的是 Windows `HRESULT` 錯誤代碼,并當函數調用失敗時,自動根據該代碼甩出一個 [`OSError`](exceptions.xhtml#OSError "OSError") 異常。
在 3.3 版更改: 原來在 Windows 下甩出的異常類型 [`WindowsError`](exceptions.xhtml#WindowsError "WindowsError") 現在是 [`OSError`](exceptions.xhtml#OSError "OSError") 的一個別名。
這是一些 Windows 下的例子。注意:`msvcrt` 是微軟 C 標準庫,包含了大部分 C 標準函數,這些函數都是以 cdecl 調用協議進行調用的。
```
>>> from ctypes import *
>>> print(windll.kernel32)
<WinDLL 'kernel32', handle ... at ...>
>>> print(cdll.msvcrt)
<CDLL 'msvcrt', handle ... at ...>
>>> libc = cdll.msvcrt
>>>
```
Windows會自動添加通常的 `.dll` 文件擴展名。
注解
通過 `cdll.msvcrt` 調用的標準 C 函數,可能會導致調用一個過時的,與當前 Python 所不兼容的函數。因此,請盡量使用標準的 Python 函數,而不要使用 `msvcrt` 模塊。
在 Linux 下,必須使用 *包含* 文件擴展名的文件名來導入共享庫。因此不能簡單使用對象屬性的方式來導入庫。因此,你可以使用方法 `LoadLibrary()`,或構造 CDLL 對象來導入庫。
```
>>> cdll.LoadLibrary("libc.so.6")
<CDLL 'libc.so.6', handle ... at ...>
>>> libc = CDLL("libc.so.6")
>>> libc
<CDLL 'libc.so.6', handle ... at ...>
>>>
```
### 操作導入的動態鏈接庫中的函數
通過操作dll對象的屬性來操作這些函數。
```
>>> from ctypes import *
>>> libc.printf
<_FuncPtr object at 0x...>
>>> print(windll.kernel32.GetModuleHandleA)
<_FuncPtr object at 0x...>
>>> print(windll.kernel32.MyOwnFunction)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "ctypes.py", line 239, in __getattr__
func = _StdcallFuncPtr(name, self)
AttributeError: function 'MyOwnFunction' not found
>>>
```
注意:Win32系統的動態庫,比如 `kernel32` 和 `user32`,通常會同時導出同一個函數的 ANSI 版本和 UNICODE 版本。UNICODE 版本通常會在名字最后以 `W` 結尾,而 ANSI 版本的則以 `A` 結尾。 win32的 `GetModuleHandle` 函數會根據一個模塊名返回一個 *模塊句柄*,該函數暨同時包含這樣的兩個版本的原型函數,并通過宏 UNICODE 是否定義,來決定宏 `GetModuleHandle` 導出的是哪個具體函數。
```
/* ANSI version */
HMODULE GetModuleHandleA(LPCSTR lpModuleName);
/* UNICODE version */
HMODULE GetModuleHandleW(LPCWSTR lpModuleName);
```
*windll* 不會通過這樣的魔法手段來幫你決定選擇哪一種函數,你必須顯式的調用 `GetModuleHandleA` 或 `GetModuleHandleW`,并分別使用字節對象或字符串對象作參數。
有時候,dlls的導出的函數名不符合 Python 的標識符規范,比如 `"??2@YAPAXI@Z"`。此時,你必須使用 [`getattr()`](functions.xhtml#getattr "getattr") 方法來獲得該函數。
```
>>> getattr(cdll.msvcrt, "??2@YAPAXI@Z")
<_FuncPtr object at 0x...>
>>>
```
Windows 下,有些 dll 導出的函數沒有函數名,而是通過其順序號調用。對此類函數,你也可以通過 dll 對象的數值索引來操作這些函數。
```
>>> cdll.kernel32[1]
<_FuncPtr object at 0x...>
>>> cdll.kernel32[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "ctypes.py", line 310, in __getitem__
func = _StdcallFuncPtr(name, self)
AttributeError: function ordinal 0 not found
>>>
```
### 調用函數
你可以貌似是調用其它 Python 函數那樣直接調用這些函數。在這個例子中,我們調用了 `time()` 函數,該函數返回一個系統時間戳(從 Unix 時間起點到現在的秒數),而``GetModuleHandleA()`` 函數返回一個 win32 模塊句柄。
此函數中調用的兩個函數都使用了空指針(用 `None` 作為空指針):
```
>>> print(libc.time(None))
1150640792
>>> print(hex(windll.kernel32.GetModuleHandleA(None)))
0x1d000000
>>>
```
注解
調用該函數,若 [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 發現傳入的參數個數不符,則會甩出一個異常 [`ValueError`](exceptions.xhtml#ValueError "ValueError")。但該行為并不可靠。它在 3.6.2 中被廢棄,會在 3.7 中徹底移除。
如果你用 `cdecl` 調用方式調用 `stdcall` 約定的函數,則會甩出一個異常 [`ValueError`](exceptions.xhtml#ValueError "ValueError")。反之亦然。
```
>>> cdll.kernel32.GetModuleHandleA(None)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: Procedure probably called with not enough arguments (4 bytes missing)
>>>
>>> windll.msvcrt.printf(b"spam")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: Procedure probably called with too many arguments (4 bytes in excess)
>>>
```
你必須閱讀這些庫的頭文件或說明文檔來確定它們的調用協議。
在Windows中,[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 使用 win32 結構化異常處理來防止由于在調用函數時使用非法參數導致的程序崩潰。
```
>>> windll.kernel32.GetModuleHandleA(32)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OSError: exception: access violation reading 0x00000020
>>>
```
然而,總有許多辦法,通過調用 [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 使得 Python 程序崩潰。因此,你必須小心使用。 [`faulthandler`](faulthandler.xhtml#module-faulthandler "faulthandler: Dump the Python traceback.") 模塊可以用于幫助診斷程序崩潰的原因。(比如由于錯誤的C庫函數調用導致的段錯誤)。
`None`,整型,字節對象和(UNICODE)字符串是僅有的可以直接作為函數參數使用的四種Python本地數據類型。None` 作為C的空指針 (`NULL`),字節和字符串類型作為一個指向其保存數據的內存塊指針 (`char *` 或 `wchar_t *`)。Python 的整型則作為平臺默認的C的 `int` 類型,他們的數值被截斷以適應C類型的整型長度。
在我們開始調用函數前,我們必須先了解作為函數參數的 [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 數據類型。
### 基礎數據類型
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 定義了一些和C兼容的基本數據類型:
ctypes 類型
C 類型
Python 數據類型
[`c_bool`](#ctypes.c_bool "ctypes.c_bool")
`_Bool`
bool (1)
[`c_char`](#ctypes.c_char "ctypes.c_char")
`char`
單字符字節對象
[`c_wchar`](#ctypes.c_wchar "ctypes.c_wchar")
`wchar_t`
單字符字符串
[`c_byte`](#ctypes.c_byte "ctypes.c_byte")
`char`
int
[`c_ubyte`](#ctypes.c_ubyte "ctypes.c_ubyte")
`unsigned char`
int
[`c_short`](#ctypes.c_short "ctypes.c_short")
`short`
int
[`c_ushort`](#ctypes.c_ushort "ctypes.c_ushort")
`unsigned short`
int
[`c_int`](#ctypes.c_int "ctypes.c_int")
`int`
int
[`c_uint`](#ctypes.c_uint "ctypes.c_uint")
`unsigned int`
int
[`c_long`](#ctypes.c_long "ctypes.c_long")
`long`
int
[`c_ulong`](#ctypes.c_ulong "ctypes.c_ulong")
`unsigned long`
int
[`c_longlong`](#ctypes.c_longlong "ctypes.c_longlong")
`__int64` 或 `long long`
int
[`c_ulonglong`](#ctypes.c_ulonglong "ctypes.c_ulonglong")
`unsigned __int64` 或 `unsigned long long`
int
[`c_size_t`](#ctypes.c_size_t "ctypes.c_size_t")
`size_t`
int
[`c_ssize_t`](#ctypes.c_ssize_t "ctypes.c_ssize_t")
`ssize_t` 或 `Py_ssize_t`
int
[`c_float`](#ctypes.c_float "ctypes.c_float")
`float`
float
[`c_double`](#ctypes.c_double "ctypes.c_double")
`double`
float
[`c_longdouble`](#ctypes.c_longdouble "ctypes.c_longdouble")
`long double`
float
[`c_char_p`](#ctypes.c_char_p "ctypes.c_char_p")
`char *` (NUL terminated)
字節串對象或 `None`
[`c_wchar_p`](#ctypes.c_wchar_p "ctypes.c_wchar_p")
`wchar_t *` (NUL terminated)
字符串或 `None`
[`c_void_p`](#ctypes.c_void_p "ctypes.c_void_p")
`void *`
int 或 `None`
1. 構造函數接受任何具有真值的對象。
所有這些類型都可以通過使用正確類型和值的可選初始值調用它們來創建:
```
>>> c_int()
c_long(0)
>>> c_wchar_p("Hello, World")
c_wchar_p(140018365411392)
>>> c_ushort(-3)
c_ushort(65533)
>>>
```
由于這些類型是可變的,它們的值也可以在以后更改:
```
>>> i = c_int(42)
>>> print(i)
c_long(42)
>>> print(i.value)
42
>>> i.value = -99
>>> print(i.value)
-99
>>>
```
當給指針類型的對象 [`c_char_p`](#ctypes.c_char_p "ctypes.c_char_p"), [`c_wchar_p`](#ctypes.c_wchar_p "ctypes.c_wchar_p") 和 [`c_void_p`](#ctypes.c_void_p "ctypes.c_void_p") 等賦值時,將改變它們所指向的 *內存地址*,而 *不是* 它們所指向的內存區域的 *內容* (這是理所當然的,因為 Python 的 bytes 對象是不可變的):
```
>>> s = "Hello, World"
>>> c_s = c_wchar_p(s)
>>> print(c_s)
c_wchar_p(139966785747344)
>>> print(c_s.value)
Hello World
>>> c_s.value = "Hi, there"
>>> print(c_s) # the memory location has changed
c_wchar_p(139966783348904)
>>> print(c_s.value)
Hi, there
>>> print(s) # first object is unchanged
Hello, World
>>>
```
但你要注意不能將它們傳遞給會改變指針所指內存的函數。如果你需要可改變的內存塊,ctypes 提供了 [`create_string_buffer()`](#ctypes.create_string_buffer "ctypes.create_string_buffer") 函數,它提供多種方式創建這種內存塊。當前的內存塊內容可以通過 `raw` 屬性存取,如果你希望將它作為NUL結束的字符串,請使用 `value` 屬性:
```
>>> from ctypes import *
>>> p = create_string_buffer(3) # create a 3 byte buffer, initialized to NUL bytes
>>> print(sizeof(p), repr(p.raw))
3 b'\x00\x00\x00'
>>> p = create_string_buffer(b"Hello") # create a buffer containing a NUL terminated string
>>> print(sizeof(p), repr(p.raw))
6 b'Hello\x00'
>>> print(repr(p.value))
b'Hello'
>>> p = create_string_buffer(b"Hello", 10) # create a 10 byte buffer
>>> print(sizeof(p), repr(p.raw))
10 b'Hello\x00\x00\x00\x00\x00'
>>> p.value = b"Hi"
>>> print(sizeof(p), repr(p.raw))
10 b'Hi\x00lo\x00\x00\x00\x00\x00'
>>>
```
[`create_string_buffer()`](#ctypes.create_string_buffer "ctypes.create_string_buffer") 函數替代以前的ctypes版本中的 `c_buffer()` 函數 (仍然可當作別名使用)和 `c_string()` 函數。[`create_unicode_buffer()`](#ctypes.create_unicode_buffer "ctypes.create_unicode_buffer") 函數創建包含 unicode 字符的可變內存塊,與之對應的C語言類型是 `wchar_t`。
### 調用函數,繼續
注意 printf 將打印到真正標準輸出設備,而\*不是\* [`sys.stdout`](sys.xhtml#sys.stdout "sys.stdout"),因此這些實例只能在控制臺提示符下工作,而不能在 *IDLE* 或 *PythonWin* 中運行。
```
>>> printf = libc.printf
>>> printf(b"Hello, %s\n", b"World!")
Hello, World!
14
>>> printf(b"Hello, %S\n", "World!")
Hello, World!
14
>>> printf(b"%d bottles of beer\n", 42)
42 bottles of beer
19
>>> printf(b"%f bottles of beer\n", 42.5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ArgumentError: argument 2: exceptions.TypeError: Don't know how to convert parameter 2
>>>
```
正如前面所提到過的,除了整數、字符串以及字節串之外,所有的 Python 類型都必須使用它們對應的 [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 類型包裝,才能夠被正確地轉換為所需的C語言類型。
```
>>> printf(b"An int %d, a double %f\n", 1234, c_double(3.14))
An int 1234, a double 3.140000
31
>>>
```
### 使用自定義的數據類型調用函數
You can also customize [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") argument conversion to allow instances of your own classes be used as function arguments. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") looks for an `_as_parameter_` attribute and uses this as the function argument. Of course, it must be one of integer, string, or bytes:
```
>>> class Bottles:
... def __init__(self, number):
... self._as_parameter_ = number
...
>>> bottles = Bottles(42)
>>> printf(b"%d bottles of beer\n", bottles)
42 bottles of beer
19
>>>
```
If you don't want to store the instance's data in the `_as_parameter_`instance variable, you could define a [`property`](functions.xhtml#property "property") which makes the attribute available on request.
### Specifying the required argument types (function prototypes)
It is possible to specify the required argument types of functions exported from DLLs by setting the `argtypes` attribute.
`argtypes` must be a sequence of C data types (the `printf` function is probably not a good example here, because it takes a variable number and different types of parameters depending on the format string, on the other hand this is quite handy to experiment with this feature):
```
>>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
>>> printf(b"String '%s', Int %d, Double %f\n", b"Hi", 10, 2.2)
String 'Hi', Int 10, Double 2.200000
37
>>>
```
Specifying a format protects against incompatible argument types (just as a prototype for a C function), and tries to convert the arguments to valid types:
```
>>> printf(b"%d %d %d", 1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ArgumentError: argument 2: exceptions.TypeError: wrong type
>>> printf(b"%s %d %f\n", b"X", 2, 3)
X 2 3.000000
13
>>>
```
If you have defined your own classes which you pass to function calls, you have to implement a `from_param()` class method for them to be able to use them in the `argtypes` sequence. The `from_param()` class method receives the Python object passed to the function call, it should do a typecheck or whatever is needed to make sure this object is acceptable, and then return the object itself, its `_as_parameter_` attribute, or whatever you want to pass as the C function argument in this case. Again, the result should be an integer, string, bytes, a [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") instance, or an object with an `_as_parameter_` attribute.
### Return types
By default functions are assumed to return the C `int` type. Other return types can be specified by setting the `restype` attribute of the function object.
Here is a more advanced example, it uses the `strchr` function, which expects a string pointer and a char, and returns a pointer to a string:
```
>>> strchr = libc.strchr
>>> strchr(b"abcdef", ord("d"))
8059983
>>> strchr.restype = c_char_p # c_char_p is a pointer to a string
>>> strchr(b"abcdef", ord("d"))
b'def'
>>> print(strchr(b"abcdef", ord("x")))
None
>>>
```
If you want to avoid the `ord("x")` calls above, you can set the `argtypes` attribute, and the second argument will be converted from a single character Python bytes object into a C char:
```
>>> strchr.restype = c_char_p
>>> strchr.argtypes = [c_char_p, c_char]
>>> strchr(b"abcdef", b"d")
'def'
>>> strchr(b"abcdef", b"def")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ArgumentError: argument 2: exceptions.TypeError: one character string expected
>>> print(strchr(b"abcdef", b"x"))
None
>>> strchr(b"abcdef", b"d")
'def'
>>>
```
You can also use a callable Python object (a function or a class for example) as the `restype` attribute, if the foreign function returns an integer. The callable will be called with the *integer* the C function returns, and the result of this call will be used as the result of your function call. This is useful to check for error return values and automatically raise an exception:
```
>>> GetModuleHandle = windll.kernel32.GetModuleHandleA
>>> def ValidHandle(value):
... if value == 0:
... raise WinError()
... return value
...
>>>
>>> GetModuleHandle.restype = ValidHandle
>>> GetModuleHandle(None)
486539264
>>> GetModuleHandle("something silly")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in ValidHandle
OSError: [Errno 126] The specified module could not be found.
>>>
```
`WinError` is a function which will call Windows `FormatMessage()` api to get the string representation of an error code, and *returns* an exception. `WinError` takes an optional error code parameter, if no one is used, it calls [`GetLastError()`](#ctypes.GetLastError "ctypes.GetLastError") to retrieve it.
Please note that a much more powerful error checking mechanism is available through the `errcheck` attribute; see the reference manual for details.
### Passing pointers (or: passing parameters by reference)
Sometimes a C api function expects a *pointer* to a data type as parameter, probably to write into the corresponding location, or if the data is too large to be passed by value. This is also known as *passing parameters by reference*.
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") exports the [`byref()`](#ctypes.byref "ctypes.byref") function which is used to pass parameters by reference. The same effect can be achieved with the [`pointer()`](#ctypes.pointer "ctypes.pointer") function, although [`pointer()`](#ctypes.pointer "ctypes.pointer") does a lot more work since it constructs a real pointer object, so it is faster to use [`byref()`](#ctypes.byref "ctypes.byref") if you don't need the pointer object in Python itself:
```
>>> i = c_int()
>>> f = c_float()
>>> s = create_string_buffer(b'\000' * 32)
>>> print(i.value, f.value, repr(s.value))
0 0.0 b''
>>> libc.sscanf(b"1 3.14 Hello", b"%d %f %s",
... byref(i), byref(f), s)
3
>>> print(i.value, f.value, repr(s.value))
1 3.1400001049 b'Hello'
>>>
```
### Structures and unions
Structures and unions must derive from the [`Structure`](#ctypes.Structure "ctypes.Structure") and [`Union`](#ctypes.Union "ctypes.Union")base classes which are defined in the [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") module. Each subclass must define a `_fields_` attribute. `_fields_` must be a list of *2-tuples*, containing a *field name* and a *field type*.
The field type must be a [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") type like [`c_int`](#ctypes.c_int "ctypes.c_int"), or any other derived [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") type: structure, union, array, pointer.
Here is a simple example of a POINT structure, which contains two integers named *x* and *y*, and also shows how to initialize a structure in the constructor:
```
>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = [("x", c_int),
... ("y", c_int)]
...
>>> point = POINT(10, 20)
>>> print(point.x, point.y)
10 20
>>> point = POINT(y=5)
>>> print(point.x, point.y)
0 5
>>> POINT(1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: too many initializers
>>>
```
You can, however, build much more complicated structures. A structure can itself contain other structures by using a structure as a field type.
Here is a RECT structure which contains two POINTs named *upperleft* and *lowerright*:
```
>>> class RECT(Structure):
... _fields_ = [("upperleft", POINT),
... ("lowerright", POINT)]
...
>>> rc = RECT(point)
>>> print(rc.upperleft.x, rc.upperleft.y)
0 5
>>> print(rc.lowerright.x, rc.lowerright.y)
0 0
>>>
```
Nested structures can also be initialized in the constructor in several ways:
```
>>> r = RECT(POINT(1, 2), POINT(3, 4))
>>> r = RECT((1, 2), (3, 4))
```
Field [descriptor](../glossary.xhtml#term-descriptor)s can be retrieved from the *class*, they are useful for debugging because they can provide useful information:
```
>>> print(POINT.x)
<Field type=c_long, ofs=0, size=4>
>>> print(POINT.y)
<Field type=c_long, ofs=4, size=4>
>>>
```
警告
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") does not support passing unions or structures with bit-fields to functions by value. While this may work on 32-bit x86, it's not guaranteed by the library to work in the general case. Unions and structures with bit-fields should always be passed to functions by pointer.
### Structure/union alignment and byte order
By default, Structure and Union fields are aligned in the same way the C compiler does it. It is possible to override this behavior be specifying a `_pack_` class attribute in the subclass definition. This must be set to a positive integer and specifies the maximum alignment for the fields. This is what `#pragma pack(n)` also does in MSVC.
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") uses the native byte order for Structures and Unions. To build structures with non-native byte order, you can use one of the [`BigEndianStructure`](#ctypes.BigEndianStructure "ctypes.BigEndianStructure"), [`LittleEndianStructure`](#ctypes.LittleEndianStructure "ctypes.LittleEndianStructure"), `BigEndianUnion`, and `LittleEndianUnion` base classes. These classes cannot contain pointer fields.
### Bit fields in structures and unions
It is possible to create structures and unions containing bit fields. Bit fields are only possible for integer fields, the bit width is specified as the third item in the `_fields_` tuples:
```
>>> class Int(Structure):
... _fields_ = [("first_16", c_int, 16),
... ("second_16", c_int, 16)]
...
>>> print(Int.first_16)
<Field type=c_long, ofs=0:0, bits=16>
>>> print(Int.second_16)
<Field type=c_long, ofs=0:16, bits=16>
>>>
```
### Arrays
Arrays are sequences, containing a fixed number of instances of the same type.
The recommended way to create array types is by multiplying a data type with a positive integer:
```
TenPointsArrayType = POINT * 10
```
Here is an example of a somewhat artificial data type, a structure containing 4 POINTs among other stuff:
```
>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class MyStruct(Structure):
... _fields_ = [("a", c_int),
... ("b", c_float),
... ("point_array", POINT * 4)]
>>>
>>> print(len(MyStruct().point_array))
4
>>>
```
Instances are created in the usual way, by calling the class:
```
arr = TenPointsArrayType()
for pt in arr:
print(pt.x, pt.y)
```
The above code print a series of `0 0` lines, because the array contents is initialized to zeros.
Initializers of the correct type can also be specified:
```
>>> from ctypes import *
>>> TenIntegers = c_int * 10
>>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
>>> print(ii)
<c_long_Array_10 object at 0x...>
>>> for i in ii: print(i, end=" ")
...
1 2 3 4 5 6 7 8 9 10
>>>
```
### Pointers
Pointer instances are created by calling the [`pointer()`](#ctypes.pointer "ctypes.pointer") function on a [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") type:
```
>>> from ctypes import *
>>> i = c_int(42)
>>> pi = pointer(i)
>>>
```
Pointer instances have a [`contents`](#ctypes._Pointer.contents "ctypes._Pointer.contents") attribute which returns the object to which the pointer points, the `i` object above:
```
>>> pi.contents
c_long(42)
>>>
```
Note that [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") does not have OOR (original object return), it constructs a new, equivalent object each time you retrieve an attribute:
```
>>> pi.contents is i
False
>>> pi.contents is pi.contents
False
>>>
```
Assigning another [`c_int`](#ctypes.c_int "ctypes.c_int") instance to the pointer's contents attribute would cause the pointer to point to the memory location where this is stored:
```
>>> i = c_int(99)
>>> pi.contents = i
>>> pi.contents
c_long(99)
>>>
```
Pointer instances can also be indexed with integers:
```
>>> pi[0]
99
>>>
```
Assigning to an integer index changes the pointed to value:
```
>>> print(i)
c_long(99)
>>> pi[0] = 22
>>> print(i)
c_long(22)
>>>
```
It is also possible to use indexes different from 0, but you must know what you're doing, just as in C: You can access or change arbitrary memory locations. Generally you only use this feature if you receive a pointer from a C function, and you *know* that the pointer actually points to an array instead of a single item.
Behind the scenes, the [`pointer()`](#ctypes.pointer "ctypes.pointer") function does more than simply create pointer instances, it has to create pointer *types* first. This is done with the [`POINTER()`](#ctypes.POINTER "ctypes.POINTER") function, which accepts any [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") type, and returns a new type:
```
>>> PI = POINTER(c_int)
>>> PI
<class 'ctypes.LP_c_long'>
>>> PI(42)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: expected c_long instead of int
>>> PI(c_int(42))
<ctypes.LP_c_long object at 0x...>
>>>
```
Calling the pointer type without an argument creates a `NULL` pointer. `NULL` pointers have a `False` boolean value:
```
>>> null_ptr = POINTER(c_int)()
>>> print(bool(null_ptr))
False
>>>
```
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") checks for `NULL` when dereferencing pointers (but dereferencing invalid non-`NULL` pointers would crash Python):
```
>>> null_ptr[0]
Traceback (most recent call last):
....
ValueError: NULL pointer access
>>>
>>> null_ptr[0] = 1234
Traceback (most recent call last):
....
ValueError: NULL pointer access
>>>
```
### Type conversions
Usually, ctypes does strict type checking. This means, if you have `POINTER(c_int)` in the `argtypes` list of a function or as the type of a member field in a structure definition, only instances of exactly the same type are accepted. There are some exceptions to this rule, where ctypes accepts other objects. For example, you can pass compatible array instances instead of pointer types. So, for `POINTER(c_int)`, ctypes accepts an array of c\_int:
```
>>> class Bar(Structure):
... _fields_ = [("count", c_int), ("values", POINTER(c_int))]
...
>>> bar = Bar()
>>> bar.values = (c_int * 3)(1, 2, 3)
>>> bar.count = 3
>>> for i in range(bar.count):
... print(bar.values[i])
...
1
2
3
>>>
```
In addition, if a function argument is explicitly declared to be a pointer type (such as `POINTER(c_int)`) in `argtypes`, an object of the pointed type (`c_int` in this case) can be passed to the function. ctypes will apply the required [`byref()`](#ctypes.byref "ctypes.byref") conversion in this case automatically.
To set a POINTER type field to `NULL`, you can assign `None`:
```
>>> bar.values = None
>>>
```
Sometimes you have instances of incompatible types. In C, you can cast one type into another type. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") provides a [`cast()`](#ctypes.cast "ctypes.cast") function which can be used in the same way. The `Bar` structure defined above accepts `POINTER(c_int)` pointers or [`c_int`](#ctypes.c_int "ctypes.c_int") arrays for its `values` field, but not instances of other types:
```
>>> bar.values = (c_byte * 4)()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long instance
>>>
```
For these cases, the [`cast()`](#ctypes.cast "ctypes.cast") function is handy.
The [`cast()`](#ctypes.cast "ctypes.cast") function can be used to cast a ctypes instance into a pointer to a different ctypes data type. [`cast()`](#ctypes.cast "ctypes.cast") takes two parameters, a ctypes object that is or can be converted to a pointer of some kind, and a ctypes pointer type. It returns an instance of the second argument, which references the same memory block as the first argument:
```
>>> a = (c_byte * 4)()
>>> cast(a, POINTER(c_int))
<ctypes.LP_c_long object at ...>
>>>
```
So, [`cast()`](#ctypes.cast "ctypes.cast") can be used to assign to the `values` field of `Bar` the structure:
```
>>> bar = Bar()
>>> bar.values = cast((c_byte * 4)(), POINTER(c_int))
>>> print(bar.values[0])
0
>>>
```
### Incomplete Types
*Incomplete Types* are structures, unions or arrays whose members are not yet specified. In C, they are specified by forward declarations, which are defined later:
```
struct cell; /* forward declaration */
struct cell {
char *name;
struct cell *next;
};
```
The straightforward translation into ctypes code would be this, but it does not work:
```
>>> class cell(Structure):
... _fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in cell
NameError: name 'cell' is not defined
>>>
```
because the new `class cell` is not available in the class statement itself. In [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python."), we can define the `cell` class and set the `_fields_`attribute later, after the class statement:
```
>>> from ctypes import *
>>> class cell(Structure):
... pass
...
>>> cell._fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
>>>
```
Lets try it. We create two instances of `cell`, and let them point to each other, and finally follow the pointer chain a few times:
```
>>> c1 = cell()
>>> c1.name = "foo"
>>> c2 = cell()
>>> c2.name = "bar"
>>> c1.next = pointer(c2)
>>> c2.next = pointer(c1)
>>> p = c1
>>> for i in range(8):
... print(p.name, end=" ")
... p = p.next[0]
...
foo bar foo bar foo bar foo bar
>>>
```
### Callback functions
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") allows creating C callable function pointers from Python callables. These are sometimes called *callback functions*.
First, you must create a class for the callback function. The class knows the calling convention, the return type, and the number and types of arguments this function will receive.
The [`CFUNCTYPE()`](#ctypes.CFUNCTYPE "ctypes.CFUNCTYPE") factory function creates types for callback functions using the `cdecl` calling convention. On Windows, the [`WINFUNCTYPE()`](#ctypes.WINFUNCTYPE "ctypes.WINFUNCTYPE")factory function creates types for callback functions using the `stdcall`calling convention.
Both of these factory functions are called with the result type as first argument, and the callback functions expected argument types as the remaining arguments.
I will present an example here which uses the standard C library's `qsort()` function, that is used to sort items with the help of a callback function. `qsort()` will be used to sort an array of integers:
```
>>> IntArray5 = c_int * 5
>>> ia = IntArray5(5, 1, 7, 33, 99)
>>> qsort = libc.qsort
>>> qsort.restype = None
>>>
```
`qsort()` must be called with a pointer to the data to sort, the number of items in the data array, the size of one item, and a pointer to the comparison function, the callback. The callback will then be called with two pointers to items, and it must return a negative integer if the first item is smaller than the second, a zero if they are equal, and a positive integer otherwise.
So our callback function receives pointers to integers, and must return an integer. First we create the `type` for the callback function:
```
>>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
>>>
```
To get started, here is a simple callback that shows the values it gets passed:
```
>>> def py_cmp_func(a, b):
... print("py_cmp_func", a[0], b[0])
... return 0
...
>>> cmp_func = CMPFUNC(py_cmp_func)
>>>
```
The result:
```
>>> qsort(ia, len(ia), sizeof(c_int), cmp_func)
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 5 7
py_cmp_func 1 7
>>>
```
Now we can actually compare the two items and return a useful result:
```
>>> def py_cmp_func(a, b):
... print("py_cmp_func", a[0], b[0])
... return a[0] - b[0]
...
>>>
>>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func))
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 1 7
py_cmp_func 5 7
>>>
```
As we can easily check, our array is sorted now:
```
>>> for i in ia: print(i, end=" ")
...
1 5 7 33 99
>>>
```
The function factories can be used as decorator factories, so we may as well write:
```
>>> @CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
... def py_cmp_func(a, b):
... print("py_cmp_func", a[0], b[0])
... return a[0] - b[0]
...
>>> qsort(ia, len(ia), sizeof(c_int), py_cmp_func)
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 1 7
py_cmp_func 5 7
>>>
```
注解
Make sure you keep references to [`CFUNCTYPE()`](#ctypes.CFUNCTYPE "ctypes.CFUNCTYPE") objects as long as they are used from C code. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") doesn't, and if you don't, they may be garbage collected, crashing your program when a callback is made.
Also, note that if the callback function is called in a thread created outside of Python's control (e.g. by the foreign code that calls the callback), ctypes creates a new dummy Python thread on every invocation. This behavior is correct for most purposes, but it means that values stored with [`threading.local`](threading.xhtml#threading.local "threading.local") will *not* survive across different callbacks, even when those calls are made from the same C thread.
### Accessing values exported from dlls
Some shared libraries not only export functions, they also export variables. An example in the Python library itself is the [`Py_OptimizeFlag`](../c-api/init.xhtml#c.Py_OptimizeFlag "Py_OptimizeFlag"), an integer set to 0, 1, or 2, depending on the [`-O`](../using/cmdline.xhtml#cmdoption-o) or [`-OO`](../using/cmdline.xhtml#cmdoption-oo) flag given on startup.
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") can access values like this with the `in_dll()` class methods of the type. *pythonapi* is a predefined symbol giving access to the Python C api:
```
>>> opt_flag = c_int.in_dll(pythonapi, "Py_OptimizeFlag")
>>> print(opt_flag)
c_long(0)
>>>
```
If the interpreter would have been started with [`-O`](../using/cmdline.xhtml#cmdoption-o), the sample would have printed `c_long(1)`, or `c_long(2)` if [`-OO`](../using/cmdline.xhtml#cmdoption-oo) would have been specified.
An extended example which also demonstrates the use of pointers accesses the [`PyImport_FrozenModules`](../c-api/import.xhtml#c.PyImport_FrozenModules "PyImport_FrozenModules") pointer exported by Python.
Quoting the docs for that value:
> This pointer is initialized to point to an array of `struct _frozen`records, terminated by one whose members are all *NULL* or zero. When a frozen module is imported, it is searched in this table. Third-party code could play tricks with this to provide a dynamically created collection of frozen modules.
So manipulating this pointer could even prove useful. To restrict the example size, we show only how this table can be read with [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python."):
```
>>> from ctypes import *
>>>
>>> class struct_frozen(Structure):
... _fields_ = [("name", c_char_p),
... ("code", POINTER(c_ubyte)),
... ("size", c_int)]
...
>>>
```
We have defined the `struct _frozen` data type, so we can get the pointer to the table:
```
>>> FrozenTable = POINTER(struct_frozen)
>>> table = FrozenTable.in_dll(pythonapi, "PyImport_FrozenModules")
>>>
```
Since `table` is a `pointer` to the array of `struct_frozen` records, we can iterate over it, but we just have to make sure that our loop terminates, because pointers have no size. Sooner or later it would probably crash with an access violation or whatever, so it's better to break out of the loop when we hit the NULL entry:
```
>>> for item in table:
... if item.name is None:
... break
... print(item.name.decode("ascii"), item.size)
...
_frozen_importlib 31764
_frozen_importlib_external 41499
__hello__ 161
__phello__ -161
__phello__.spam 161
>>>
```
The fact that standard Python has a frozen module and a frozen package (indicated by the negative size member) is not well known, it is only used for testing. Try it out with `import __hello__` for example.
### Surprises
There are some edges in [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") where you might expect something other than what actually happens.
Consider the following example:
```
>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class RECT(Structure):
... _fields_ = ("a", POINT), ("b", POINT)
...
>>> p1 = POINT(1, 2)
>>> p2 = POINT(3, 4)
>>> rc = RECT(p1, p2)
>>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
1 2 3 4
>>> # now swap the two points
>>> rc.a, rc.b = rc.b, rc.a
>>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
3 4 3 4
>>>
```
Hm. We certainly expected the last statement to print `3 4 1 2`. What happened? Here are the steps of the `rc.a, rc.b = rc.b, rc.a` line above:
```
>>> temp0, temp1 = rc.b, rc.a
>>> rc.a = temp0
>>> rc.b = temp1
>>>
```
Note that `temp0` and `temp1` are objects still using the internal buffer of the `rc` object above. So executing `rc.a = temp0` copies the buffer contents of `temp0` into `rc` 's buffer. This, in turn, changes the contents of `temp1`. So, the last assignment `rc.b = temp1`, doesn't have the expected effect.
Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays doesn't *copy* the sub-object, instead it retrieves a wrapper object accessing the root-object's underlying buffer.
Another example that may behave different from what one would expect is this:
```
>>> s = c_char_p()
>>> s.value = "abc def ghi"
>>> s.value
'abc def ghi'
>>> s.value is s.value
False
>>>
```
Why is it printing `False`? ctypes instances are objects containing a memory block plus some [descriptor](../glossary.xhtml#term-descriptor)s accessing the contents of the memory. Storing a Python object in the memory block does not store the object itself, instead the `contents` of the object is stored. Accessing the contents again constructs a new Python object each time!
### Variable-sized data types
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") provides some support for variable-sized arrays and structures.
The [`resize()`](#ctypes.resize "ctypes.resize") function can be used to resize the memory buffer of an existing ctypes object. The function takes the object as first argument, and the requested size in bytes as the second argument. The memory block cannot be made smaller than the natural memory block specified by the objects type, a [`ValueError`](exceptions.xhtml#ValueError "ValueError") is raised if this is tried:
```
>>> short_array = (c_short * 4)()
>>> print(sizeof(short_array))
8
>>> resize(short_array, 4)
Traceback (most recent call last):
...
ValueError: minimum size is 8
>>> resize(short_array, 32)
>>> sizeof(short_array)
32
>>> sizeof(type(short_array))
8
>>>
```
This is nice and fine, but how would one access the additional elements contained in this array? Since the type still only knows about 4 elements, we get errors accessing other elements:
```
>>> short_array[:]
[0, 0, 0, 0]
>>> short_array[7]
Traceback (most recent call last):
...
IndexError: invalid index
>>>
```
Another way to use variable-sized data types with [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") is to use the dynamic nature of Python, and (re-)define the data type after the required size is already known, on a case by case basis.
## ctypes reference
### Finding shared libraries
When programming in a compiled language, shared libraries are accessed when compiling/linking a program, and when the program is run.
The purpose of the `find_library()` function is to locate a library in a way similar to what the compiler or runtime loader does (on platforms with several versions of a shared library the most recent should be loaded), while the ctypes library loaders act like when a program is run, and call the runtime loader directly.
The `ctypes.util` module provides a function which can help to determine the library to load.
`ctypes.util.``find_library`(*name*)Try to find a library and return a pathname. *name* is the library name without any prefix like *lib*, suffix like `.so`, `.dylib` or version number (this is the form used for the posix linker option `-l`). If no library can be found, returns `None`.
The exact functionality is system dependent.
On Linux, `find_library()` tries to run external programs (`/sbin/ldconfig`, `gcc`, `objdump` and `ld`) to find the library file. It returns the filename of the library file.
在 3.6 版更改: On Linux, the value of the environment variable `LD_LIBRARY_PATH` is used when searching for libraries, if a library cannot be found by any other means.
Here are some examples:
```
>>> from ctypes.util import find_library
>>> find_library("m")
'libm.so.6'
>>> find_library("c")
'libc.so.6'
>>> find_library("bz2")
'libbz2.so.1.0'
>>>
```
On OS X, `find_library()` tries several predefined naming schemes and paths to locate the library, and returns a full pathname if successful:
```
>>> from ctypes.util import find_library
>>> find_library("c")
'/usr/lib/libc.dylib'
>>> find_library("m")
'/usr/lib/libm.dylib'
>>> find_library("bz2")
'/usr/lib/libbz2.dylib'
>>> find_library("AGL")
'/System/Library/Frameworks/AGL.framework/AGL'
>>>
```
On Windows, `find_library()` searches along the system search path, and returns the full pathname, but since there is no predefined naming scheme a call like `find_library("c")` will fail and return `None`.
If wrapping a shared library with [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python."), it *may* be better to determine the shared library name at development time, and hardcode that into the wrapper module instead of using `find_library()` to locate the library at runtime.
### Loading shared libraries
There are several ways to load shared libraries into the Python process. One way is to instantiate one of the following classes:
*class* `ctypes.``CDLL`(*name*, *mode=DEFAULT\_MODE*, *handle=None*, *use\_errno=False*, *use\_last\_error=False*)Instances of this class represent loaded shared libraries. Functions in these libraries use the standard C calling convention, and are assumed to return `int`.
*class* `ctypes.``OleDLL`(*name*, *mode=DEFAULT\_MODE*, *handle=None*, *use\_errno=False*, *use\_last\_error=False*)Windows only: Instances of this class represent loaded shared libraries, functions in these libraries use the `stdcall` calling convention, and are assumed to return the windows specific [`HRESULT`](#ctypes.HRESULT "ctypes.HRESULT") code. [`HRESULT`](#ctypes.HRESULT "ctypes.HRESULT")values contain information specifying whether the function call failed or succeeded, together with additional error code. If the return value signals a failure, an [`OSError`](exceptions.xhtml#OSError "OSError") is automatically raised.
在 3.3 版更改: [`WindowsError`](exceptions.xhtml#WindowsError "WindowsError") used to be raised.
*class* `ctypes.``WinDLL`(*name*, *mode=DEFAULT\_MODE*, *handle=None*, *use\_errno=False*, *use\_last\_error=False*)Windows only: Instances of this class represent loaded shared libraries, functions in these libraries use the `stdcall` calling convention, and are assumed to return `int` by default.
On Windows CE only the standard calling convention is used, for convenience the [`WinDLL`](#ctypes.WinDLL "ctypes.WinDLL") and [`OleDLL`](#ctypes.OleDLL "ctypes.OleDLL") use the standard calling convention on this platform.
The Python [global interpreter lock](../glossary.xhtml#term-global-interpreter-lock) is released before calling any function exported by these libraries, and reacquired afterwards.
*class* `ctypes.``PyDLL`(*name*, *mode=DEFAULT\_MODE*, *handle=None*)Instances of this class behave like [`CDLL`](#ctypes.CDLL "ctypes.CDLL") instances, except that the Python GIL is *not* released during the function call, and after the function execution the Python error flag is checked. If the error flag is set, a Python exception is raised.
Thus, this is only useful to call Python C api functions directly.
All these classes can be instantiated by calling them with at least one argument, the pathname of the shared library. If you have an existing handle to an already loaded shared library, it can be passed as the `handle` named parameter, otherwise the underlying platforms `dlopen` or `LoadLibrary`function is used to load the library into the process, and to get a handle to it.
The *mode* parameter can be used to specify how the library is loaded. For details, consult the *dlopen(3)* manpage. On Windows, *mode* is ignored. On posix systems, RTLD\_NOW is always added, and is not configurable.
The *use\_errno* parameter, when set to true, enables a ctypes mechanism that allows accessing the system [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.") error number in a safe way. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") maintains a thread-local copy of the systems [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.")variable; if you call foreign functions created with `use_errno=True` then the [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.") value before the function call is swapped with the ctypes private copy, the same happens immediately after the function call.
The function [`ctypes.get_errno()`](#ctypes.get_errno "ctypes.get_errno") returns the value of the ctypes private copy, and the function [`ctypes.set_errno()`](#ctypes.set_errno "ctypes.set_errno") changes the ctypes private copy to a new value and returns the former value.
The *use\_last\_error* parameter, when set to true, enables the same mechanism for the Windows error code which is managed by the [`GetLastError()`](#ctypes.GetLastError "ctypes.GetLastError") and `SetLastError()` Windows API functions; [`ctypes.get_last_error()`](#ctypes.get_last_error "ctypes.get_last_error") and [`ctypes.set_last_error()`](#ctypes.set_last_error "ctypes.set_last_error") are used to request and change the ctypes private copy of the windows error code.
`ctypes.``RTLD_GLOBAL`Flag to use as *mode* parameter. On platforms where this flag is not available, it is defined as the integer zero.
`ctypes.``RTLD_LOCAL`Flag to use as *mode* parameter. On platforms where this is not available, it is the same as *RTLD\_GLOBAL*.
`ctypes.``DEFAULT_MODE`The default mode which is used to load shared libraries. On OSX 10.3, this is *RTLD\_GLOBAL*, otherwise it is the same as *RTLD\_LOCAL*.
Instances of these classes have no public methods. Functions exported by the shared library can be accessed as attributes or by index. Please note that accessing the function through an attribute caches the result and therefore accessing it repeatedly returns the same object each time. On the other hand, accessing it through an index returns a new object each time:
```
>>> from ctypes import CDLL
>>> libc = CDLL("libc.so.6") # On Linux
>>> libc.time == libc.time
True
>>> libc['time'] == libc['time']
False
```
The following public attributes are available, their name starts with an underscore to not clash with exported function names:
`PyDLL.``_handle`The system handle used to access the library.
`PyDLL.``_name`The name of the library passed in the constructor.
Shared libraries can also be loaded by using one of the prefabricated objects, which are instances of the [`LibraryLoader`](#ctypes.LibraryLoader "ctypes.LibraryLoader") class, either by calling the `LoadLibrary()` method, or by retrieving the library as attribute of the loader instance.
*class* `ctypes.``LibraryLoader`(*dlltype*)Class which loads shared libraries. *dlltype* should be one of the [`CDLL`](#ctypes.CDLL "ctypes.CDLL"), [`PyDLL`](#ctypes.PyDLL "ctypes.PyDLL"), [`WinDLL`](#ctypes.WinDLL "ctypes.WinDLL"), or [`OleDLL`](#ctypes.OleDLL "ctypes.OleDLL") types.
[`__getattr__()`](../reference/datamodel.xhtml#object.__getattr__ "object.__getattr__") has special behavior: It allows loading a shared library by accessing it as attribute of a library loader instance. The result is cached, so repeated attribute accesses return the same library each time.
`LoadLibrary`(*name*)Load a shared library into the process and return it. This method always returns a new instance of the library.
These prefabricated library loaders are available:
`ctypes.``cdll`Creates [`CDLL`](#ctypes.CDLL "ctypes.CDLL") instances.
`ctypes.``windll`僅Windows中: 創建 [`WinDLL`](#ctypes.WinDLL "ctypes.WinDLL") 實例.
`ctypes.``oledll`僅Windows中: 創建 [`OleDLL`](#ctypes.OleDLL "ctypes.OleDLL") 實例。
`ctypes.``pydll`創建 [`PyDLL`](#ctypes.PyDLL "ctypes.PyDLL") 實例。
For accessing the C Python api directly, a ready-to-use Python shared library object is available:
`ctypes.``pythonapi`An instance of [`PyDLL`](#ctypes.PyDLL "ctypes.PyDLL") that exposes Python C API functions as attributes. Note that all these functions are assumed to return C `int`, which is of course not always the truth, so you have to assign the correct `restype` attribute to use these functions.
### Foreign functions
As explained in the previous section, foreign functions can be accessed as attributes of loaded shared libraries. The function objects created in this way by default accept any number of arguments, accept any ctypes data instances as arguments, and return the default result type specified by the library loader. They are instances of a private class:
*class* `ctypes.``_FuncPtr`Base class for C callable foreign functions.
Instances of foreign functions are also C compatible data types; they represent C function pointers.
This behavior can be customized by assigning to special attributes of the foreign function object.
`restype`Assign a ctypes type to specify the result type of the foreign function. Use `None` for `void`, a function not returning anything.
It is possible to assign a callable Python object that is not a ctypes type, in this case the function is assumed to return a C `int`, and the callable will be called with this integer, allowing further processing or error checking. Using this is deprecated, for more flexible post processing or error checking use a ctypes data type as [`restype`](#ctypes._FuncPtr.restype "ctypes._FuncPtr.restype") and assign a callable to the [`errcheck`](#ctypes._FuncPtr.errcheck "ctypes._FuncPtr.errcheck") attribute.
`argtypes`Assign a tuple of ctypes types to specify the argument types that the function accepts. Functions using the `stdcall` calling convention can only be called with the same number of arguments as the length of this tuple; functions using the C calling convention accept additional, unspecified arguments as well.
When a foreign function is called, each actual argument is passed to the `from_param()` class method of the items in the [`argtypes`](#ctypes._FuncPtr.argtypes "ctypes._FuncPtr.argtypes")tuple, this method allows adapting the actual argument to an object that the foreign function accepts. For example, a [`c_char_p`](#ctypes.c_char_p "ctypes.c_char_p") item in the [`argtypes`](#ctypes._FuncPtr.argtypes "ctypes._FuncPtr.argtypes") tuple will convert a string passed as argument into a bytes object using ctypes conversion rules.
New: It is now possible to put items in argtypes which are not ctypes types, but each item must have a `from_param()` method which returns a value usable as argument (integer, string, ctypes instance). This allows defining adapters that can adapt custom objects as function parameters.
`errcheck`Assign a Python function or another callable to this attribute. The callable will be called with three or more arguments:
`callable`(*result*, *func*, *arguments*)*result* is what the foreign function returns, as specified by the `restype` attribute.
*func* is the foreign function object itself, this allows reusing the same callable object to check or post process the results of several functions.
*arguments* is a tuple containing the parameters originally passed to the function call, this allows specializing the behavior on the arguments used.
The object that this function returns will be returned from the foreign function call, but it can also check the result value and raise an exception if the foreign function call failed.
*exception* `ctypes.``ArgumentError`This exception is raised when a foreign function call cannot convert one of the passed arguments.
### Function prototypes
Foreign functions can also be created by instantiating function prototypes. Function prototypes are similar to function prototypes in C; they describe a function (return type, argument types, calling convention) without defining an implementation. The factory functions must be called with the desired result type and the argument types of the function, and can be used as decorator factories, and as such, be applied to functions through the `@wrapper` syntax. See [Callback functions](#ctypes-callback-functions) for examples.
`ctypes.``CFUNCTYPE`(*restype*, *\*argtypes*, *use\_errno=False*, *use\_last\_error=False*)The returned function prototype creates functions that use the standard C calling convention. The function will release the GIL during the call. If *use\_errno* is set to true, the ctypes private copy of the system [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.") variable is exchanged with the real [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.") value before and after the call; *use\_last\_error* does the same for the Windows error code.
`ctypes.``WINFUNCTYPE`(*restype*, *\*argtypes*, *use\_errno=False*, *use\_last\_error=False*)Windows only: The returned function prototype creates functions that use the `stdcall` calling convention, except on Windows CE where [`WINFUNCTYPE()`](#ctypes.WINFUNCTYPE "ctypes.WINFUNCTYPE") is the same as [`CFUNCTYPE()`](#ctypes.CFUNCTYPE "ctypes.CFUNCTYPE"). The function will release the GIL during the call. *use\_errno* and *use\_last\_error* have the same meaning as above.
`ctypes.``PYFUNCTYPE`(*restype*, *\*argtypes*)The returned function prototype creates functions that use the Python calling convention. The function will *not* release the GIL during the call.
Function prototypes created by these factory functions can be instantiated in different ways, depending on the type and number of the parameters in the call:
> `prototype`(*address*)Returns a foreign function at the specified address which must be an integer.
>
> `prototype`(*callable*)Create a C callable function (a callback function) from a Python *callable*.
>
> `prototype`(*func\_spec*\[, *paramflags*\])Returns a foreign function exported by a shared library. *func\_spec* must be a 2-tuple `(name_or_ordinal, library)`. The first item is the name of the exported function as string, or the ordinal of the exported function as small integer. The second item is the shared library instance.
>
> `prototype`(*vtbl\_index*, *name*\[, *paramflags*\[, *iid*\]\])Returns a foreign function that will call a COM method. *vtbl\_index* is the index into the virtual function table, a small non-negative integer. *name* is name of the COM method. *iid* is an optional pointer to the interface identifier which is used in extended error reporting.
>
> COM methods use a special calling convention: They require a pointer to the COM interface as first argument, in addition to those parameters that are specified in the `argtypes` tuple.
>
> The optional *paramflags* parameter creates foreign function wrappers with much more functionality than the features described above.
>
> *paramflags* must be a tuple of the same length as `argtypes`.
>
> Each item in this tuple contains further information about a parameter, it must be a tuple containing one, two, or three items.
>
> The first item is an integer containing a combination of direction flags for the parameter:
>
> > 1Specifies an input parameter to the function.
> >
> > 2Output parameter. The foreign function fills in a value.
> >
> > 4Input parameter which defaults to the integer zero.
>
> The optional second item is the parameter name as string. If this is specified, the foreign function can be called with named parameters.
>
> The optional third item is the default value for this parameter.
This example demonstrates how to wrap the Windows `MessageBoxW` function so that it supports default parameters and named arguments. The C declaration from the windows header file is this:
```
WINUSERAPI int WINAPI
MessageBoxW(
HWND hWnd,
LPCWSTR lpText,
LPCWSTR lpCaption,
UINT uType);
```
Here is the wrapping with [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python."):
```
>>> from ctypes import c_int, WINFUNCTYPE, windll
>>> from ctypes.wintypes import HWND, LPCWSTR, UINT
>>> prototype = WINFUNCTYPE(c_int, HWND, LPCWSTR, LPCWSTR, UINT)
>>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", "Hello from ctypes"), (1, "flags", 0)
>>> MessageBox = prototype(("MessageBoxW", windll.user32), paramflags)
```
The `MessageBox` foreign function can now be called in these ways:
```
>>> MessageBox()
>>> MessageBox(text="Spam, spam, spam")
>>> MessageBox(flags=2, text="foo bar")
```
A second example demonstrates output parameters. The win32 `GetWindowRect`function retrieves the dimensions of a specified window by copying them into `RECT` structure that the caller has to supply. Here is the C declaration:
```
WINUSERAPI BOOL WINAPI
GetWindowRect(
HWND hWnd,
LPRECT lpRect);
```
Here is the wrapping with [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python."):
```
>>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError
>>> from ctypes.wintypes import BOOL, HWND, RECT
>>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))
>>> paramflags = (1, "hwnd"), (2, "lprect")
>>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)
>>>
```
Functions with output parameters will automatically return the output parameter value if there is a single one, or a tuple containing the output parameter values when there are more than one, so the GetWindowRect function now returns a RECT instance, when called.
Output parameters can be combined with the `errcheck` protocol to do further output processing and error checking. The win32 `GetWindowRect` api function returns a `BOOL` to signal success or failure, so this function could do the error checking, and raises an exception when the api call failed:
```
>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... return args
...
>>> GetWindowRect.errcheck = errcheck
>>>
```
If the `errcheck` function returns the argument tuple it receives unchanged, [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") continues the normal processing it does on the output parameters. If you want to return a tuple of window coordinates instead of a `RECT` instance, you can retrieve the fields in the function and return them instead, the normal processing will no longer take place:
```
>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... rc = args[1]
... return rc.left, rc.top, rc.bottom, rc.right
...
>>> GetWindowRect.errcheck = errcheck
>>>
```
### Utility functions
`ctypes.``addressof`(*obj*)Returns the address of the memory buffer as integer. *obj* must be an instance of a ctypes type.
`ctypes.``alignment`(*obj\_or\_type*)Returns the alignment requirements of a ctypes type. *obj\_or\_type* must be a ctypes type or instance.
`ctypes.``byref`(*obj*\[, *offset*\])Returns a light-weight pointer to *obj*, which must be an instance of a ctypes type. *offset* defaults to zero, and must be an integer that will be added to the internal pointer value.
`byref(obj, offset)` corresponds to this C code:
```
(((char *)&obj) + offset)
```
The returned object can only be used as a foreign function call parameter. It behaves similar to `pointer(obj)`, but the construction is a lot faster.
`ctypes.``cast`(*obj*, *type*)This function is similar to the cast operator in C. It returns a new instance of *type* which points to the same memory block as *obj*. *type* must be a pointer type, and *obj* must be an object that can be interpreted as a pointer.
`ctypes.``create_string_buffer`(*init\_or\_size*, *size=None*)This function creates a mutable character buffer. The returned object is a ctypes array of [`c_char`](#ctypes.c_char "ctypes.c_char").
*init\_or\_size* must be an integer which specifies the size of the array, or a bytes object which will be used to initialize the array items.
If a bytes object is specified as first argument, the buffer is made one item larger than its length so that the last element in the array is a NUL termination character. An integer can be passed as second argument which allows specifying the size of the array if the length of the bytes should not be used.
`ctypes.``create_unicode_buffer`(*init\_or\_size*, *size=None*)This function creates a mutable unicode character buffer. The returned object is a ctypes array of [`c_wchar`](#ctypes.c_wchar "ctypes.c_wchar").
*init\_or\_size* must be an integer which specifies the size of the array, or a string which will be used to initialize the array items.
If a string is specified as first argument, the buffer is made one item larger than the length of the string so that the last element in the array is a NUL termination character. An integer can be passed as second argument which allows specifying the size of the array if the length of the string should not be used.
`ctypes.``DllCanUnloadNow`()Windows only: This function is a hook which allows implementing in-process COM servers with ctypes. It is called from the DllCanUnloadNow function that the \_ctypes extension dll exports.
`ctypes.``DllGetClassObject`()Windows only: This function is a hook which allows implementing in-process COM servers with ctypes. It is called from the DllGetClassObject function that the `_ctypes` extension dll exports.
`ctypes.util.``find_library`(*name*)Try to find a library and return a pathname. *name* is the library name without any prefix like `lib`, suffix like `.so`, `.dylib` or version number (this is the form used for the posix linker option `-l`). If no library can be found, returns `None`.
The exact functionality is system dependent.
`ctypes.util.``find_msvcrt`()Windows only: return the filename of the VC runtime library used by Python, and by the extension modules. If the name of the library cannot be determined, `None` is returned.
If you need to free memory, for example, allocated by an extension module with a call to the `free(void *)`, it is important that you use the function in the same library that allocated the memory.
`ctypes.``FormatError`(\[*code*\])Windows only: Returns a textual description of the error code *code*. If no error code is specified, the last error code is used by calling the Windows api function GetLastError.
`ctypes.``GetLastError`()Windows only: Returns the last error code set by Windows in the calling thread. This function calls the Windows GetLastError() function directly, it does not return the ctypes-private copy of the error code.
`ctypes.``get_errno`()Returns the current value of the ctypes-private copy of the system [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.") variable in the calling thread.
`ctypes.``get_last_error`()Windows only: returns the current value of the ctypes-private copy of the system `LastError` variable in the calling thread.
`ctypes.``memmove`(*dst*, *src*, *count*)Same as the standard C memmove library function: copies *count* bytes from *src* to *dst*. *dst* and *src* must be integers or ctypes instances that can be converted to pointers.
`ctypes.``memset`(*dst*, *c*, *count*)Same as the standard C memset library function: fills the memory block at address *dst* with *count* bytes of value *c*. *dst* must be an integer specifying an address, or a ctypes instance.
`ctypes.``POINTER`(*type*)This factory function creates and returns a new ctypes pointer type. Pointer types are cached and reused internally, so calling this function repeatedly is cheap. *type* must be a ctypes type.
`ctypes.``pointer`(*obj*)This function creates a new pointer instance, pointing to *obj*. The returned object is of the type `POINTER(type(obj))`.
Note: If you just want to pass a pointer to an object to a foreign function call, you should use `byref(obj)` which is much faster.
`ctypes.``resize`(*obj*, *size*)This function resizes the internal memory buffer of *obj*, which must be an instance of a ctypes type. It is not possible to make the buffer smaller than the native size of the objects type, as given by `sizeof(type(obj))`, but it is possible to enlarge the buffer.
`ctypes.``set_errno`(*value*)Set the current value of the ctypes-private copy of the system [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.")variable in the calling thread to *value* and return the previous value.
`ctypes.``set_last_error`(*value*)Windows only: set the current value of the ctypes-private copy of the system `LastError` variable in the calling thread to *value* and return the previous value.
`ctypes.``sizeof`(*obj\_or\_type*)Returns the size in bytes of a ctypes type or instance memory buffer. Does the same as the C `sizeof` operator.
`ctypes.``string_at`(*address*, *size=-1*)This function returns the C string starting at memory address *address* as a bytes object. If size is specified, it is used as size, otherwise the string is assumed to be zero-terminated.
`ctypes.``WinError`(*code=None*, *descr=None*)Windows only: this function is probably the worst-named thing in ctypes. It creates an instance of OSError. If *code* is not specified, `GetLastError` is called to determine the error code. If *descr* is not specified, [`FormatError()`](#ctypes.FormatError "ctypes.FormatError") is called to get a textual description of the error.
在 3.3 版更改: An instance of [`WindowsError`](exceptions.xhtml#WindowsError "WindowsError") used to be created.
`ctypes.``wstring_at`(*address*, *size=-1*)This function returns the wide character string starting at memory address *address* as a string. If *size* is specified, it is used as the number of characters of the string, otherwise the string is assumed to be zero-terminated.
### Data types
*class* `ctypes.``_CData`This non-public class is the common base class of all ctypes data types. Among other things, all ctypes type instances contain a memory block that hold C compatible data; the address of the memory block is returned by the [`addressof()`](#ctypes.addressof "ctypes.addressof") helper function. Another instance variable is exposed as [`_objects`](#ctypes._CData._objects "ctypes._CData._objects"); this contains other Python objects that need to be kept alive in case the memory block contains pointers.
Common methods of ctypes data types, these are all class methods (to be exact, they are methods of the [metaclass](../glossary.xhtml#term-metaclass)):
`from_buffer`(*source*\[, *offset*\])This method returns a ctypes instance that shares the buffer of the *source* object. The *source* object must support the writeable buffer interface. The optional *offset* parameter specifies an offset into the source buffer in bytes; the default is zero. If the source buffer is not large enough a [`ValueError`](exceptions.xhtml#ValueError "ValueError") is raised.
`from_buffer_copy`(*source*\[, *offset*\])This method creates a ctypes instance, copying the buffer from the *source* object buffer which must be readable. The optional *offset*parameter specifies an offset into the source buffer in bytes; the default is zero. If the source buffer is not large enough a [`ValueError`](exceptions.xhtml#ValueError "ValueError") is raised.
`from_address`(*address*)This method returns a ctypes type instance using the memory specified by *address* which must be an integer.
`from_param`(*obj*)This method adapts *obj* to a ctypes type. It is called with the actual object used in a foreign function call when the type is present in the foreign function's `argtypes` tuple; it must return an object that can be used as a function call parameter.
All ctypes data types have a default implementation of this classmethod that normally returns *obj* if that is an instance of the type. Some types accept other objects as well.
`in_dll`(*library*, *name*)This method returns a ctypes type instance exported by a shared library. *name* is the name of the symbol that exports the data, *library*is the loaded shared library.
Common instance variables of ctypes data types:
`_b_base_`Sometimes ctypes data instances do not own the memory block they contain, instead they share part of the memory block of a base object. The [`_b_base_`](#ctypes._CData._b_base_ "ctypes._CData._b_base_") read-only member is the root ctypes object that owns the memory block.
`_b_needsfree_`This read-only variable is true when the ctypes data instance has allocated the memory block itself, false otherwise.
`_objects`This member is either `None` or a dictionary containing Python objects that need to be kept alive so that the memory block contents is kept valid. This object is only exposed for debugging; never modify the contents of this dictionary.
### 基礎數據類型
*class* `ctypes.``_SimpleCData`This non-public class is the base class of all fundamental ctypes data types. It is mentioned here because it contains the common attributes of the fundamental ctypes data types. [`_SimpleCData`](#ctypes._SimpleCData "ctypes._SimpleCData") is a subclass of [`_CData`](#ctypes._CData "ctypes._CData"), so it inherits their methods and attributes. ctypes data types that are not and do not contain pointers can now be pickled.
Instances have a single attribute:
`value`This attribute contains the actual value of the instance. For integer and pointer types, it is an integer, for character types, it is a single character bytes object or string, for character pointer types it is a Python bytes object or string.
When the `value` attribute is retrieved from a ctypes instance, usually a new object is returned each time. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") does *not* implement original object return, always a new object is constructed. The same is true for all other ctypes object instances.
Fundamental data types, when returned as foreign function call results, or, for example, by retrieving structure field members or array items, are transparently converted to native Python types. In other words, if a foreign function has a `restype` of [`c_char_p`](#ctypes.c_char_p "ctypes.c_char_p"), you will always receive a Python bytes object, *not* a [`c_char_p`](#ctypes.c_char_p "ctypes.c_char_p") instance.
Subclasses of fundamental data types do *not* inherit this behavior. So, if a foreign functions `restype` is a subclass of [`c_void_p`](#ctypes.c_void_p "ctypes.c_void_p"), you will receive an instance of this subclass from the function call. Of course, you can get the value of the pointer by accessing the `value` attribute.
These are the fundamental ctypes data types:
*class* `ctypes.``c_byte`Represents the C `signed char` datatype, and interprets the value as small integer. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_char`Represents the C `char` datatype, and interprets the value as a single character. The constructor accepts an optional string initializer, the length of the string must be exactly one character.
*class* `ctypes.``c_char_p`Represents the C `char *` datatype when it points to a zero-terminated string. For a general character pointer that may also point to binary data, `POINTER(c_char)` must be used. The constructor accepts an integer address, or a bytes object.
*class* `ctypes.``c_double`Represents the C `double` datatype. The constructor accepts an optional float initializer.
*class* `ctypes.``c_longdouble`Represents the C `long double` datatype. The constructor accepts an optional float initializer. On platforms where
```
sizeof(long double) ==
sizeof(double)
```
it is an alias to [`c_double`](#ctypes.c_double "ctypes.c_double").
*class* `ctypes.``c_float`Represents the C `float` datatype. The constructor accepts an optional float initializer.
*class* `ctypes.``c_int`Represents the C `signed int` datatype. The constructor accepts an optional integer initializer; no overflow checking is done. On platforms where `sizeof(int) == sizeof(long)` it is an alias to [`c_long`](#ctypes.c_long "ctypes.c_long").
*class* `ctypes.``c_int8`Represents the C 8-bit `signed int` datatype. Usually an alias for [`c_byte`](#ctypes.c_byte "ctypes.c_byte").
*class* `ctypes.``c_int16`Represents the C 16-bit `signed int` datatype. Usually an alias for [`c_short`](#ctypes.c_short "ctypes.c_short").
*class* `ctypes.``c_int32`Represents the C 32-bit `signed int` datatype. Usually an alias for [`c_int`](#ctypes.c_int "ctypes.c_int").
*class* `ctypes.``c_int64`Represents the C 64-bit `signed int` datatype. Usually an alias for [`c_longlong`](#ctypes.c_longlong "ctypes.c_longlong").
*class* `ctypes.``c_long`Represents the C `signed long` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_longlong`Represents the C `signed long long` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_short`Represents the C `signed short` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_size_t`Represents the C `size_t` datatype.
*class* `ctypes.``c_ssize_t`Represents the C `ssize_t` datatype.
3\.2 新版功能.
*class* `ctypes.``c_ubyte`Represents the C `unsigned char` datatype, it interprets the value as small integer. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_uint`Represents the C `unsigned int` datatype. The constructor accepts an optional integer initializer; no overflow checking is done. On platforms where `sizeof(int) == sizeof(long)` it is an alias for [`c_ulong`](#ctypes.c_ulong "ctypes.c_ulong").
*class* `ctypes.``c_uint8`Represents the C 8-bit `unsigned int` datatype. Usually an alias for [`c_ubyte`](#ctypes.c_ubyte "ctypes.c_ubyte").
*class* `ctypes.``c_uint16`Represents the C 16-bit `unsigned int` datatype. Usually an alias for [`c_ushort`](#ctypes.c_ushort "ctypes.c_ushort").
*class* `ctypes.``c_uint32`Represents the C 32-bit `unsigned int` datatype. Usually an alias for [`c_uint`](#ctypes.c_uint "ctypes.c_uint").
*class* `ctypes.``c_uint64`Represents the C 64-bit `unsigned int` datatype. Usually an alias for [`c_ulonglong`](#ctypes.c_ulonglong "ctypes.c_ulonglong").
*class* `ctypes.``c_ulong`Represents the C `unsigned long` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_ulonglong`Represents the C `unsigned long long` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_ushort`Represents the C `unsigned short` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_void_p`Represents the C `void *` type. The value is represented as integer. The constructor accepts an optional integer initializer.
*class* `ctypes.``c_wchar`Represents the C `wchar_t` datatype, and interprets the value as a single character unicode string. The constructor accepts an optional string initializer, the length of the string must be exactly one character.
*class* `ctypes.``c_wchar_p`Represents the C `wchar_t *` datatype, which must be a pointer to a zero-terminated wide character string. The constructor accepts an integer address, or a string.
*class* `ctypes.``c_bool`Represent the C `bool` datatype (more accurately, `_Bool` from C99). Its value can be `True` or `False`, and the constructor accepts any object that has a truth value.
*class* `ctypes.``HRESULT`Windows only: Represents a `HRESULT` value, which contains success or error information for a function or method call.
*class* `ctypes.``py_object`Represents the C [`PyObject *`](../c-api/structures.xhtml#c.PyObject "PyObject") datatype. Calling this without an argument creates a `NULL` [`PyObject *`](../c-api/structures.xhtml#c.PyObject "PyObject") pointer.
The `ctypes.wintypes` module provides quite some other Windows specific data types, for example `HWND`, `WPARAM`, or `DWORD`. Some useful structures like `MSG` or `RECT` are also defined.
### Structured data types
*class* `ctypes.``Union`(*\*args*, *\*\*kw*)Abstract base class for unions in native byte order.
*class* `ctypes.``BigEndianStructure`(*\*args*, *\*\*kw*)Abstract base class for structures in *big endian* byte order.
*class* `ctypes.``LittleEndianStructure`(*\*args*, *\*\*kw*)Abstract base class for structures in *little endian* byte order.
Structures with non-native byte order cannot contain pointer type fields, or any other data types containing pointer type fields.
*class* `ctypes.``Structure`(*\*args*, *\*\*kw*)Abstract base class for structures in *native* byte order.
Concrete structure and union types must be created by subclassing one of these types, and at least define a [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") class variable. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") will create [descriptor](../glossary.xhtml#term-descriptor)s which allow reading and writing the fields by direct attribute accesses. These are the
`_fields_`A sequence defining the structure fields. The items must be 2-tuples or 3-tuples. The first item is the name of the field, the second item specifies the type of the field; it can be any ctypes data type.
For integer type fields like [`c_int`](#ctypes.c_int "ctypes.c_int"), a third optional item can be given. It must be a small positive integer defining the bit width of the field.
Field names must be unique within one structure or union. This is not checked, only one field can be accessed when names are repeated.
It is possible to define the [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") class variable *after* the class statement that defines the Structure subclass, this allows creating data types that directly or indirectly reference themselves:
```
class List(Structure):
pass
List._fields_ = [("pnext", POINTER(List)),
...
]
```
The [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") class variable must, however, be defined before the type is first used (an instance is created, [`sizeof()`](#ctypes.sizeof "ctypes.sizeof") is called on it, and so on). Later assignments to the [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") class variable will raise an AttributeError.
It is possible to define sub-subclasses of structure types, they inherit the fields of the base class plus the [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") defined in the sub-subclass, if any.
`_pack_`An optional small integer that allows overriding the alignment of structure fields in the instance. [`_pack_`](#ctypes.Structure._pack_ "ctypes.Structure._pack_") must already be defined when [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") is assigned, otherwise it will have no effect.
`_anonymous_`An optional sequence that lists the names of unnamed (anonymous) fields. [`_anonymous_`](#ctypes.Structure._anonymous_ "ctypes.Structure._anonymous_") must be already defined when [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") is assigned, otherwise it will have no effect.
The fields listed in this variable must be structure or union type fields. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") will create descriptors in the structure type that allows accessing the nested fields directly, without the need to create the structure or union field.
Here is an example type (Windows):
```
class _U(Union):
_fields_ = [("lptdesc", POINTER(TYPEDESC)),
("lpadesc", POINTER(ARRAYDESC)),
("hreftype", HREFTYPE)]
class TYPEDESC(Structure):
_anonymous_ = ("u",)
_fields_ = [("u", _U),
("vt", VARTYPE)]
```
The `TYPEDESC` structure describes a COM data type, the `vt` field specifies which one of the union fields is valid. Since the `u` field is defined as anonymous field, it is now possible to access the members directly off the TYPEDESC instance. `td.lptdesc` and `td.u.lptdesc`are equivalent, but the former is faster since it does not need to create a temporary union instance:
```
td = TYPEDESC()
td.vt = VT_PTR
td.lptdesc = POINTER(some_type)
td.u.lptdesc = POINTER(some_type)
```
It is possible to define sub-subclasses of structures, they inherit the fields of the base class. If the subclass definition has a separate [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") variable, the fields specified in this are appended to the fields of the base class.
Structure and union constructors accept both positional and keyword arguments. Positional arguments are used to initialize member fields in the same order as they are appear in [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_"). Keyword arguments in the constructor are interpreted as attribute assignments, so they will initialize [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") with the same name, or create new attributes for names not present in [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_").
### Arrays and pointers
*class* `ctypes.``Array`(*\*args*)Abstract base class for arrays.
The recommended way to create concrete array types is by multiplying any [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") data type with a positive integer. Alternatively, you can subclass this type and define [`_length_`](#ctypes.Array._length_ "ctypes.Array._length_") and [`_type_`](#ctypes.Array._type_ "ctypes.Array._type_") class variables. Array elements can be read and written using standard subscript and slice accesses; for slice reads, the resulting object is *not* itself an [`Array`](#ctypes.Array "ctypes.Array").
`_length_`A positive integer specifying the number of elements in the array. Out-of-range subscripts result in an [`IndexError`](exceptions.xhtml#IndexError "IndexError"). Will be returned by [`len()`](functions.xhtml#len "len").
`_type_`Specifies the type of each element in the array.
Array subclass constructors accept positional arguments, used to initialize the elements in order.
*class* `ctypes.``_Pointer`Private, abstract base class for pointers.
Concrete pointer types are created by calling [`POINTER()`](#ctypes.POINTER "ctypes.POINTER") with the type that will be pointed to; this is done automatically by [`pointer()`](#ctypes.pointer "ctypes.pointer").
If a pointer points to an array, its elements can be read and written using standard subscript and slice accesses. Pointer objects have no size, so [`len()`](functions.xhtml#len "len") will raise [`TypeError`](exceptions.xhtml#TypeError "TypeError"). Negative subscripts will read from the memory *before* the pointer (as in C), and out-of-range subscripts will probably crash with an access violation (if you're lucky).
`_type_`Specifies the type pointed to.
`contents`Returns the object to which to pointer points. Assigning to this attribute changes the pointer to point to the assigned object.
### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](concurrency.xhtml "并發執行") |
- [上一頁](errno.xhtml "errno --- Standard errno system symbols") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 標準庫](index.xhtml) ?
- [通用操作系統服務](allos.xhtml) ?
- $('.inline-search').show(0); |
? [版權所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 軟件基金會是一個非盈利組織。 [請捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [發現了問題](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 創建。
- Python文檔內容
- Python 有什么新變化?
- Python 3.7 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- C API 的改變
- 構建的改變
- 性能優化
- 其他 CPython 實現的改變
- 已棄用的 Python 行為
- 已棄用的 Python 模塊、函數和方法
- 已棄用的 C API 函數和類型
- 平臺支持的移除
- API 與特性的移除
- 移除的模塊
- Windows 專屬的改變
- 移植到 Python 3.7
- Python 3.7.1 中的重要變化
- Python 3.7.2 中的重要變化
- Python 3.6 有什么新變化A
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 其他改進
- 棄用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要變化
- Python 3.6.4 中的重要變化
- Python 3.6.5 中的重要變化
- Python 3.6.7 中的重要變化
- Python 3.5 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- Other module-level changes
- 性能優化
- Build and C API Changes
- 棄用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 發布重點
- 新的特性
- 新增模塊
- 改進的模塊
- CPython Implementation Changes
- 棄用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 發布重點
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他語言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 棄用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 多線程
- 性能優化
- Unicode
- Codecs
- 文檔
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 性能優化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他語言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新變化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他語言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他語言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推導式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最終版
- Python 3.7.3 發布候選版 1
- Python 3.7.2 最終版
- Python 3.7.2 發布候選版 1
- Python 3.7.1 最終版
- Python 3.7.1 RC 2版本
- Python 3.7.1 發布候選版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 課前甜點
- 使用 Python 解釋器
- 調用解釋器
- 解釋器的運行環境
- Python 的非正式介紹
- Python 作為計算器使用
- 走向編程的第一步
- 其他流程控制工具
- if 語句
- for 語句
- range() 函數
- break 和 continue 語句,以及循環中的 else 子句
- pass 語句
- 定義函數
- 函數定義的更多形式
- 小插曲:編碼風格
- 數據結構
- 列表的更多特性
- del 語句
- 元組和序列
- 集合
- 字典
- 循環的技巧
- 深入條件控制
- 序列和其它類型的比較
- 模塊
- 有關模塊的更多信息
- 標準模塊
- dir() 函數
- 包
- 輸入輸出
- 更漂亮的輸出格式
- 讀寫文件
- 錯誤和異常
- 語法錯誤
- 異常
- 處理異常
- 拋出異常
- 用戶自定義異常
- 定義清理操作
- 預定義的清理操作
- 類
- 名稱和對象
- Python 作用域和命名空間
- 初探類
- 補充說明
- 繼承
- 私有變量
- 雜項說明
- 迭代器
- 生成器
- 生成器表達式
- 標準庫簡介
- 操作系統接口
- 文件通配符
- 命令行參數
- 錯誤輸出重定向和程序終止
- 字符串模式匹配
- 數學
- 互聯網訪問
- 日期和時間
- 數據壓縮
- 性能測量
- 質量控制
- 自帶電池
- 標準庫簡介 —— 第二部分
- 格式化輸出
- 模板
- 使用二進制數據記錄格式
- 多線程
- 日志
- 弱引用
- 用于操作列表的工具
- 十進制浮點運算
- 虛擬環境和包
- 概述
- 創建虛擬環境
- 使用pip管理包
- 接下來?
- 交互式編輯和編輯歷史
- Tab 補全和編輯歷史
- 默認交互式解釋器的替代品
- 浮點算術:爭議和限制
- 表示性錯誤
- 附錄
- 交互模式
- 安裝和使用 Python
- 命令行與環境
- 命令行
- 環境變量
- 在Unix平臺中使用Python
- 獲取最新版本的Python
- 構建Python
- 與Python相關的路徑和文件
- 雜項
- 編輯器和集成開發環境
- 在Windows上使用 Python
- 完整安裝程序
- Microsoft Store包
- nuget.org 安裝包
- 可嵌入的包
- 替代捆綁包
- 配置Python
- 適用于Windows的Python啟動器
- 查找模塊
- 附加模塊
- 在Windows上編譯Python
- 其他平臺
- 在蘋果系統上使用 Python
- 獲取和安裝 MacPython
- IDE
- 安裝額外的 Python 包
- Mac 上的圖形界面編程
- 在 Mac 上分發 Python 應用程序
- 其他資源
- Python 語言參考
- 概述
- 其他實現
- 標注
- 詞法分析
- 行結構
- 其他形符
- 標識符和關鍵字
- 字面值
- 運算符
- 分隔符
- 數據模型
- 對象、值與類型
- 標準類型層級結構
- 特殊方法名稱
- 協程
- 執行模型
- 程序的結構
- 命名與綁定
- 異常
- 導入系統
- importlib
- 包
- 搜索
- 加載
- 基于路徑的查找器
- 替換標準導入系統
- Package Relative Imports
- 有關 main 的特殊事項
- 開放問題項
- 參考文獻
- 表達式
- 算術轉換
- 原子
- 原型
- await 表達式
- 冪運算符
- 一元算術和位運算
- 二元算術運算符
- 移位運算
- 二元位運算
- 比較運算
- 布爾運算
- 條件表達式
- lambda 表達式
- 表達式列表
- 求值順序
- 運算符優先級
- 簡單語句
- 表達式語句
- 賦值語句
- assert 語句
- pass 語句
- del 語句
- return 語句
- yield 語句
- raise 語句
- break 語句
- continue 語句
- import 語句
- global 語句
- nonlocal 語句
- 復合語句
- if 語句
- while 語句
- for 語句
- try 語句
- with 語句
- 函數定義
- 類定義
- 協程
- 最高層級組件
- 完整的 Python 程序
- 文件輸入
- 交互式輸入
- 表達式輸入
- 完整的語法規范
- Python 標準庫
- 概述
- 可用性注釋
- 內置函數
- 內置常量
- 由 site 模塊添加的常量
- 內置類型
- 邏輯值檢測
- 布爾運算 — and, or, not
- 比較
- 數字類型 — int, float, complex
- 迭代器類型
- 序列類型 — list, tuple, range
- 文本序列類型 — str
- 二進制序列類型 — bytes, bytearray, memoryview
- 集合類型 — set, frozenset
- 映射類型 — dict
- 上下文管理器類型
- 其他內置類型
- 特殊屬性
- 內置異常
- 基類
- 具體異常
- 警告
- 異常層次結構
- 文本處理服務
- string — 常見的字符串操作
- re — 正則表達式操作
- 模塊 difflib 是一個計算差異的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 數據庫
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函數
- 二進制數據服務
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 數據類型
- datetime — 基礎日期/時間數據類型
- calendar — General calendar-related functions
- collections — 容器數據類型
- collections.abc — 容器的抽象基類
- heapq — 堆隊列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 淺層 (shallow) 和深層 (deep) 復制操作
- pprint — 數據美化輸出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 數字和數學模塊
- numbers — 數字的抽象基類
- math — 數學函數
- cmath — Mathematical functions for complex numbers
- decimal — 十進制定點和浮點運算
- fractions — 分數
- random — 生成偽隨機數
- statistics — Mathematical statistics functions
- 函數式編程模塊
- itertools — 為高效循環而創建迭代器的函數
- functools — 高階函數和可調用對象上的操作
- operator — 標準運算符替代函數
- 文件和目錄訪問
- pathlib — 面向對象的文件系統路徑
- os.path — 常見路徑操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路徑操作函數
- 數據持久化
- pickle —— Python 對象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 數據庫 DB-API 2.0 接口模塊
- 數據壓縮和存檔
- zlib — 與 gzip 兼容的壓縮
- gzip — 對 gzip 格式的支持
- bz2 — 對 bzip2 壓縮算法的支持
- lzma — 用 LZMA 算法壓縮
- zipfile — 在 ZIP 歸檔中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件讀寫
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服務
- hashlib — 安全哈希與消息摘要
- hmac — 基于密鑰的消息驗證
- secrets — Generate secure random numbers for managing secrets
- 通用操作系統服務
- os — 操作系統接口模塊
- io — 處理流的核心工具
- time — 時間的訪問和轉換
- argparse — 命令行選項、參數和子命令解析器
- getopt — C-style parser for command line options
- 模塊 logging — Python 的日志記錄工具
- logging.config — 日志記錄配置
- logging.handlers — Logging handlers
- getpass — 便攜式密碼輸入工具
- curses — 終端字符單元顯示的處理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函數庫
- 并發執行
- threading — 基于線程的并行
- multiprocessing — 基于進程的并行
- concurrent 包
- concurrent.futures — 啟動并行任務
- subprocess — 子進程管理
- sched — 事件調度器
- queue — 一個同步的隊列類
- _thread — 底層多線程 API
- _dummy_thread — _thread 的替代模塊
- dummy_threading — 可直接替代 threading 模塊。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 網絡和進程間通信
- asyncio — 異步 I/O
- socket — 底層網絡接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高級 I/O 復用庫
- asyncore — 異步socket處理器
- asynchat — 異步 socket 指令/響應 處理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互聯網數據處理
- email — 電子郵件與 MIME 處理包
- json — JSON 編碼和解碼器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 數據編碼
- binhex — 對binhex4文件進行編碼和解碼
- binascii — 二進制和 ASCII 碼互轉
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 結構化標記處理工具
- html — 超文本標記語言支持
- html.parser — 簡單的 HTML 和 XHTML 解析器
- html.entities — HTML 一般實體的定義
- XML處理模塊
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互聯網協議和支持
- webbrowser — 方便的Web瀏覽器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 處理模塊
- urllib.request — 用于打開 URL 的可擴展庫
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模塊
- http.client — HTTP協議客戶端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP協議客戶端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服務器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服務端與客戶端模塊
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒體服務
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 讀寫 Sun AU 文件
- wave — 讀寫WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推測圖像類型
- sndhdr — 推測聲音文件的類型
- ossaudiodev — Access to OSS-compatible audio devices
- 國際化
- gettext — 多語種國際化服務
- locale — 國際化服務
- 程序框架
- turtle — 海龜繪圖
- cmd — 支持面向行的命令解釋器
- shlex — Simple lexical analysis
- Tk圖形用戶界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滾動文字控件
- IDLE
- 其他圖形用戶界面(GUI)包
- 開發工具
- typing — 類型標注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 單元測試框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自動將 Python 2 代碼轉為 Python 3 代碼
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 調試和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 測量小代碼片段的執行時間
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 軟件打包和分發
- distutils — 構建和安裝 Python 模塊
- ensurepip — Bootstrapping the pip installer
- venv — 創建虛擬環境
- zipapp — Manage executable Python zip archives
- Python運行時服務
- sys — 系統相關的參數和函數
- sysconfig — Provide access to Python's configuration information
- builtins — 內建對象
- main — 頂層腳本環境
- warnings — Warning control
- dataclasses — 數據類
- contextlib — Utilities for with-statement contexts
- abc — 抽象基類
- atexit — 退出處理器
- traceback — Print or retrieve a stack traceback
- future — Future 語句定義
- gc — 垃圾回收器接口
- inspect — 檢查對象
- site — Site-specific configuration hook
- 自定義 Python 解釋器
- code — Interpreter base classes
- codeop — Compile Python code
- 導入模塊
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找腳本使用的模塊
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 語言服務
- parser — Access Python parse trees
- ast — 抽象語法樹
- symtable — Access to the compiler's symbol tables
- symbol — 與 Python 解析樹一起使用的常量
- token — 與Python解析樹一起使用的常量
- keyword — 檢驗Python關鍵字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊縮進檢測
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字節碼反匯編器
- pickletools — Tools for pickle developers
- 雜項服務
- formatter — Generic output formatting
- Windows系統相關模塊
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注冊表訪問
- winsound — Sound-playing interface for Windows
- Unix 專有服務
- posix — The most common POSIX system calls
- pwd — 用戶密碼數據庫
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 終端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 庫例程
- 被取代的模塊
- optparse — Parser for command line options
- imp — Access the import internals
- 未創建文檔的模塊
- 平臺特定模塊
- 擴展和嵌入 Python 解釋器
- 推薦的第三方工具
- 不使用第三方工具創建擴展
- 使用 C 或 C++ 擴展 Python
- 自定義擴展類型:教程
- 定義擴展類型:已分類主題
- 構建C/C++擴展
- 在Windows平臺編譯C和C++擴展
- 在更大的應用程序中嵌入 CPython 運行時
- Embedding Python in Another Application
- Python/C API 參考手冊
- 概述
- 代碼標準
- 包含文件
- 有用的宏
- 對象、類型和引用計數
- 異常
- 嵌入Python
- 調試構建
- 穩定的應用程序二進制接口
- The Very High Level Layer
- Reference Counting
- 異常處理
- Printing and clearing
- 拋出異常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 標準異常
- 標準警告類別
- 工具
- 操作系統實用程序
- 系統功能
- 過程控制
- 導入模塊
- Data marshalling support
- 語句解釋及變量編譯
- 字符串轉換與格式化
- 反射
- 編解碼器注冊與支持功能
- 抽象對象層
- Object Protocol
- 數字協議
- Sequence Protocol
- Mapping Protocol
- 迭代器協議
- 緩沖協議
- Old Buffer Protocol
- 具體的對象層
- 基本對象
- 數值對象
- 序列對象
- 容器對象
- 函數對象
- 其他對象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置變量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 內存管理
- 概述
- 原始內存接口
- Memory Interface
- 對象分配器
- 默認內存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 對象實現支持
- 在堆中分配對象
- Common Object Structures
- Type 對象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使對象類型支持循環垃圾回收
- API 和 ABI 版本管理
- 分發 Python 模塊
- 關鍵術語
- 開源許可與協作
- 安裝工具
- 閱讀指南
- 我該如何...?
- ...為我的項目選擇一個名字?
- ...創建和分發二進制擴展?
- 安裝 Python 模塊
- 關鍵術語
- 基本使用
- 我應如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安裝 pip ?
- ... 只為當前用戶安裝軟件包?
- ... 安裝科學計算類 Python 軟件包?
- ... 使用并行安裝的多個 Python 版本?
- 常見的安裝問題
- 在 Linux 的系統 Python 版本上安裝
- 未安裝 pip
- 安裝二進制編譯擴展
- Python 常用指引
- 將 Python 2 代碼遷移到 Python 3
- 簡要說明
- 詳情
- 將擴展模塊移植到 Python 3
- 條件編譯
- 對象API的更改
- 模塊初始化和狀態
- CObject 替換為 Capsule
- 其他選項
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 實現描述器
- 摘要
- 定義和簡介
- 描述器協議
- 發起調用描述符
- 描述符示例
- Properties
- 函數和方法
- Static Methods and Class Methods
- 函數式編程指引
- 概述
- 迭代器
- 生成器表達式和列表推導式
- 生成器
- 內置函數
- itertools 模塊
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文獻
- 日志 HOWTO
- 日志基礎教程
- 進階日志教程
- 日志級別
- 有用的處理程序
- 記錄日志中引發的異常
- 使用任意對象作為消息
- 優化
- 日志操作手冊
- 在多個模塊中使用日志
- 在多線程中使用日志
- 使用多個日志處理器和多種格式化
- 在多個地方記錄日志
- 日志服務器配置示例
- 處理日志處理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正則表達式HOWTO
- 概述
- 簡單模式
- 使用正則表達式
- 更多模式能力
- 修改字符串
- 常見問題
- 反饋
- 套接字編程指南
- 套接字
- 創建套接字
- 使用一個套接字
- 斷開連接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 關鍵函數
- Operator 模塊函數
- 升序和降序
- 排序穩定性和排序復雜度
- 使用裝飾-排序-去裝飾的舊方法
- 使用 cmp 參數的舊方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包獲取網絡資源
- 概述
- Fetching URLs
- 處理異常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 腳注
- Argparse 教程
- 概念
- 基礎
- 位置參數介紹
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模塊介紹
- 創建 Address/Network/Interface 對象
- 審查 Address/Network/Interface 對象
- Network 作為 Address 列表
- 比較
- 將IP地址與其他模塊一起使用
- 實例創建失敗時獲取更多詳細信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 檢測CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常見問題
- Python常見問題
- 一般信息
- 現實世界中的 Python
- 編程常見問題
- 一般問題
- 核心語言
- 數字和字符串
- 性能
- 序列(元組/列表)
- 對象
- 模塊
- 設計和歷史常見問題
- 為什么Python使用縮進來分組語句?
- 為什么簡單的算術運算得到奇怪的結果?
- 為什么浮點計算不準確?
- 為什么Python字符串是不可變的?
- 為什么必須在方法定義和調用中顯式使用“self”?
- 為什么不能在表達式中賦值?
- 為什么Python對某些功能(例如list.index())使用方法來實現,而其他功能(例如len(List))使用函數實現?
- 為什么 join()是一個字符串方法而不是列表或元組方法?
- 異常有多快?
- 為什么Python中沒有switch或case語句?
- 難道不能在解釋器中模擬線程,而非得依賴特定于操作系統的線程實現嗎?
- 為什么lambda表達式不能包含語句?
- 可以將Python編譯為機器代碼,C或其他語言嗎?
- Python如何管理內存?
- 為什么CPython不使用更傳統的垃圾回收方案?
- CPython退出時為什么不釋放所有內存?
- 為什么有單獨的元組和列表數據類型?
- 列表是如何在CPython中實現的?
- 字典是如何在CPython中實現的?
- 為什么字典key必須是不可變的?
- 為什么 list.sort() 沒有返回排序列表?
- 如何在Python中指定和實施接口規范?
- 為什么沒有goto?
- 為什么原始字符串(r-strings)不能以反斜杠結尾?
- 為什么Python沒有屬性賦值的“with”語句?
- 為什么 if/while/def/class語句需要冒號?
- 為什么Python在列表和元組的末尾允許使用逗號?
- 代碼庫和插件 FAQ
- 通用的代碼庫問題
- 通用任務
- 線程相關
- 輸入輸出
- 網絡 / Internet 編程
- 數據庫
- 數學和數字
- 擴展/嵌入常見問題
- 可以使用C語言中創建自己的函數嗎?
- 可以使用C++語言中創建自己的函數嗎?
- C很難寫,有沒有其他選擇?
- 如何從C執行任意Python語句?
- 如何從C中評估任意Python表達式?
- 如何從Python對象中提取C的值?
- 如何使用Py_BuildValue()創建任意長度的元組?
- 如何從C調用對象的方法?
- 如何捕獲PyErr_Print()(或打印到stdout / stderr的任何內容)的輸出?
- 如何從C訪問用Python編寫的模塊?
- 如何從Python接口到C ++對象?
- 我使用Setup文件添加了一個模塊,為什么make失敗了?
- 如何調試擴展?
- 我想在Linux系統上編譯一個Python模塊,但是缺少一些文件。為什么?
- 如何區分“輸入不完整”和“輸入無效”?
- 如何找到未定義的g++符號__builtin_new或__pure_virtual?
- 能否創建一個對象類,其中部分方法在C中實現,而其他方法在Python中實現(例如通過繼承)?
- Python在Windows上的常見問題
- 我怎樣在Windows下運行一個Python程序?
- 我怎么讓 Python 腳本可執行?
- 為什么有時候 Python 程序會啟動緩慢?
- 我怎樣使用Python腳本制作可執行文件?
- *.pyd 文件和DLL文件相同嗎?
- 我怎樣將Python嵌入一個Windows程序?
- 如何讓編輯器不要在我的 Python 源代碼中插入 tab ?
- 如何在不阻塞的情況下檢查按鍵?
- 圖形用戶界面(GUI)常見問題
- 圖形界面常見問題
- Python 是否有平臺無關的圖形界面工具包?
- 有哪些Python的GUI工具是某個平臺專用的?
- 有關Tkinter的問題
- “為什么我的電腦上安裝了 Python ?”
- 什么是Python?
- 為什么我的電腦上安裝了 Python ?
- 我能刪除 Python 嗎?
- 術語對照表
- 文檔說明
- Python 文檔貢獻者
- 解決 Bug
- 文檔錯誤
- 使用 Python 的錯誤追蹤系統
- 開始為 Python 貢獻您的知識
- 版權
- 歷史和許可證
- 軟件歷史
- 訪問Python或以其他方式使用Python的條款和條件
- Python 3.7.3 的 PSF 許可協議
- Python 2.0 的 BeOpen.com 許可協議
- Python 1.6.1 的 CNRI 許可協議
- Python 0.9.0 至 1.2 的 CWI 許可協議
- 集成軟件的許可和認可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec