### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](stable.xhtml "穩定的應用程序二進制接口") |
- [上一頁](index.xhtml "Python/C API 參考手冊") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python/C API 參考手冊](index.xhtml) ?
- $('.inline-search').show(0); |
# 概述
Python 的應用編程接口(API)使得 C 和 C++ 程序員可以在多個層級上訪問 Python 解釋器。該 API 在 C++ 中同樣可用,但為簡化描述,通常將其稱為 Python/C API。使用 Python/C API 有兩個基本的理由。第一個理由是為了特定目的而編寫 *擴展模塊*;它們是擴展 Python 解釋器功能的 C 模塊。這可能是最常見的使用場景。第二個理由是將 Python 用作更大規模應用的組件;這種技巧通常被稱為在一個應用中 *embedding* Python。
編寫擴展模塊的過程相對來說更易于理解,可以通過“菜譜”的形式分步驟介紹。使用某些工具可在一定程度上自動化這一過程。雖然人們在其他應用中嵌入 Python 的做法早已有之,但嵌入 Python 的過程沒有編寫擴展模塊那樣方便直觀。
許多 API 函數在你嵌入或是擴展 Python 這兩種場景下都能發揮作用;此外,大多數嵌入 Python 的應用程序也需要提供自定義擴展,因此在嘗試在實際應用中嵌入 Python 之前先熟悉編寫擴展應該會是個好主意。
## 代碼標準
如果你想要編寫可包含于 CPython 的 C 代碼,你 **必須** 遵循在 [**PEP 7**](https://www.python.org/dev/peps/pep-0007) \[https://www.python.org/dev/peps/pep-0007\] 中定義的指導原則和標準。這些指導原則適用于任何你所要擴展的 Python 版本。在編寫你自己的第三方擴展模塊時可以不必遵循這些規范,除非你準備在日后向 Python 貢獻這些模塊。
## 包含文件
使用 Python/C API 所需要的全部函數、類型和宏定義可通過下面這行語句包含到你的代碼之中:
```
#define PY_SSIZE_T_CLEAN
#include <Python.h>
```
這意味著包含以下標準頭文件:`<stdio.h>`,`<string.h>`,`<errno.h>`,`<limits.h>`,`<assert.h>` 和 `<stdlib.h>`(如果可用)。
注解
由于 Python 可能會定義一些能在某些系統上影響標準頭文件的預處理器定義,因此在包含任何標準頭文件之前,你 *必須* 先包含 `Python.h`。
It is recommended to always define `PY_SSIZE_T_CLEAN` before including `Python.h`. See [語句解釋及變量編譯](arg.xhtml#arg-parsing) for a description of this macro.
Python.h 所定義的全部用戶可見名稱(由包含的標準頭文件所定義的除外)都帶有前綴 `Py` 或者 `_Py`。以 `_Py` 打頭的名稱是供 Python 實現內部使用的,不應被擴展編寫者使用。結構成員名稱沒有保留前綴。
**重要:** 用戶代碼永遠不應該定義以 `Py` `或 ``_Py` 開頭的名稱。這會使讀者感到困惑,并危及用戶代碼對未來 Python 版本的可移植性,因為未來版本可能會額外定義以這些前綴之一開頭的名稱。
頭文件通常會與 Python 一起安裝。在 Unix 上,它們位于以下目錄:`prefix/include/pythonversion/` 和 `exec_prefix/include/pythonversion/`,其中 `prefix` 和 `exec_prefix` 是由向 Python 的 **configure** 腳本傳入的對應形參所定義,而 *version* 則為 `'%d.%d' % sys.version_info[:2]`。在 Windows 上,頭文件安裝于 `prefix/include`,其中 `prefix` 是向安裝程序指定的安裝目錄。
要包含頭文件,請將兩個目錄(如果不同)都放到你所用編譯器的包含搜索路徑中。請 *不要* 將父目錄放入搜索路徑然后使用 `#include <pythonX.Y/Python.h>`;這將使得多平臺編譯不可用,因為 `prefix` 下平臺無關的頭文件需要包含來自 `exec_prefix` 下特定平臺的頭文件。
C++ 用戶應該注意,盡管 API 是完全使用 C 來定義的,但頭文件正確地將入口點聲明為 `extern "C"`,因此 API 在 C++ 中使用此 API 不必再做任何特殊處理。
## 有用的宏
Python 頭文件中定義了一些有用的宏。許多是在靠近它們被使用的地方定義的(例如 [`Py_RETURN_NONE`](none.xhtml#c.Py_RETURN_NONE "Py_RETURN_NONE"))。其他更為通用的則定義在這里。這里所顯示的并不是一個完整的列表。
`Py_UNREACHABLE`()這個可以在你有一個不打算被觸及的代碼路徑時使用。例如,當一個 `switch` 語句中所有可能的值都已被 `case` 子句覆蓋了,就可將其用在 `default:` 子句中。當你非常想在某個位置放一個 `assert(0)` 或 `abort()` 調用時也可以用這個。
3\.7 新版功能.
`Py_ABS`(x)返回 `x` 的絕對值。
3\.3 新版功能.
`Py_MIN`(x, y)返回 `x` 和 `y` 當中的最小值。
3\.3 新版功能.
`Py_MAX`(x, y)返回 `x` 和 `y` 當中的最大值。
3\.3 新版功能.
`Py_STRINGIFY`(x)將 `x` 轉換為 C 字符串。例如 `Py_STRINGIFY(123)` 返回 `"123"`。
3\.4 新版功能.
`Py_MEMBER_SIZE`(type, member)返回結構 (`type`) `member` 的大小,以字節表示。
3\.6 新版功能.
`Py_CHARMASK`(c)參數必須為 \[-128, 127\] 或 \[0, 255\] 范圍內的字符或整數類型。這個宏將 `c` 強制轉換為 `unsigned char` 返回。
`Py_GETENV`(s)類似 `getenv(s)` 但會在以下情況返回 *NULL* :如果通過命令行傳入 [`-E`](../using/cmdline.xhtml#cmdoption-e) (即設置了 `Py_IgnoreEnvironmentFlag` )。
`Py_UNUSED`(arg)這個可用于函數定義中未使用的參數以隱藏編譯器警告,例如 `PyObject* func(PyObject *Py_UNUSED(ignored))`。
3\.4 新版功能.
## 對象、類型和引用計數
大多數 Python/C API 函數都有一個或多個參數以及一個 [`PyObject*`](structures.xhtml#c.PyObject "PyObject") 類型的返回值。此類型是一個指針,指向表示一個任意 Python 對象的不透明數據類型。由于在大多數情況下(例如賦值、作用域規則和參數傳遞) Python 語言都會以同樣的方式處理所有 Python 對象類型,因此它們由一個單獨的 C 類型來表示是很適宜的。幾乎所有 Python 對象都生存在堆上:你絕不會聲明一個 [`PyObject`](structures.xhtml#c.PyObject "PyObject") 類型的自動或靜態變量,只有 [`PyObject*`](structures.xhtml#c.PyObject "PyObject") 類型的指針變量可以被聲明。唯一的例外是 type 對象;由于此種對象永遠不能被釋放,所以它們通常是靜態 [`PyTypeObject`](type.xhtml#c.PyTypeObject "PyTypeObject") 對象。
所有 Python 對象(甚至 Python 整數)都有一個 *type* 和一個 *reference count*。對象的類型確定它是什么類型的對象(例如整數、列表或用戶定義函數;還有更多,如 [標準類型層級結構](../reference/datamodel.xhtml#types) 中所述)。對于每個眾所周知的類型,都有一個宏來檢查對象是否屬于該類型;例如,當(且僅當) *a* 所指的對象是 Python 列表時 `PyList_Check(a)` 為真。
### 引用計數
The reference count is important because today's computers have a finite (and often severely limited) memory size; it counts how many different places there are that have a reference to an object. Such a place could be another object, or a global (or static) C variable, or a local variable in some C function. When an object's reference count becomes zero, the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There's an obvious problem with objects that reference each other here; for now, the solution is "don't do that.")
Reference counts are always manipulated explicitly. The normal way is to use the macro [`Py_INCREF()`](refcounting.xhtml#c.Py_INCREF "Py_INCREF") to increment an object's reference count by one, and [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF") to decrement it by one. The [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF") macro is considerably more complex than the incref one, since it must check whether the reference count becomes zero and then cause the object's deallocator to be called. The deallocator is a function pointer contained in the object's type structure. The type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a compound object type, such as a list, as well as performing any additional finalization that's needed. There's no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory locations in virtual memory (assuming `sizeof(Py_ssize_t) >= sizeof(void*)`). Thus, the reference count increment is a simple operation.
It is not necessary to increment an object's reference count for every local variable that contains a pointer to an object. In theory, the object's reference count goes up by one when the variable is made to point to it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count hasn't changed. The only real reason to use the reference count is to prevent the object from being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as long as our variable, there is no need to increment the reference count temporarily. An important situation where this arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference to every argument for the duration of the call.
However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its reference count. Some other operation might conceivably remove the object from the list, decrementing its reference count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code which could do this; there is a code path which allows control to flow back to the user from a [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF"), so almost any operation is potentially dangerous.
A safe approach is to always use the generic operations (functions whose name begins with `PyObject_`, `PyNumber_`, `PySequence_` or `PyMapping_`). These operations always increment the reference count of the object they return. This leaves the caller with the responsibility to call [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF") when they are done with the result; this soon becomes second nature.
#### Reference Count Details
The reference count behavior of functions in the Python/C API is best explained in terms of *ownership of references*. Ownership pertains to references, never to objects (objects are not owned: they are always shared). "Owning a reference" means being responsible for calling Py\_DECREF on it when the reference is no longer needed. Ownership can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually decref'ing it by calling [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF") or [`Py_XDECREF()`](refcounting.xhtml#c.Py_XDECREF "Py_XDECREF")when it's no longer needed---or passing on this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a *new* reference. When no ownership is transferred, the caller is said to *borrow* the reference. Nothing needs to be done for a borrowed reference.
Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function *steals* a reference to the object, or it does not. *Stealing a reference* means that when you pass a reference to a function, that function assumes that it now owns that reference, and you are not responsible for it any longer.
Few functions steal references; the two notable exceptions are [`PyList_SetItem()`](list.xhtml#c.PyList_SetItem "PyList_SetItem") and [`PyTuple_SetItem()`](tuple.xhtml#c.PyTuple_SetItem "PyTuple_SetItem"), which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example, the code to create the tuple `(1, 2, "three")` could look like this (forgetting about error handling for the moment; a better way to code this is shown below):
```
PyObject *t;
t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyLong_FromLong(1L));
PyTuple_SetItem(t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t, 2, PyUnicode_FromString("three"));
```
Here, [`PyLong_FromLong()`](long.xhtml#c.PyLong_FromLong "PyLong_FromLong") returns a new reference which is immediately stolen by [`PyTuple_SetItem()`](tuple.xhtml#c.PyTuple_SetItem "PyTuple_SetItem"). When you want to keep using an object although the reference to it will be stolen, use [`Py_INCREF()`](refcounting.xhtml#c.Py_INCREF "Py_INCREF") to grab another reference before calling the reference-stealing function.
Incidentally, [`PyTuple_SetItem()`](tuple.xhtml#c.PyTuple_SetItem "PyTuple_SetItem") is the *only* way to set tuple items; [`PySequence_SetItem()`](sequence.xhtml#c.PySequence_SetItem "PySequence_SetItem") and [`PyObject_SetItem()`](object.xhtml#c.PyObject_SetItem "PyObject_SetItem") refuse to do this since tuples are an immutable data type. You should only use [`PyTuple_SetItem()`](tuple.xhtml#c.PyTuple_SetItem "PyTuple_SetItem") for tuples that you are creating yourself.
Equivalent code for populating a list can be written using [`PyList_New()`](list.xhtml#c.PyList_New "PyList_New")and [`PyList_SetItem()`](list.xhtml#c.PyList_SetItem "PyList_SetItem").
However, in practice, you will rarely use these ways of creating and populating a tuple or list. There's a generic function, [`Py_BuildValue()`](arg.xhtml#c.Py_BuildValue "Py_BuildValue"), that can create most common objects from C values, directed by a *format string*. For example, the above two blocks of code could be replaced by the following (which also takes care of the error checking):
```
PyObject *tuple, *list;
tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");
```
It is much more common to use [`PyObject_SetItem()`](object.xhtml#c.PyObject_SetItem "PyObject_SetItem") and friends with items whose references you are only borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference counts is much saner, since you don't have to increment a reference count so you can give a reference away ("have it be stolen"). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:
```
int
set_all(PyObject *target, PyObject *item)
{
Py_ssize_t i, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
PyObject *index = PyLong_FromSsize_t(i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF(index);
return -1;
}
Py_DECREF(index);
}
return 0;
}
```
The situation is slightly different for function return values. While passing a reference to most functions does not change your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the only reference to the object. Therefore, the generic functions that return object references, like [`PyObject_GetItem()`](object.xhtml#c.PyObject_GetItem "PyObject_GetItem") and [`PySequence_GetItem()`](sequence.xhtml#c.PySequence_GetItem "PySequence_GetItem"), always return a new reference (the caller becomes the owner of the reference).
It is important to realize that whether you own a reference returned by a function depends on which function you call only --- *the plumage* (the type of the object passed as an argument to the function) *doesn't enter into it!*Thus, if you extract an item from a list using [`PyList_GetItem()`](list.xhtml#c.PyList_GetItem "PyList_GetItem"), you don't own the reference --- but if you obtain the same item from the same list using [`PySequence_GetItem()`](sequence.xhtml#c.PySequence_GetItem "PySequence_GetItem") (which happens to take exactly the same arguments), you do own a reference to the returned object.
Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using [`PyList_GetItem()`](list.xhtml#c.PyList_GetItem "PyList_GetItem"), and once using [`PySequence_GetItem()`](sequence.xhtml#c.PySequence_GetItem "PySequence_GetItem").
```
long
sum_list(PyObject *list)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
return total;
}
```
```
long
sum_sequence(PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check(item)) {
value = PyLong_AsLong(item);
Py_DECREF(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF(item); /* Discard reference ownership */
}
}
return total;
}
```
### 類型
There are few other data types that play a significant role in the Python/C API; most are simple C types such as `int`, `long`, `double` and `char*`. A few structure types are used to describe static tables used to list the functions exported by a module or the data attributes of a new object type, and another is used to describe the value of a complex number. These will be discussed together with the functions that use them.
## 異常
Python程序員只需要處理特定需要處理的錯誤異常;未處理的異常會自動傳遞給調用者,然后傳遞給調用者的調用者,依此類推,直到他們到達頂級解釋器,在那里將它們報告給用戶并伴隨堆棧回溯。
For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise exceptions, unless an explicit claim is made otherwise in a function's documentation. In general, when a function encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not documented otherwise, this indicator is either *NULL* or `-1`, depending on the function's return type. A few functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors with [`PyErr_Occurred()`](exceptions.xhtml#c.PyErr_Occurred "PyErr_Occurred"). These exceptions are always explicitly documented.
Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application). A thread can be in one of two states: an exception has occurred, or not. The function [`PyErr_Occurred()`](exceptions.xhtml#c.PyErr_Occurred "PyErr_Occurred") can be used to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and *NULL* otherwise. There are a number of functions to set the exception state: [`PyErr_SetString()`](exceptions.xhtml#c.PyErr_SetString "PyErr_SetString") is the most common (though not the most general) function to set the exception state, and [`PyErr_Clear()`](exceptions.xhtml#c.PyErr_Clear "PyErr_Clear") clears the exception state.
The full exception state consists of three objects (all of which can be *NULL*): the exception type, the corresponding exception value, and the traceback. These have the same meanings as the Python result of `sys.exc_info()`; however, they are not the same: the Python objects represent the last exception being handled by a Python [`try`](../reference/compound_stmts.xhtml#try) ... [`except`](../reference/compound_stmts.xhtml#except) statement, while the C level exception state only exists while an exception is being passed on between C functions until it reaches the Python bytecode interpreter's main loop, which takes care of transferring it to `sys.exc_info()` and friends.
Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call the function [`sys.exc_info()`](../library/sys.xhtml#sys.exc_info "sys.exc_info"), which returns the per-thread exception state for Python code. Also, the semantics of both ways to access the exception state have changed so that a function which catches an exception will save and restore its thread's exception state so as to preserve the exception state of its caller. This prevents common bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.
As a general principle, a function that calls another function to perform some task should check whether the called function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns, and return an error indicator, but it should *not* set another exception --- that would overwrite the exception that was just raised, and lose important information about the exact cause of the error.
A simple example of detecting exceptions and passing them on is shown in the `sum_sequence()` example above. It so happens that this example doesn't need to clean up any owned references when it detects an error. The following example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:
```
def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1
```
Here is the corresponding C code, in all its glory:
```
int
incr_item(PyObject *dict, PyObject *key)
{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */
item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))
goto error;
/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong(0L);
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong(1L);
if (const_one == NULL)
goto error;
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;
if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;
rv = 0; /* Success */
/* Continue with cleanup code */
error:
/* Cleanup code, shared by success and failure path */
/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);
return rv; /* -1 for error, 0 for success */
}
```
This example represents an endorsed use of the `goto` statement in C! It illustrates the use of [`PyErr_ExceptionMatches()`](exceptions.xhtml#c.PyErr_ExceptionMatches "PyErr_ExceptionMatches") and [`PyErr_Clear()`](exceptions.xhtml#c.PyErr_Clear "PyErr_Clear") to handle specific exceptions, and the use of [`Py_XDECREF()`](refcounting.xhtml#c.Py_XDECREF "Py_XDECREF") to dispose of owned references that may be *NULL* (note the `'X'` in the name; [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF") would crash when confronted with a *NULL* reference). It is important that the variables used to hold owned references are initialized to *NULL* for this to work; likewise, the proposed return value is initialized to `-1` (failure) and only set to success after the final call made is successful.
## 嵌入Python
The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter can only be used after the interpreter has been initialized.
The basic initialization function is [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize"). This initializes the table of loaded modules, and creates the fundamental modules [`builtins`](../library/builtins.xhtml#module-builtins "builtins: The module that provides the built-in namespace."), [`__main__`](../library/__main__.xhtml#module-__main__ "__main__: The environment where the top-level script is run."), and [`sys`](../library/sys.xhtml#module-sys "sys: Access system-specific parameters and functions."). It also initializes the module search path (`sys.path`).
[`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize") does not set the "script argument list" (`sys.argv`). If this variable is needed by Python code that will be executed later, it must be set explicitly with a call to `PySys_SetArgvEx(argc, argv, updatepath)`after the call to [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize").
On most systems (in particular, on Unix and Windows, although the details are slightly different), [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize") calculates the module search path based upon its best guess for the location of the standard Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it looks for a directory named `lib/pythonX.Y` relative to the parent directory where the executable named `python` is found on the shell command search path (the environment variable `PATH`).
For instance, if the Python executable is found in `/usr/local/bin/python`, it will assume that the libraries are in `/usr/local/lib/pythonX.Y`. (In fact, this particular path is also the "fallback" location, used when no executable file named `python` is found along `PATH`.) The user can override this behavior by setting the environment variable [`PYTHONHOME`](../using/cmdline.xhtml#envvar-PYTHONHOME), or insert additional directories in front of the standard path by setting [`PYTHONPATH`](../using/cmdline.xhtml#envvar-PYTHONPATH).
The embedding application can steer the search by calling `Py_SetProgramName(file)` *before* calling [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize"). Note that [`PYTHONHOME`](../using/cmdline.xhtml#envvar-PYTHONHOME) still overrides this and [`PYTHONPATH`](../using/cmdline.xhtml#envvar-PYTHONPATH) is still inserted in front of the standard path. An application that requires total control has to provide its own implementation of [`Py_GetPath()`](init.xhtml#c.Py_GetPath "Py_GetPath"), [`Py_GetPrefix()`](init.xhtml#c.Py_GetPrefix "Py_GetPrefix"), [`Py_GetExecPrefix()`](init.xhtml#c.Py_GetExecPrefix "Py_GetExecPrefix"), and [`Py_GetProgramFullPath()`](init.xhtml#c.Py_GetProgramFullPath "Py_GetProgramFullPath") (all defined in `Modules/getpath.c`).
Sometimes, it is desirable to "uninitialize" Python. For instance, the application may want to start over (make another call to [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize")) or the application is simply done with its use of Python and wants to free memory allocated by Python. This can be accomplished by calling [`Py_FinalizeEx()`](init.xhtml#c.Py_FinalizeEx "Py_FinalizeEx"). The function [`Py_IsInitialized()`](init.xhtml#c.Py_IsInitialized "Py_IsInitialized") returns true if Python is currently in the initialized state. More information about these functions is given in a later chapter. Notice that [`Py_FinalizeEx()`](init.xhtml#c.Py_FinalizeEx "Py_FinalizeEx")does *not* free all memory allocated by the Python interpreter, e.g. memory allocated by extension modules currently cannot be released.
## 調試構建
Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks tend to add a large amount of overhead to the runtime so they are not enabled by default.
A full list of the various types of debugging builds is in the file `Misc/SpecialBuilds.txt` in the Python source distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this section.
Compiling the interpreter with the `Py_DEBUG` macro defined produces what is generally meant by "a debug build" of Python. `Py_DEBUG` is enabled in the Unix build by adding `--with-pydebug` to the `./configure` command. It is also implied by the presence of the not-Python-specific `_DEBUG` macro. When `Py_DEBUG` is enabled in the Unix build, compiler optimization is disabled.
除了前面描述的引用計數調試之外,還執行以下額外檢查:
- 額外檢查將添加到對象分配器。
- 額外的檢查將添加到解析器和編譯器中。
- Downcasts from wide types to narrow types are checked for loss of information.
- 許多斷言被添加到字典和集合實現中。另外,集合對象需要 `test_c_api()` 方法。
- 輸入參數的完整性檢查被添加到框架創建中。
- 使用已知的無效模式初始化整型的存儲,以捕獲對未初始化數字的引用。
- 添加底層跟蹤和額外的異常檢查到虛擬機的運行時中。
- Extra checks are added to the memory arena implementation.
- 添加額外調試到線程模塊。
這里可能沒有提到的額外的檢查。
Defining `Py_TRACE_REFS` enables reference tracing. When defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every [`PyObject`](structures.xhtml#c.PyObject "PyObject"). Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied by `Py_DEBUG`.
有關更多詳細信息,請參閱Python源代碼中的 `Misc/SpecialBuilds.txt` 。
### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](stable.xhtml "穩定的應用程序二進制接口") |
- [上一頁](index.xhtml "Python/C API 參考手冊") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python/C API 參考手冊](index.xhtml) ?
- $('.inline-search').show(0); |
? [版權所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 軟件基金會是一個非盈利組織。 [請捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [發現了問題](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 創建。
- Python文檔內容
- Python 有什么新變化?
- Python 3.7 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- C API 的改變
- 構建的改變
- 性能優化
- 其他 CPython 實現的改變
- 已棄用的 Python 行為
- 已棄用的 Python 模塊、函數和方法
- 已棄用的 C API 函數和類型
- 平臺支持的移除
- API 與特性的移除
- 移除的模塊
- Windows 專屬的改變
- 移植到 Python 3.7
- Python 3.7.1 中的重要變化
- Python 3.7.2 中的重要變化
- Python 3.6 有什么新變化A
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 其他改進
- 棄用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要變化
- Python 3.6.4 中的重要變化
- Python 3.6.5 中的重要變化
- Python 3.6.7 中的重要變化
- Python 3.5 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- Other module-level changes
- 性能優化
- Build and C API Changes
- 棄用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 發布重點
- 新的特性
- 新增模塊
- 改進的模塊
- CPython Implementation Changes
- 棄用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 發布重點
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他語言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 棄用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 多線程
- 性能優化
- Unicode
- Codecs
- 文檔
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 性能優化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他語言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新變化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他語言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他語言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推導式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最終版
- Python 3.7.3 發布候選版 1
- Python 3.7.2 最終版
- Python 3.7.2 發布候選版 1
- Python 3.7.1 最終版
- Python 3.7.1 RC 2版本
- Python 3.7.1 發布候選版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 課前甜點
- 使用 Python 解釋器
- 調用解釋器
- 解釋器的運行環境
- Python 的非正式介紹
- Python 作為計算器使用
- 走向編程的第一步
- 其他流程控制工具
- if 語句
- for 語句
- range() 函數
- break 和 continue 語句,以及循環中的 else 子句
- pass 語句
- 定義函數
- 函數定義的更多形式
- 小插曲:編碼風格
- 數據結構
- 列表的更多特性
- del 語句
- 元組和序列
- 集合
- 字典
- 循環的技巧
- 深入條件控制
- 序列和其它類型的比較
- 模塊
- 有關模塊的更多信息
- 標準模塊
- dir() 函數
- 包
- 輸入輸出
- 更漂亮的輸出格式
- 讀寫文件
- 錯誤和異常
- 語法錯誤
- 異常
- 處理異常
- 拋出異常
- 用戶自定義異常
- 定義清理操作
- 預定義的清理操作
- 類
- 名稱和對象
- Python 作用域和命名空間
- 初探類
- 補充說明
- 繼承
- 私有變量
- 雜項說明
- 迭代器
- 生成器
- 生成器表達式
- 標準庫簡介
- 操作系統接口
- 文件通配符
- 命令行參數
- 錯誤輸出重定向和程序終止
- 字符串模式匹配
- 數學
- 互聯網訪問
- 日期和時間
- 數據壓縮
- 性能測量
- 質量控制
- 自帶電池
- 標準庫簡介 —— 第二部分
- 格式化輸出
- 模板
- 使用二進制數據記錄格式
- 多線程
- 日志
- 弱引用
- 用于操作列表的工具
- 十進制浮點運算
- 虛擬環境和包
- 概述
- 創建虛擬環境
- 使用pip管理包
- 接下來?
- 交互式編輯和編輯歷史
- Tab 補全和編輯歷史
- 默認交互式解釋器的替代品
- 浮點算術:爭議和限制
- 表示性錯誤
- 附錄
- 交互模式
- 安裝和使用 Python
- 命令行與環境
- 命令行
- 環境變量
- 在Unix平臺中使用Python
- 獲取最新版本的Python
- 構建Python
- 與Python相關的路徑和文件
- 雜項
- 編輯器和集成開發環境
- 在Windows上使用 Python
- 完整安裝程序
- Microsoft Store包
- nuget.org 安裝包
- 可嵌入的包
- 替代捆綁包
- 配置Python
- 適用于Windows的Python啟動器
- 查找模塊
- 附加模塊
- 在Windows上編譯Python
- 其他平臺
- 在蘋果系統上使用 Python
- 獲取和安裝 MacPython
- IDE
- 安裝額外的 Python 包
- Mac 上的圖形界面編程
- 在 Mac 上分發 Python 應用程序
- 其他資源
- Python 語言參考
- 概述
- 其他實現
- 標注
- 詞法分析
- 行結構
- 其他形符
- 標識符和關鍵字
- 字面值
- 運算符
- 分隔符
- 數據模型
- 對象、值與類型
- 標準類型層級結構
- 特殊方法名稱
- 協程
- 執行模型
- 程序的結構
- 命名與綁定
- 異常
- 導入系統
- importlib
- 包
- 搜索
- 加載
- 基于路徑的查找器
- 替換標準導入系統
- Package Relative Imports
- 有關 main 的特殊事項
- 開放問題項
- 參考文獻
- 表達式
- 算術轉換
- 原子
- 原型
- await 表達式
- 冪運算符
- 一元算術和位運算
- 二元算術運算符
- 移位運算
- 二元位運算
- 比較運算
- 布爾運算
- 條件表達式
- lambda 表達式
- 表達式列表
- 求值順序
- 運算符優先級
- 簡單語句
- 表達式語句
- 賦值語句
- assert 語句
- pass 語句
- del 語句
- return 語句
- yield 語句
- raise 語句
- break 語句
- continue 語句
- import 語句
- global 語句
- nonlocal 語句
- 復合語句
- if 語句
- while 語句
- for 語句
- try 語句
- with 語句
- 函數定義
- 類定義
- 協程
- 最高層級組件
- 完整的 Python 程序
- 文件輸入
- 交互式輸入
- 表達式輸入
- 完整的語法規范
- Python 標準庫
- 概述
- 可用性注釋
- 內置函數
- 內置常量
- 由 site 模塊添加的常量
- 內置類型
- 邏輯值檢測
- 布爾運算 — and, or, not
- 比較
- 數字類型 — int, float, complex
- 迭代器類型
- 序列類型 — list, tuple, range
- 文本序列類型 — str
- 二進制序列類型 — bytes, bytearray, memoryview
- 集合類型 — set, frozenset
- 映射類型 — dict
- 上下文管理器類型
- 其他內置類型
- 特殊屬性
- 內置異常
- 基類
- 具體異常
- 警告
- 異常層次結構
- 文本處理服務
- string — 常見的字符串操作
- re — 正則表達式操作
- 模塊 difflib 是一個計算差異的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 數據庫
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函數
- 二進制數據服務
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 數據類型
- datetime — 基礎日期/時間數據類型
- calendar — General calendar-related functions
- collections — 容器數據類型
- collections.abc — 容器的抽象基類
- heapq — 堆隊列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 淺層 (shallow) 和深層 (deep) 復制操作
- pprint — 數據美化輸出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 數字和數學模塊
- numbers — 數字的抽象基類
- math — 數學函數
- cmath — Mathematical functions for complex numbers
- decimal — 十進制定點和浮點運算
- fractions — 分數
- random — 生成偽隨機數
- statistics — Mathematical statistics functions
- 函數式編程模塊
- itertools — 為高效循環而創建迭代器的函數
- functools — 高階函數和可調用對象上的操作
- operator — 標準運算符替代函數
- 文件和目錄訪問
- pathlib — 面向對象的文件系統路徑
- os.path — 常見路徑操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路徑操作函數
- 數據持久化
- pickle —— Python 對象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 數據庫 DB-API 2.0 接口模塊
- 數據壓縮和存檔
- zlib — 與 gzip 兼容的壓縮
- gzip — 對 gzip 格式的支持
- bz2 — 對 bzip2 壓縮算法的支持
- lzma — 用 LZMA 算法壓縮
- zipfile — 在 ZIP 歸檔中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件讀寫
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服務
- hashlib — 安全哈希與消息摘要
- hmac — 基于密鑰的消息驗證
- secrets — Generate secure random numbers for managing secrets
- 通用操作系統服務
- os — 操作系統接口模塊
- io — 處理流的核心工具
- time — 時間的訪問和轉換
- argparse — 命令行選項、參數和子命令解析器
- getopt — C-style parser for command line options
- 模塊 logging — Python 的日志記錄工具
- logging.config — 日志記錄配置
- logging.handlers — Logging handlers
- getpass — 便攜式密碼輸入工具
- curses — 終端字符單元顯示的處理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函數庫
- 并發執行
- threading — 基于線程的并行
- multiprocessing — 基于進程的并行
- concurrent 包
- concurrent.futures — 啟動并行任務
- subprocess — 子進程管理
- sched — 事件調度器
- queue — 一個同步的隊列類
- _thread — 底層多線程 API
- _dummy_thread — _thread 的替代模塊
- dummy_threading — 可直接替代 threading 模塊。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 網絡和進程間通信
- asyncio — 異步 I/O
- socket — 底層網絡接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高級 I/O 復用庫
- asyncore — 異步socket處理器
- asynchat — 異步 socket 指令/響應 處理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互聯網數據處理
- email — 電子郵件與 MIME 處理包
- json — JSON 編碼和解碼器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 數據編碼
- binhex — 對binhex4文件進行編碼和解碼
- binascii — 二進制和 ASCII 碼互轉
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 結構化標記處理工具
- html — 超文本標記語言支持
- html.parser — 簡單的 HTML 和 XHTML 解析器
- html.entities — HTML 一般實體的定義
- XML處理模塊
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互聯網協議和支持
- webbrowser — 方便的Web瀏覽器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 處理模塊
- urllib.request — 用于打開 URL 的可擴展庫
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模塊
- http.client — HTTP協議客戶端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP協議客戶端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服務器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服務端與客戶端模塊
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒體服務
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 讀寫 Sun AU 文件
- wave — 讀寫WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推測圖像類型
- sndhdr — 推測聲音文件的類型
- ossaudiodev — Access to OSS-compatible audio devices
- 國際化
- gettext — 多語種國際化服務
- locale — 國際化服務
- 程序框架
- turtle — 海龜繪圖
- cmd — 支持面向行的命令解釋器
- shlex — Simple lexical analysis
- Tk圖形用戶界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滾動文字控件
- IDLE
- 其他圖形用戶界面(GUI)包
- 開發工具
- typing — 類型標注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 單元測試框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自動將 Python 2 代碼轉為 Python 3 代碼
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 調試和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 測量小代碼片段的執行時間
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 軟件打包和分發
- distutils — 構建和安裝 Python 模塊
- ensurepip — Bootstrapping the pip installer
- venv — 創建虛擬環境
- zipapp — Manage executable Python zip archives
- Python運行時服務
- sys — 系統相關的參數和函數
- sysconfig — Provide access to Python's configuration information
- builtins — 內建對象
- main — 頂層腳本環境
- warnings — Warning control
- dataclasses — 數據類
- contextlib — Utilities for with-statement contexts
- abc — 抽象基類
- atexit — 退出處理器
- traceback — Print or retrieve a stack traceback
- future — Future 語句定義
- gc — 垃圾回收器接口
- inspect — 檢查對象
- site — Site-specific configuration hook
- 自定義 Python 解釋器
- code — Interpreter base classes
- codeop — Compile Python code
- 導入模塊
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找腳本使用的模塊
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 語言服務
- parser — Access Python parse trees
- ast — 抽象語法樹
- symtable — Access to the compiler's symbol tables
- symbol — 與 Python 解析樹一起使用的常量
- token — 與Python解析樹一起使用的常量
- keyword — 檢驗Python關鍵字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊縮進檢測
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字節碼反匯編器
- pickletools — Tools for pickle developers
- 雜項服務
- formatter — Generic output formatting
- Windows系統相關模塊
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注冊表訪問
- winsound — Sound-playing interface for Windows
- Unix 專有服務
- posix — The most common POSIX system calls
- pwd — 用戶密碼數據庫
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 終端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 庫例程
- 被取代的模塊
- optparse — Parser for command line options
- imp — Access the import internals
- 未創建文檔的模塊
- 平臺特定模塊
- 擴展和嵌入 Python 解釋器
- 推薦的第三方工具
- 不使用第三方工具創建擴展
- 使用 C 或 C++ 擴展 Python
- 自定義擴展類型:教程
- 定義擴展類型:已分類主題
- 構建C/C++擴展
- 在Windows平臺編譯C和C++擴展
- 在更大的應用程序中嵌入 CPython 運行時
- Embedding Python in Another Application
- Python/C API 參考手冊
- 概述
- 代碼標準
- 包含文件
- 有用的宏
- 對象、類型和引用計數
- 異常
- 嵌入Python
- 調試構建
- 穩定的應用程序二進制接口
- The Very High Level Layer
- Reference Counting
- 異常處理
- Printing and clearing
- 拋出異常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 標準異常
- 標準警告類別
- 工具
- 操作系統實用程序
- 系統功能
- 過程控制
- 導入模塊
- Data marshalling support
- 語句解釋及變量編譯
- 字符串轉換與格式化
- 反射
- 編解碼器注冊與支持功能
- 抽象對象層
- Object Protocol
- 數字協議
- Sequence Protocol
- Mapping Protocol
- 迭代器協議
- 緩沖協議
- Old Buffer Protocol
- 具體的對象層
- 基本對象
- 數值對象
- 序列對象
- 容器對象
- 函數對象
- 其他對象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置變量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 內存管理
- 概述
- 原始內存接口
- Memory Interface
- 對象分配器
- 默認內存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 對象實現支持
- 在堆中分配對象
- Common Object Structures
- Type 對象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使對象類型支持循環垃圾回收
- API 和 ABI 版本管理
- 分發 Python 模塊
- 關鍵術語
- 開源許可與協作
- 安裝工具
- 閱讀指南
- 我該如何...?
- ...為我的項目選擇一個名字?
- ...創建和分發二進制擴展?
- 安裝 Python 模塊
- 關鍵術語
- 基本使用
- 我應如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安裝 pip ?
- ... 只為當前用戶安裝軟件包?
- ... 安裝科學計算類 Python 軟件包?
- ... 使用并行安裝的多個 Python 版本?
- 常見的安裝問題
- 在 Linux 的系統 Python 版本上安裝
- 未安裝 pip
- 安裝二進制編譯擴展
- Python 常用指引
- 將 Python 2 代碼遷移到 Python 3
- 簡要說明
- 詳情
- 將擴展模塊移植到 Python 3
- 條件編譯
- 對象API的更改
- 模塊初始化和狀態
- CObject 替換為 Capsule
- 其他選項
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 實現描述器
- 摘要
- 定義和簡介
- 描述器協議
- 發起調用描述符
- 描述符示例
- Properties
- 函數和方法
- Static Methods and Class Methods
- 函數式編程指引
- 概述
- 迭代器
- 生成器表達式和列表推導式
- 生成器
- 內置函數
- itertools 模塊
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文獻
- 日志 HOWTO
- 日志基礎教程
- 進階日志教程
- 日志級別
- 有用的處理程序
- 記錄日志中引發的異常
- 使用任意對象作為消息
- 優化
- 日志操作手冊
- 在多個模塊中使用日志
- 在多線程中使用日志
- 使用多個日志處理器和多種格式化
- 在多個地方記錄日志
- 日志服務器配置示例
- 處理日志處理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正則表達式HOWTO
- 概述
- 簡單模式
- 使用正則表達式
- 更多模式能力
- 修改字符串
- 常見問題
- 反饋
- 套接字編程指南
- 套接字
- 創建套接字
- 使用一個套接字
- 斷開連接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 關鍵函數
- Operator 模塊函數
- 升序和降序
- 排序穩定性和排序復雜度
- 使用裝飾-排序-去裝飾的舊方法
- 使用 cmp 參數的舊方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包獲取網絡資源
- 概述
- Fetching URLs
- 處理異常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 腳注
- Argparse 教程
- 概念
- 基礎
- 位置參數介紹
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模塊介紹
- 創建 Address/Network/Interface 對象
- 審查 Address/Network/Interface 對象
- Network 作為 Address 列表
- 比較
- 將IP地址與其他模塊一起使用
- 實例創建失敗時獲取更多詳細信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 檢測CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常見問題
- Python常見問題
- 一般信息
- 現實世界中的 Python
- 編程常見問題
- 一般問題
- 核心語言
- 數字和字符串
- 性能
- 序列(元組/列表)
- 對象
- 模塊
- 設計和歷史常見問題
- 為什么Python使用縮進來分組語句?
- 為什么簡單的算術運算得到奇怪的結果?
- 為什么浮點計算不準確?
- 為什么Python字符串是不可變的?
- 為什么必須在方法定義和調用中顯式使用“self”?
- 為什么不能在表達式中賦值?
- 為什么Python對某些功能(例如list.index())使用方法來實現,而其他功能(例如len(List))使用函數實現?
- 為什么 join()是一個字符串方法而不是列表或元組方法?
- 異常有多快?
- 為什么Python中沒有switch或case語句?
- 難道不能在解釋器中模擬線程,而非得依賴特定于操作系統的線程實現嗎?
- 為什么lambda表達式不能包含語句?
- 可以將Python編譯為機器代碼,C或其他語言嗎?
- Python如何管理內存?
- 為什么CPython不使用更傳統的垃圾回收方案?
- CPython退出時為什么不釋放所有內存?
- 為什么有單獨的元組和列表數據類型?
- 列表是如何在CPython中實現的?
- 字典是如何在CPython中實現的?
- 為什么字典key必須是不可變的?
- 為什么 list.sort() 沒有返回排序列表?
- 如何在Python中指定和實施接口規范?
- 為什么沒有goto?
- 為什么原始字符串(r-strings)不能以反斜杠結尾?
- 為什么Python沒有屬性賦值的“with”語句?
- 為什么 if/while/def/class語句需要冒號?
- 為什么Python在列表和元組的末尾允許使用逗號?
- 代碼庫和插件 FAQ
- 通用的代碼庫問題
- 通用任務
- 線程相關
- 輸入輸出
- 網絡 / Internet 編程
- 數據庫
- 數學和數字
- 擴展/嵌入常見問題
- 可以使用C語言中創建自己的函數嗎?
- 可以使用C++語言中創建自己的函數嗎?
- C很難寫,有沒有其他選擇?
- 如何從C執行任意Python語句?
- 如何從C中評估任意Python表達式?
- 如何從Python對象中提取C的值?
- 如何使用Py_BuildValue()創建任意長度的元組?
- 如何從C調用對象的方法?
- 如何捕獲PyErr_Print()(或打印到stdout / stderr的任何內容)的輸出?
- 如何從C訪問用Python編寫的模塊?
- 如何從Python接口到C ++對象?
- 我使用Setup文件添加了一個模塊,為什么make失敗了?
- 如何調試擴展?
- 我想在Linux系統上編譯一個Python模塊,但是缺少一些文件。為什么?
- 如何區分“輸入不完整”和“輸入無效”?
- 如何找到未定義的g++符號__builtin_new或__pure_virtual?
- 能否創建一個對象類,其中部分方法在C中實現,而其他方法在Python中實現(例如通過繼承)?
- Python在Windows上的常見問題
- 我怎樣在Windows下運行一個Python程序?
- 我怎么讓 Python 腳本可執行?
- 為什么有時候 Python 程序會啟動緩慢?
- 我怎樣使用Python腳本制作可執行文件?
- *.pyd 文件和DLL文件相同嗎?
- 我怎樣將Python嵌入一個Windows程序?
- 如何讓編輯器不要在我的 Python 源代碼中插入 tab ?
- 如何在不阻塞的情況下檢查按鍵?
- 圖形用戶界面(GUI)常見問題
- 圖形界面常見問題
- Python 是否有平臺無關的圖形界面工具包?
- 有哪些Python的GUI工具是某個平臺專用的?
- 有關Tkinter的問題
- “為什么我的電腦上安裝了 Python ?”
- 什么是Python?
- 為什么我的電腦上安裝了 Python ?
- 我能刪除 Python 嗎?
- 術語對照表
- 文檔說明
- Python 文檔貢獻者
- 解決 Bug
- 文檔錯誤
- 使用 Python 的錯誤追蹤系統
- 開始為 Python 貢獻您的知識
- 版權
- 歷史和許可證
- 軟件歷史
- 訪問Python或以其他方式使用Python的條款和條件
- Python 3.7.3 的 PSF 許可協議
- Python 2.0 的 BeOpen.com 許可協議
- Python 1.6.1 的 CNRI 許可協議
- Python 0.9.0 至 1.2 的 CWI 許可協議
- 集成軟件的許可和認可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec