### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](unittest.mock.xhtml "unittest.mock --- mock object library") |
- [上一頁](doctest.xhtml "doctest --- Test interactive Python examples") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 標準庫](index.xhtml) ?
- [開發工具](development.xhtml) ?
- $('.inline-search').show(0); |
# [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") --- 單元測試框架
**源代碼:** :路徑:Lib/unittest/\_\_init\_\_.py
- - - - - -
(如果你已經對測試的概念比較熟悉了,你可能想直接跳轉到這一部分 [斷言方法](#assert-methods)。)
[`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 單元測試框架是受到 JUnit 的啟發,與其他語言中的主流單元測試框架有著相似的風格。其支持測試自動化,配置共享和關機代碼測試。支持將測試樣例聚合到測試集中,并將測試與報告框架獨立。
為了實現這些,[`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 通過面向對象的方式支持了一些重要的概念。
測試腳手架*test fixture* 表示為了開展一項或多項測試所需要進行的準備工作,以及所有相關的清理操作。舉個例子,這可能包含創建臨時或代理的數據庫、目錄,再或者啟動一個服務器進程。
測試用例一個測試用例是一個獨立的測試單元。它檢查輸入特定的數據時的響應。 [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 提供一個基類: [`TestCase`](#unittest.TestCase "unittest.TestCase") ,用于新建測試用例。
測試套件A *test suite* is a collection of test cases, test suites, or both. It is used to aggregate tests that should be executed together.
測試運行器(test runner)測試運行器是一個用于執行和輸出測試結果的組件。這個運行器可能使用圖形接口、文本接口,或返回一個特定的值表示運行測試的結果。
參見
[`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.") --- 文檔測試模塊另一個風格完全不同的測試模塊。
[Simple Smalltalk Testing: With Patterns](https://web.archive.org/web/20150315073817/http://www.xprogramming.com/testfram.htm) \[https://web.archive.org/web/20150315073817/http://www.xprogramming.com/testfram.htm\]Kent Beck's original paper on testing frameworks using the pattern shared by [`unittest`](#module-unittest "unittest: Unit testing framework for Python.").
[Nose](https://nose.readthedocs.io/) \[https://nose.readthedocs.io/\] and [pytest](https://docs.pytest.org/) \[https://docs.pytest.org/\]Third-party unittest frameworks with a lighter-weight syntax for writing tests. For example, `assert func(10) == 42`.
[The Python Testing Tools Taxonomy](https://wiki.python.org/moin/PythonTestingToolsTaxonomy) \[https://wiki.python.org/moin/PythonTestingToolsTaxonomy\]An extensive list of Python testing tools including functional testing frameworks and mock object libraries.
[Testing in Python Mailing List](http://lists.idyll.org/listinfo/testing-in-python) \[http://lists.idyll.org/listinfo/testing-in-python\]A special-interest-group for discussion of testing, and testing tools, in Python.
The script `Tools/unittestgui/unittestgui.py` in the Python source distribution is a GUI tool for test discovery and execution. This is intended largely for ease of use for those new to unit testing. For production environments it is recommended that tests be driven by a continuous integration system such as [Buildbot](https://buildbot.net/) \[https://buildbot.net/\], [Jenkins](https://jenkins.io/) \[https://jenkins.io/\]or [Hudson](http://hudson-ci.org/) \[http://hudson-ci.org/\].
## 基本實例
[`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 模塊提供了一系列創建和運行測試的工具。這一段落演示了這些工具的一小部分,但也足以滿足大部分用戶的需求。
這是一段簡短的代碼,來測試三種字符串方法:
```
import unittest
class TestStringMethods(unittest.TestCase):
def test_upper(self):
self.assertEqual('foo'.upper(), 'FOO')
def test_isupper(self):
self.assertTrue('FOO'.isupper())
self.assertFalse('Foo'.isupper())
def test_split(self):
s = 'hello world'
self.assertEqual(s.split(), ['hello', 'world'])
# check that s.split fails when the separator is not a string
with self.assertRaises(TypeError):
s.split(2)
if __name__ == '__main__':
unittest.main()
```
繼承 [`unittest.TestCase`](#unittest.TestCase "unittest.TestCase") 就創建了一個測試樣例。上述三個獨立的測試是三個類的方法,這些方法的命名都以 `test` 開頭。 這個命名約定告訴測試運行者類的哪些方法表示測試。
每個測試的關鍵是:調用 [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual") 來檢查預期的輸出; 調用 [`assertTrue()`](#unittest.TestCase.assertTrue "unittest.TestCase.assertTrue") 或 [`assertFalse()`](#unittest.TestCase.assertFalse "unittest.TestCase.assertFalse") 來驗證一個條件;調用 [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises") 來驗證拋出了一個特定的異常。使用這些方法而不是 [`assert`](../reference/simple_stmts.xhtml#assert) 語句是為了讓測試運行者能聚合所有的測試結果并產生結果報告。
通過 [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") 和 [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") 方法,可以設置測試開始前與完成后需要執行的指令。 在 [組織你的測試代碼](#organizing-tests) 中,對此有更為詳細的描述。
最后的代碼塊中,演示了運行測試的一個簡單的方法。 [`unittest.main()`](#unittest.main "unittest.main") 提供了一個測試腳本的命令行接口。當在命令行運行該測試腳本,上文的腳本生成如以下格式的輸出:
```
...
----------------------------------------------------------------------
Ran 3 tests in 0.000s
OK
```
在調用測試腳本時添加 `-v` 參數使 [`unittest.main()`](#unittest.main "unittest.main") 顯示更為詳細的信息,生成如以下形式的輸出:
```
test_isupper (__main__.TestStringMethods) ... ok
test_split (__main__.TestStringMethods) ... ok
test_upper (__main__.TestStringMethods) ... ok
----------------------------------------------------------------------
Ran 3 tests in 0.001s
OK
```
以上例子演示了 [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 中最常用的、足夠滿足許多日常測試需求的特性。文檔的剩余部分詳述該框架的完整特性。
## 命令行界面
unittest 模塊可以通過命令行運行模塊、類和獨立測試方法的測試。
```
python -m unittest test_module1 test_module2
python -m unittest test_module.TestClass
python -m unittest test_module.TestClass.test_method
```
你可以傳入模塊名、類或方法名或他們的任意組合。
同樣的,測試模塊可以通過文件路徑指定。
```
python -m unittest tests/test_something.py
```
這樣就可以使用 shell 的文件名補全指定測試模塊。所指定的文件仍需要可以被作為模塊導入。路徑通過去除 '.py' 、把分隔符轉換為 '.' 轉換為模塊名。若你需要執行不能被作為模塊導入的測試文件,你需要直接執行該測試文件。
在運行測試時,你可以通過添加 -v 參數獲取更詳細(更多的冗余)的信息。
```
python -m unittest -v test_module
```
當運行時不包含參數,開始 [探索性測試](#unittest-test-discovery) 。
```
python -m unittest
```
用于獲取命令行選項列表:
```
python -m unittest -h
```
在 3.2 版更改: 在早期版本中,只支持運行獨立的測試方法,而不支持模塊和類。
### 命令行選項
**unittest** supports these command-line options:
`-b````, ``--buffer```在測試運行時,標準輸出流與標準錯誤流會被放入緩沖區。成功的測試的運行時輸出會被丟棄;測試不通過時,測試運行中的輸出會正常顯示,錯誤會被加入到測試失敗信息。
`-c````, ``--catch```當測試正在運行時, Control-C 會等待當前測試完成,并在完成后報告已執行的測試的結果。當再次按下 Control-C 時,引發平常的 [`KeyboardInterrupt`](exceptions.xhtml#KeyboardInterrupt "KeyboardInterrupt") 異常。
See [Signal Handling](#signal-handling) for the functions that provide this functionality.
`-f````, ``--failfast```當出現第一個錯誤或者失敗時,停止運行測試。
`-k```只運行匹配模式或子串的測試方法和類。可以多次使用這個選項,以便包含匹配子串的所有測試用例。
包含通配符(\*)的模式使用 [`fnmatch.fnmatchcase()`](fnmatch.xhtml#fnmatch.fnmatchcase "fnmatch.fnmatchcase") 對測試名稱進行匹配。另外,該匹配是大小寫敏感的。
模式對測試加載器導入的測試方法全名進行匹配。
例如,`-k foo` 可以匹配到 `foo_tests.SomeTest.test_something` 和 `bar_tests.SomeTest.test_foo` ,但是不能匹配到 `bar_tests.FooTest.test_something` 。
`--locals```在回溯中顯示局部變量。
3\.2 新版功能: 添加命令行選項 `-b`, `-c` 和 `-f` 。
3\.5 新版功能: 命令行選項 `--locals` 。
3\.7 新版功能: 命令行選項 `-k` 。
命令行亦可用于探索性測試,以運行一個項目的所有測試或其子集。
## 探索性測試
3\.2 新版功能.
Unittest支持簡單的測試搜索。若需要使用探索性測試,所有的測試文件必須是 [modules](../tutorial/modules.xhtml#tut-modules) 或 [packages](../tutorial/modules.xhtml#tut-packages) (包括 [namespace packages](../glossary.xhtml#term-namespace-package) )并可從項目根目錄導入(即它們的文件名必須是有效的 [identifiers](../reference/lexical_analysis.xhtml#identifiers) )。
探索性測試在 [`TestLoader.discover()`](#unittest.TestLoader.discover "unittest.TestLoader.discover") 中實現,但也可以通過命令行使用。它在命令行中的基本用法如下:
```
cd project_directory
python -m unittest discover
```
注解
方便起見, `python -m unittest` 與 `python -m unittest discover` 等價。如果你需要向探索性測試傳入參數,必須顯式地使用 `discover` 子命令。
`discover` 有以下選項:
`-v````, ``--verbose```更詳細地輸出結果。
`-s````, ``--start-directory`` directory`開始進行搜索的目錄(默認值為當前目錄 `.` )。
`-p````, ``--pattern`` pattern`用于匹配測試文件的模式(默認為 `test*.py` )。
`-t````, ``--top-level-directory`` directory`指定項目的最上層目錄(通常為開始時所在目錄)。
[`-s`](#cmdoption-unittest-discover-s) ,[`-p`](#cmdoption-unittest-discover-p) 和 [`-t`](#cmdoption-unittest-discover-t) 選項可以按順序作為位置參數傳入。以下兩條命令是等價的:
```
python -m unittest discover -s project_directory -p "*_test.py"
python -m unittest discover project_directory "*_test.py"
```
正如可以傳入路徑那樣,傳入一個包名作為起始目錄也是可行的,如 `myproject.subpackage.test` 。你提供的包名會被導入,它在文件系統中的位置會被作為起始目錄。
警告
探索性測試通過導入測試對測試進行加載。在找到所有你指定的開始目錄下的所有測試文件后,它把路徑轉換為包名并進行導入。如 `foo/bar/baz.py` 會被導入為 `foo.bar.baz` 。
如果你有一個全局安裝的包,并嘗試對這個包的副本進行探索性測試,可能會從錯誤的地方開始導入。如果出現這種情況,測試會輸出警告并退出。
如果你使用包名而不是路徑作為開始目錄,搜索時會假定它導入的是你想要的目錄,所以你不會收到警告。
測試模塊和包可以通過 [load\_tests protocol](#load-tests-protocol) 自定義測試的加載和搜索。
在 3.4 版更改: 探索性測試支持命名空間包( [namespace packages](../glossary.xhtml#term-namespace-package) )。
## 組織你的測試代碼
單元測試的構建單位是 *test cases* :獨立的、包含執行條件與正確性檢查的方案。在 [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 中,測試用例表示為 [`unittest.TestCase`](#unittest.TestCase "unittest.TestCase") 的實例。通過編寫 [`TestCase`](#unittest.TestCase "unittest.TestCase") 的子類或使用 [`FunctionTestCase`](#unittest.FunctionTestCase "unittest.FunctionTestCase") 編寫你自己的測試用例。
一個 [`TestCase`](#unittest.TestCase "unittest.TestCase") 實例的測試代碼必須是完全自含的,因此它可以獨立運行,或與其它任意組合任意數量的測試用例一起運行。
[`TestCase`](#unittest.TestCase "unittest.TestCase") 的最簡單的子類需要實現一個測試方法(例如一個命名以 `test` 開頭的方法)以執行特定的測試代碼:
```
import unittest
class DefaultWidgetSizeTestCase(unittest.TestCase):
def test_default_widget_size(self):
widget = Widget('The widget')
self.assertEqual(widget.size(), (50, 50))
```
可以看到,為了進行測試,我們使用了基類 [`TestCase`](#unittest.TestCase "unittest.TestCase") 提供的其中一個 `assert*()` 方法。若測試不通過,將會引發一個帶有說明信息的異常,并且 [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 會將這個測試用例標記為測試不通過。任何其它類型的異常將會被當做錯誤處理。
可能同時存在多個前置操作相同的測試,我們可以把測試的前置操作從測試代碼中拆解出來,并實現測試前置方法 [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") 。在運行測試時,測試框架會自動地為每個單獨測試調用前置方法。
```
import unittest
class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget('The widget')
def test_default_widget_size(self):
self.assertEqual(self.widget.size(), (50,50),
'incorrect default size')
def test_widget_resize(self):
self.widget.resize(100,150)
self.assertEqual(self.widget.size(), (100,150),
'wrong size after resize')
```
注解
多個測試運行的順序由內置字符串排序方法對測試名進行排序的結果決定。
在測試運行時,若 [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") 方法引發異常,測試框架會認為測試發生了錯誤,因此測試方法不會被運行。
相似的,我們提供了一個 [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") 方法在測試方法運行后進行清理工作。
```
import unittest
class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget('The widget')
def tearDown(self):
self.widget.dispose()
```
若 [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") 成功運行,無論測試方法是否成功,都會運行 [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") 。
這樣的一個測試代碼運行的環境被稱為 *test fixture* 。一個新的 TestCase 實例作為一個測試腳手架,用于運行各個獨立的測試方法。在運行每個測試時,[`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") 、[`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") 和 `__init__()` 會被調用一次。
It is recommended that you use TestCase implementations to group tests together according to the features they test. [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") provides a mechanism for this: the *test suite*, represented by [`unittest`](#module-unittest "unittest: Unit testing framework for Python.")'s [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") class. In most cases, calling [`unittest.main()`](#unittest.main "unittest.main") will do the right thing and collect all the module's test cases for you and execute them.
However, should you want to customize the building of your test suite, you can do it yourself:
```
def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase('test_default_widget_size'))
suite.addTest(WidgetTestCase('test_widget_resize'))
return suite
if __name__ == '__main__':
runner = unittest.TextTestRunner()
runner.run(suite())
```
You can place the definitions of test cases and test suites in the same modules as the code they are to test (such as `widget.py`), but there are several advantages to placing the test code in a separate module, such as `test_widget.py`:
- The test module can be run standalone from the command line.
- The test code can more easily be separated from shipped code.
- There is less temptation to change test code to fit the code it tests without a good reason.
- Test code should be modified much less frequently than the code it tests.
- Tested code can be refactored more easily.
- Tests for modules written in C must be in separate modules anyway, so why not be consistent?
- If the testing strategy changes, there is no need to change the source code.
## 復用已有的測試代碼
一些用戶希望直接使用 [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 運行已有的測試代碼,而不需要把已有的每個測試函數轉化為一個 [`TestCase`](#unittest.TestCase "unittest.TestCase") 的子類。
因此, [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 提供 [`FunctionTestCase`](#unittest.FunctionTestCase "unittest.FunctionTestCase") 類。這個 [`TestCase`](#unittest.TestCase "unittest.TestCase") 的子類可用于打包已有的測試函數,并支持設置前置與后置函數。
假定有一個測試函數:
```
def testSomething():
something = makeSomething()
assert something.name is not None
# ...
```
可以創建等價的測試用例如下,其中前置和后置方法是可選的。
```
testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)
```
注解
Even though [`FunctionTestCase`](#unittest.FunctionTestCase "unittest.FunctionTestCase") can be used to quickly convert an existing test base over to a [`unittest`](#module-unittest "unittest: Unit testing framework for Python.")-based system, this approach is not recommended. Taking the time to set up proper [`TestCase`](#unittest.TestCase "unittest.TestCase")subclasses will make future test refactorings infinitely easier.
In some cases, the existing tests may have been written using the [`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.")module. If so, [`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.") provides a `DocTestSuite` class that can automatically build [`unittest.TestSuite`](#unittest.TestSuite "unittest.TestSuite") instances from the existing [`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.")-based tests.
## Skipping tests and expected failures
3\.1 新版功能.
Unittest supports skipping individual test methods and even whole classes of tests. In addition, it supports marking a test as an "expected failure," a test that is broken and will fail, but shouldn't be counted as a failure on a [`TestResult`](#unittest.TestResult "unittest.TestResult").
Skipping a test is simply a matter of using the [`skip()`](#unittest.skip "unittest.skip") [decorator](../glossary.xhtml#term-decorator)or one of its conditional variants.
Basic skipping looks like this:
```
class MyTestCase(unittest.TestCase):
@unittest.skip("demonstrating skipping")
def test_nothing(self):
self.fail("shouldn't happen")
@unittest.skipIf(mylib.__version__ < (1, 3),
"not supported in this library version")
def test_format(self):
# Tests that work for only a certain version of the library.
pass
@unittest.skipUnless(sys.platform.startswith("win"), "requires Windows")
def test_windows_support(self):
# windows specific testing code
pass
```
This is the output of running the example above in verbose mode:
```
test_format (__main__.MyTestCase) ... skipped 'not supported in this library version'
test_nothing (__main__.MyTestCase) ... skipped 'demonstrating skipping'
test_windows_support (__main__.MyTestCase) ... skipped 'requires Windows'
----------------------------------------------------------------------
Ran 3 tests in 0.005s
OK (skipped=3)
```
Classes can be skipped just like methods:
```
@unittest.skip("showing class skipping")
class MySkippedTestCase(unittest.TestCase):
def test_not_run(self):
pass
```
[`TestCase.setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") can also skip the test. This is useful when a resource that needs to be set up is not available.
Expected failures use the [`expectedFailure()`](#unittest.expectedFailure "unittest.expectedFailure") decorator.
```
class ExpectedFailureTestCase(unittest.TestCase):
@unittest.expectedFailure
def test_fail(self):
self.assertEqual(1, 0, "broken")
```
It's easy to roll your own skipping decorators by making a decorator that calls [`skip()`](#unittest.skip "unittest.skip") on the test when it wants it to be skipped. This decorator skips the test unless the passed object has a certain attribute:
```
def skipUnlessHasattr(obj, attr):
if hasattr(obj, attr):
return lambda func: func
return unittest.skip("{!r} doesn't have {!r}".format(obj, attr))
```
The following decorators implement test skipping and expected failures:
`@``unittest.``skip`(*reason*)Unconditionally skip the decorated test. *reason* should describe why the test is being skipped.
`@``unittest.``skipIf`(*condition*, *reason*)Skip the decorated test if *condition* is true.
`@``unittest.``skipUnless`(*condition*, *reason*)Skip the decorated test unless *condition* is true.
`@``unittest.``expectedFailure`Mark the test as an expected failure. If the test fails it will be considered a success. If the test passes, it will be considered a failure.
*exception* `unittest.``SkipTest`(*reason*)This exception is raised to skip a test.
Usually you can use [`TestCase.skipTest()`](#unittest.TestCase.skipTest "unittest.TestCase.skipTest") or one of the skipping decorators instead of raising this directly.
Skipped tests will not have [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") or [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") run around them. Skipped classes will not have [`setUpClass()`](#unittest.TestCase.setUpClass "unittest.TestCase.setUpClass") or [`tearDownClass()`](#unittest.TestCase.tearDownClass "unittest.TestCase.tearDownClass") run. Skipped modules will not have `setUpModule()` or `tearDownModule()` run.
## Distinguishing test iterations using subtests
3\.4 新版功能.
When there are very small differences among your tests, for instance some parameters, unittest allows you to distinguish them inside the body of a test method using the [`subTest()`](#unittest.TestCase.subTest "unittest.TestCase.subTest") context manager.
For example, the following test:
```
class NumbersTest(unittest.TestCase):
def test_even(self):
"""
Test that numbers between 0 and 5 are all even.
"""
for i in range(0, 6):
with self.subTest(i=i):
self.assertEqual(i % 2, 0)
```
will produce the following output:
```
======================================================================
FAIL: test_even (__main__.NumbersTest) (i=1)
----------------------------------------------------------------------
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)
AssertionError: 1 != 0
======================================================================
FAIL: test_even (__main__.NumbersTest) (i=3)
----------------------------------------------------------------------
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)
AssertionError: 1 != 0
======================================================================
FAIL: test_even (__main__.NumbersTest) (i=5)
----------------------------------------------------------------------
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)
AssertionError: 1 != 0
```
Without using a subtest, execution would stop after the first failure, and the error would be less easy to diagnose because the value of `i`wouldn't be displayed:
```
======================================================================
FAIL: test_even (__main__.NumbersTest)
----------------------------------------------------------------------
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)
AssertionError: 1 != 0
```
## Classes and functions
This section describes in depth the API of [`unittest`](#module-unittest "unittest: Unit testing framework for Python.").
### Test cases
*class* `unittest.``TestCase`(*methodName='runTest'*)Instances of the [`TestCase`](#unittest.TestCase "unittest.TestCase") class represent the logical test units in the [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") universe. This class is intended to be used as a base class, with specific tests being implemented by concrete subclasses. This class implements the interface needed by the test runner to allow it to drive the tests, and methods that the test code can use to check for and report various kinds of failure.
Each instance of [`TestCase`](#unittest.TestCase "unittest.TestCase") will run a single base method: the method named *methodName*. In most uses of [`TestCase`](#unittest.TestCase "unittest.TestCase"), you will neither change the *methodName* nor reimplement the default `runTest()` method.
在 3.2 版更改: [`TestCase`](#unittest.TestCase "unittest.TestCase") can be instantiated successfully without providing a *methodName*. This makes it easier to experiment with [`TestCase`](#unittest.TestCase "unittest.TestCase")from the interactive interpreter.
[`TestCase`](#unittest.TestCase "unittest.TestCase") instances provide three groups of methods: one group used to run the test, another used by the test implementation to check conditions and report failures, and some inquiry methods allowing information about the test itself to be gathered.
Methods in the first group (running the test) are:
`setUp`()Method called to prepare the test fixture. This is called immediately before calling the test method; other than [`AssertionError`](exceptions.xhtml#AssertionError "AssertionError") or [`SkipTest`](#unittest.SkipTest "unittest.SkipTest"), any exception raised by this method will be considered an error rather than a test failure. The default implementation does nothing.
`tearDown`()Method called immediately after the test method has been called and the result recorded. This is called even if the test method raised an exception, so the implementation in subclasses may need to be particularly careful about checking internal state. Any exception, other than [`AssertionError`](exceptions.xhtml#AssertionError "AssertionError") or [`SkipTest`](#unittest.SkipTest "unittest.SkipTest"), raised by this method will be considered an additional error rather than a test failure (thus increasing the total number of reported errors). This method will only be called if the [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") succeeds, regardless of the outcome of the test method. The default implementation does nothing.
`setUpClass`()A class method called before tests in an individual class are run. `setUpClass` is called with the class as the only argument and must be decorated as a [`classmethod()`](functions.xhtml#classmethod "classmethod"):
```
@classmethod
def setUpClass(cls):
...
```
See [Class and Module Fixtures](#class-and-module-fixtures) for more details.
3\.2 新版功能.
`tearDownClass`()A class method called after tests in an individual class have run. `tearDownClass` is called with the class as the only argument and must be decorated as a [`classmethod()`](functions.xhtml#classmethod "classmethod"):
```
@classmethod
def tearDownClass(cls):
...
```
See [Class and Module Fixtures](#class-and-module-fixtures) for more details.
3\.2 新版功能.
`run`(*result=None*)Run the test, collecting the result into the [`TestResult`](#unittest.TestResult "unittest.TestResult") object passed as *result*. If *result* is omitted or `None`, a temporary result object is created (by calling the [`defaultTestResult()`](#unittest.TestCase.defaultTestResult "unittest.TestCase.defaultTestResult")method) and used. The result object is returned to [`run()`](#unittest.TestCase.run "unittest.TestCase.run")'s caller.
The same effect may be had by simply calling the [`TestCase`](#unittest.TestCase "unittest.TestCase")instance.
在 3.3 版更改: Previous versions of `run` did not return the result. Neither did calling an instance.
`skipTest`(*reason*)Calling this during a test method or [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") skips the current test. See [Skipping tests and expected failures](#unittest-skipping) for more information.
3\.1 新版功能.
`subTest`(*msg=None*, *\*\*params*)Return a context manager which executes the enclosed code block as a subtest. *msg* and *params* are optional, arbitrary values which are displayed whenever a subtest fails, allowing you to identify them clearly.
A test case can contain any number of subtest declarations, and they can be arbitrarily nested.
See [Distinguishing test iterations using subtests](#subtests) for more information.
3\.4 新版功能.
`debug`()Run the test without collecting the result. This allows exceptions raised by the test to be propagated to the caller, and can be used to support running tests under a debugger.
The [`TestCase`](#unittest.TestCase "unittest.TestCase") class provides several assert methods to check for and report failures. The following table lists the most commonly used methods (see the tables below for more assert methods):
Method
Checks that
New in
[`assertEqual(a, b)`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual")
`a == b`
[`assertNotEqual(a, b)`](#unittest.TestCase.assertNotEqual "unittest.TestCase.assertNotEqual")
`a != b`
[`assertTrue(x)`](#unittest.TestCase.assertTrue "unittest.TestCase.assertTrue")
`bool(x) is True`
[`assertFalse(x)`](#unittest.TestCase.assertFalse "unittest.TestCase.assertFalse")
`bool(x) is False`
[`assertIs(a, b)`](#unittest.TestCase.assertIs "unittest.TestCase.assertIs")
`a is b`
3\.1
[`assertIsNot(a, b)`](#unittest.TestCase.assertIsNot "unittest.TestCase.assertIsNot")
`a is not b`
3\.1
[`assertIsNone(x)`](#unittest.TestCase.assertIsNone "unittest.TestCase.assertIsNone")
`x is None`
3\.1
[`assertIsNotNone(x)`](#unittest.TestCase.assertIsNotNone "unittest.TestCase.assertIsNotNone")
`x is not None`
3\.1
[`assertIn(a, b)`](#unittest.TestCase.assertIn "unittest.TestCase.assertIn")
`a in b`
3\.1
[`assertNotIn(a, b)`](#unittest.TestCase.assertNotIn "unittest.TestCase.assertNotIn")
`a not in b`
3\.1
[`assertIsInstance(a, b)`](#unittest.TestCase.assertIsInstance "unittest.TestCase.assertIsInstance")
`isinstance(a, b)`
3\.2
[`assertNotIsInstance(a, b)`](#unittest.TestCase.assertNotIsInstance "unittest.TestCase.assertNotIsInstance")
`not isinstance(a, b)`
3\.2
All the assert methods accept a *msg* argument that, if specified, is used as the error message on failure (see also [`longMessage`](#unittest.TestCase.longMessage "unittest.TestCase.longMessage")). Note that the *msg* keyword argument can be passed to [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises"), [`assertRaisesRegex()`](#unittest.TestCase.assertRaisesRegex "unittest.TestCase.assertRaisesRegex"), [`assertWarns()`](#unittest.TestCase.assertWarns "unittest.TestCase.assertWarns"), [`assertWarnsRegex()`](#unittest.TestCase.assertWarnsRegex "unittest.TestCase.assertWarnsRegex")only when they are used as a context manager.
`assertEqual`(*first*, *second*, *msg=None*)Test that *first* and *second* are equal. If the values do not compare equal, the test will fail.
In addition, if *first* and *second* are the exact same type and one of list, tuple, dict, set, frozenset or str or any type that a subclass registers with [`addTypeEqualityFunc()`](#unittest.TestCase.addTypeEqualityFunc "unittest.TestCase.addTypeEqualityFunc") the type-specific equality function will be called in order to generate a more useful default error message (see also the [list of type-specific methods](#type-specific-methods)).
在 3.1 版更改: Added the automatic calling of type-specific equality function.
在 3.2 版更改: [`assertMultiLineEqual()`](#unittest.TestCase.assertMultiLineEqual "unittest.TestCase.assertMultiLineEqual") added as the default type equality function for comparing strings.
`assertNotEqual`(*first*, *second*, *msg=None*)Test that *first* and *second* are not equal. If the values do compare equal, the test will fail.
`assertTrue`(*expr*, *msg=None*)`assertFalse`(*expr*, *msg=None*)Test that *expr* is true (or false).
Note that this is equivalent to `bool(expr) is True` and not to
```
expr
is True
```
(use `assertIs(expr, True)` for the latter). This method should also be avoided when more specific methods are available (e.g. `assertEqual(a, b)` instead of `assertTrue(a == b)`), because they provide a better error message in case of failure.
`assertIs`(*first*, *second*, *msg=None*)`assertIsNot`(*first*, *second*, *msg=None*)Test that *first* and *second* evaluate (or don't evaluate) to the same object.
3\.1 新版功能.
`assertIsNone`(*expr*, *msg=None*)`assertIsNotNone`(*expr*, *msg=None*)Test that *expr* is (or is not) `None`.
3\.1 新版功能.
`assertIn`(*first*, *second*, *msg=None*)`assertNotIn`(*first*, *second*, *msg=None*)Test that *first* is (or is not) in *second*.
3\.1 新版功能.
`assertIsInstance`(*obj*, *cls*, *msg=None*)`assertNotIsInstance`(*obj*, *cls*, *msg=None*)Test that *obj* is (or is not) an instance of *cls* (which can be a class or a tuple of classes, as supported by [`isinstance()`](functions.xhtml#isinstance "isinstance")). To check for the exact type, use [`assertIs(type(obj), cls)`](#unittest.TestCase.assertIs "unittest.TestCase.assertIs").
3\.2 新版功能.
It is also possible to check the production of exceptions, warnings, and log messages using the following methods:
Method
Checks that
New in
[`assertRaises(exc, fun, *args, **kwds)`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises")
`fun(*args, **kwds)` raises *exc*
[`assertRaisesRegex(exc, r, fun, *args, **kwds)`](#unittest.TestCase.assertRaisesRegex "unittest.TestCase.assertRaisesRegex")
`fun(*args, **kwds)` raises *exc*and the message matches regex *r*
3\.1
[`assertWarns(warn, fun, *args, **kwds)`](#unittest.TestCase.assertWarns "unittest.TestCase.assertWarns")
`fun(*args, **kwds)` raises *warn*
3\.2
[`assertWarnsRegex(warn, r, fun, *args, **kwds)`](#unittest.TestCase.assertWarnsRegex "unittest.TestCase.assertWarnsRegex")
`fun(*args, **kwds)` raises *warn*and the message matches regex *r*
3\.2
[`assertLogs(logger, level)`](#unittest.TestCase.assertLogs "unittest.TestCase.assertLogs")
The `with` block logs on *logger*with minimum *level*
3\.4
`assertRaises`(*exception*, *callable*, *\*args*, *\*\*kwds*)`assertRaises`(*exception*, *\**, *msg=None*)Test that an exception is raised when *callable* is called with any positional or keyword arguments that are also passed to [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises"). The test passes if *exception* is raised, is an error if another exception is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the exception classes may be passed as *exception*.
If only the *exception* and possibly the *msg* arguments are given, return a context manager so that the code under test can be written inline rather than as a function:
```
with self.assertRaises(SomeException):
do_something()
```
When used as a context manager, [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises") accepts the additional keyword argument *msg*.
The context manager will store the caught exception object in its `exception` attribute. This can be useful if the intention is to perform additional checks on the exception raised:
```
with self.assertRaises(SomeException) as cm:
do_something()
the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)
```
在 3.1 版更改: Added the ability to use [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises") as a context manager.
在 3.2 版更改: Added the `exception` attribute.
在 3.3 版更改: Added the *msg* keyword argument when used as a context manager.
`assertRaisesRegex`(*exception*, *regex*, *callable*, *\*args*, *\*\*kwds*)`assertRaisesRegex`(*exception*, *regex*, *\**, *msg=None*)Like [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises") but also tests that *regex* matches on the string representation of the raised exception. *regex* may be a regular expression object or a string containing a regular expression suitable for use by [`re.search()`](re.xhtml#re.search "re.search"). Examples:
```
self.assertRaisesRegex(ValueError, "invalid literal for.*XYZ'$",
int, 'XYZ')
```
or:
```
with self.assertRaisesRegex(ValueError, 'literal'):
int('XYZ')
```
3\.1 新版功能: Added under the name `assertRaisesRegexp`.
在 3.2 版更改: Renamed to [`assertRaisesRegex()`](#unittest.TestCase.assertRaisesRegex "unittest.TestCase.assertRaisesRegex").
在 3.3 版更改: Added the *msg* keyword argument when used as a context manager.
`assertWarns`(*warning*, *callable*, *\*args*, *\*\*kwds*)`assertWarns`(*warning*, *\**, *msg=None*)Test that a warning is triggered when *callable* is called with any positional or keyword arguments that are also passed to [`assertWarns()`](#unittest.TestCase.assertWarns "unittest.TestCase.assertWarns"). The test passes if *warning* is triggered and fails if it isn't. Any exception is an error. To catch any of a group of warnings, a tuple containing the warning classes may be passed as *warnings*.
If only the *warning* and possibly the *msg* arguments are given, return a context manager so that the code under test can be written inline rather than as a function:
```
with self.assertWarns(SomeWarning):
do_something()
```
When used as a context manager, [`assertWarns()`](#unittest.TestCase.assertWarns "unittest.TestCase.assertWarns") accepts the additional keyword argument *msg*.
The context manager will store the caught warning object in its `warning` attribute, and the source line which triggered the warnings in the `filename` and `lineno` attributes. This can be useful if the intention is to perform additional checks on the warning caught:
```
with self.assertWarns(SomeWarning) as cm:
do_something()
self.assertIn('myfile.py', cm.filename)
self.assertEqual(320, cm.lineno)
```
This method works regardless of the warning filters in place when it is called.
3\.2 新版功能.
在 3.3 版更改: Added the *msg* keyword argument when used as a context manager.
`assertWarnsRegex`(*warning*, *regex*, *callable*, *\*args*, *\*\*kwds*)`assertWarnsRegex`(*warning*, *regex*, *\**, *msg=None*)Like [`assertWarns()`](#unittest.TestCase.assertWarns "unittest.TestCase.assertWarns") but also tests that *regex* matches on the message of the triggered warning. *regex* may be a regular expression object or a string containing a regular expression suitable for use by [`re.search()`](re.xhtml#re.search "re.search"). Example:
```
self.assertWarnsRegex(DeprecationWarning,
r'legacy_function\(\) is deprecated',
legacy_function, 'XYZ')
```
or:
```
with self.assertWarnsRegex(RuntimeWarning, 'unsafe frobnicating'):
frobnicate('/etc/passwd')
```
3\.2 新版功能.
在 3.3 版更改: Added the *msg* keyword argument when used as a context manager.
`assertLogs`(*logger=None*, *level=None*)A context manager to test that at least one message is logged on the *logger* or one of its children, with at least the given *level*.
If given, *logger* should be a [`logging.Logger`](logging.xhtml#logging.Logger "logging.Logger") object or a [`str`](stdtypes.xhtml#str "str") giving the name of a logger. The default is the root logger, which will catch all messages.
If given, *level* should be either a numeric logging level or its string equivalent (for example either `"ERROR"` or `logging.ERROR`). The default is `logging.INFO`.
The test passes if at least one message emitted inside the `with`block matches the *logger* and *level* conditions, otherwise it fails.
The object returned by the context manager is a recording helper which keeps tracks of the matching log messages. It has two attributes:
`records`A list of [`logging.LogRecord`](logging.xhtml#logging.LogRecord "logging.LogRecord") objects of the matching log messages.
`output`A list of [`str`](stdtypes.xhtml#str "str") objects with the formatted output of matching messages.
示例:
```
with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')
self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])
```
3\.4 新版功能.
There are also other methods used to perform more specific checks, such as:
Method
Checks that
New in
[`assertAlmostEqual(a, b)`](#unittest.TestCase.assertAlmostEqual "unittest.TestCase.assertAlmostEqual")
`round(a-b, 7) == 0`
[`assertNotAlmostEqual(a, b)`](#unittest.TestCase.assertNotAlmostEqual "unittest.TestCase.assertNotAlmostEqual")
`round(a-b, 7) != 0`
[`assertGreater(a, b)`](#unittest.TestCase.assertGreater "unittest.TestCase.assertGreater")
`a > b`
3\.1
[`assertGreaterEqual(a, b)`](#unittest.TestCase.assertGreaterEqual "unittest.TestCase.assertGreaterEqual")
`a >= b`
3\.1
[`assertLess(a, b)`](#unittest.TestCase.assertLess "unittest.TestCase.assertLess")
`a < b`
3\.1
[`assertLessEqual(a, b)`](#unittest.TestCase.assertLessEqual "unittest.TestCase.assertLessEqual")
`a <= b`
3\.1
[`assertRegex(s, r)`](#unittest.TestCase.assertRegex "unittest.TestCase.assertRegex")
`r.search(s)`
3\.1
[`assertNotRegex(s, r)`](#unittest.TestCase.assertNotRegex "unittest.TestCase.assertNotRegex")
`not r.search(s)`
3\.2
[`assertCountEqual(a, b)`](#unittest.TestCase.assertCountEqual "unittest.TestCase.assertCountEqual")
*a* and *b* have the same elements in the same number, regardless of their order.
3\.2
`assertAlmostEqual`(*first*, *second*, *places=7*, *msg=None*, *delta=None*)`assertNotAlmostEqual`(*first*, *second*, *places=7*, *msg=None*, *delta=None*)Test that *first* and *second* are approximately (or not approximately) equal by computing the difference, rounding to the given number of decimal *places* (default 7), and comparing to zero. Note that these methods round the values to the given number of *decimal places* (i.e. like the [`round()`](functions.xhtml#round "round") function) and not *significant digits*.
If *delta* is supplied instead of *places* then the difference between *first* and *second* must be less or equal to (or greater than) *delta*.
Supplying both *delta* and *places* raises a [`TypeError`](exceptions.xhtml#TypeError "TypeError").
在 3.2 版更改: [`assertAlmostEqual()`](#unittest.TestCase.assertAlmostEqual "unittest.TestCase.assertAlmostEqual") automatically considers almost equal objects that compare equal. [`assertNotAlmostEqual()`](#unittest.TestCase.assertNotAlmostEqual "unittest.TestCase.assertNotAlmostEqual") automatically fails if the objects compare equal. Added the *delta* keyword argument.
`assertGreater`(*first*, *second*, *msg=None*)`assertGreaterEqual`(*first*, *second*, *msg=None*)`assertLess`(*first*, *second*, *msg=None*)`assertLessEqual`(*first*, *second*, *msg=None*)Test that *first* is respectively >, >=, < or <= than *second* depending on the method name. If not, the test will fail:
```
>>> self.assertGreaterEqual(3, 4)
AssertionError: "3" unexpectedly not greater than or equal to "4"
```
3\.1 新版功能.
`assertRegex`(*text*, *regex*, *msg=None*)`assertNotRegex`(*text*, *regex*, *msg=None*)Test that a *regex* search matches (or does not match) *text*. In case of failure, the error message will include the pattern and the *text* (or the pattern and the part of *text* that unexpectedly matched). *regex*may be a regular expression object or a string containing a regular expression suitable for use by [`re.search()`](re.xhtml#re.search "re.search").
3\.1 新版功能: Added under the name `assertRegexpMatches`.
在 3.2 版更改: The method `assertRegexpMatches()` has been renamed to [`assertRegex()`](#unittest.TestCase.assertRegex "unittest.TestCase.assertRegex").
3\.2 新版功能: [`assertNotRegex()`](#unittest.TestCase.assertNotRegex "unittest.TestCase.assertNotRegex").
3\.5 新版功能: The name `assertNotRegexpMatches` is a deprecated alias for [`assertNotRegex()`](#unittest.TestCase.assertNotRegex "unittest.TestCase.assertNotRegex").
`assertCountEqual`(*first*, *second*, *msg=None*)Test that sequence *first* contains the same elements as *second*, regardless of their order. When they don't, an error message listing the differences between the sequences will be generated.
Duplicate elements are *not* ignored when comparing *first* and *second*. It verifies whether each element has the same count in both sequences. Equivalent to: `assertEqual(Counter(list(first)), Counter(list(second)))`but works with sequences of unhashable objects as well.
3\.2 新版功能.
The [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual") method dispatches the equality check for objects of the same type to different type-specific methods. These methods are already implemented for most of the built-in types, but it's also possible to register new methods using [`addTypeEqualityFunc()`](#unittest.TestCase.addTypeEqualityFunc "unittest.TestCase.addTypeEqualityFunc"):
`addTypeEqualityFunc`(*typeobj*, *function*)Registers a type-specific method called by [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual") to check if two objects of exactly the same *typeobj* (not subclasses) compare equal. *function* must take two positional arguments and a third msg=None keyword argument just as [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual") does. It must raise [`self.failureException(msg)`](#unittest.TestCase.failureException "unittest.TestCase.failureException") when inequality between the first two parameters is detected -- possibly providing useful information and explaining the inequalities in details in the error message.
3\.1 新版功能.
The list of type-specific methods automatically used by [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual") are summarized in the following table. Note that it's usually not necessary to invoke these methods directly.
Method
Used to compare
New in
[`assertMultiLineEqual(a, b)`](#unittest.TestCase.assertMultiLineEqual "unittest.TestCase.assertMultiLineEqual")
strings
3\.1
[`assertSequenceEqual(a, b)`](#unittest.TestCase.assertSequenceEqual "unittest.TestCase.assertSequenceEqual")
sequences
3\.1
[`assertListEqual(a, b)`](#unittest.TestCase.assertListEqual "unittest.TestCase.assertListEqual")
lists
3\.1
[`assertTupleEqual(a, b)`](#unittest.TestCase.assertTupleEqual "unittest.TestCase.assertTupleEqual")
tuples
3\.1
[`assertSetEqual(a, b)`](#unittest.TestCase.assertSetEqual "unittest.TestCase.assertSetEqual")
sets or frozensets
3\.1
[`assertDictEqual(a, b)`](#unittest.TestCase.assertDictEqual "unittest.TestCase.assertDictEqual")
dicts
3\.1
`assertMultiLineEqual`(*first*, *second*, *msg=None*)Test that the multiline string *first* is equal to the string *second*. When not equal a diff of the two strings highlighting the differences will be included in the error message. This method is used by default when comparing strings with [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual").
3\.1 新版功能.
`assertSequenceEqual`(*first*, *second*, *msg=None*, *seq\_type=None*)Tests that two sequences are equal. If a *seq\_type* is supplied, both *first* and *second* must be instances of *seq\_type* or a failure will be raised. If the sequences are different an error message is constructed that shows the difference between the two.
This method is not called directly by [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual"), but it's used to implement [`assertListEqual()`](#unittest.TestCase.assertListEqual "unittest.TestCase.assertListEqual") and [`assertTupleEqual()`](#unittest.TestCase.assertTupleEqual "unittest.TestCase.assertTupleEqual").
3\.1 新版功能.
`assertListEqual`(*first*, *second*, *msg=None*)`assertTupleEqual`(*first*, *second*, *msg=None*)Tests that two lists or tuples are equal. If not, an error message is constructed that shows only the differences between the two. An error is also raised if either of the parameters are of the wrong type. These methods are used by default when comparing lists or tuples with [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual").
3\.1 新版功能.
`assertSetEqual`(*first*, *second*, *msg=None*)Tests that two sets are equal. If not, an error message is constructed that lists the differences between the sets. This method is used by default when comparing sets or frozensets with [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual").
Fails if either of *first* or *second* does not have a `set.difference()`method.
3\.1 新版功能.
`assertDictEqual`(*first*, *second*, *msg=None*)Test that two dictionaries are equal. If not, an error message is constructed that shows the differences in the dictionaries. This method will be used by default to compare dictionaries in calls to [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual").
3\.1 新版功能.
Finally the [`TestCase`](#unittest.TestCase "unittest.TestCase") provides the following methods and attributes:
`fail`(*msg=None*)Signals a test failure unconditionally, with *msg* or `None` for the error message.
`failureException`This class attribute gives the exception raised by the test method. If a test framework needs to use a specialized exception, possibly to carry additional information, it must subclass this exception in order to "play fair" with the framework. The initial value of this attribute is [`AssertionError`](exceptions.xhtml#AssertionError "AssertionError").
`longMessage`This class attribute determines what happens when a custom failure message is passed as the msg argument to an assertXYY call that fails. `True` is the default value. In this case, the custom message is appended to the end of the standard failure message. When set to `False`, the custom message replaces the standard message.
The class setting can be overridden in individual test methods by assigning an instance attribute, self.longMessage, to `True` or `False` before calling the assert methods.
The class setting gets reset before each test call.
3\.1 新版功能.
`maxDiff`This attribute controls the maximum length of diffs output by assert methods that report diffs on failure. It defaults to 80\*8 characters. Assert methods affected by this attribute are [`assertSequenceEqual()`](#unittest.TestCase.assertSequenceEqual "unittest.TestCase.assertSequenceEqual") (including all the sequence comparison methods that delegate to it), [`assertDictEqual()`](#unittest.TestCase.assertDictEqual "unittest.TestCase.assertDictEqual") and [`assertMultiLineEqual()`](#unittest.TestCase.assertMultiLineEqual "unittest.TestCase.assertMultiLineEqual").
Setting `maxDiff` to `None` means that there is no maximum length of diffs.
3\.2 新版功能.
Testing frameworks can use the following methods to collect information on the test:
`countTestCases`()Return the number of tests represented by this test object. For [`TestCase`](#unittest.TestCase "unittest.TestCase") instances, this will always be `1`.
`defaultTestResult`()Return an instance of the test result class that should be used for this test case class (if no other result instance is provided to the [`run()`](#unittest.TestCase.run "unittest.TestCase.run") method).
For [`TestCase`](#unittest.TestCase "unittest.TestCase") instances, this will always be an instance of [`TestResult`](#unittest.TestResult "unittest.TestResult"); subclasses of [`TestCase`](#unittest.TestCase "unittest.TestCase") should override this as necessary.
`id`()Return a string identifying the specific test case. This is usually the full name of the test method, including the module and class name.
`shortDescription`()Returns a description of the test, or `None` if no description has been provided. The default implementation of this method returns the first line of the test method's docstring, if available, or `None`.
在 3.1 版更改: In 3.1 this was changed to add the test name to the short description even in the presence of a docstring. This caused compatibility issues with unittest extensions and adding the test name was moved to the [`TextTestResult`](#unittest.TextTestResult "unittest.TextTestResult") in Python 3.2.
`addCleanup`(*function*, *\*args*, *\*\*kwargs*)Add a function to be called after [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") to cleanup resources used during the test. Functions will be called in reverse order to the order they are added (LIFO). They are called with any arguments and keyword arguments passed into [`addCleanup()`](#unittest.TestCase.addCleanup "unittest.TestCase.addCleanup") when they are added.
If [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") fails, meaning that [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") is not called, then any cleanup functions added will still be called.
3\.1 新版功能.
`doCleanups`()This method is called unconditionally after [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown"), or after [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") if [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") raises an exception.
It is responsible for calling all the cleanup functions added by [`addCleanup()`](#unittest.TestCase.addCleanup "unittest.TestCase.addCleanup"). If you need cleanup functions to be called *prior* to [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") then you can call [`doCleanups()`](#unittest.TestCase.doCleanups "unittest.TestCase.doCleanups")yourself.
[`doCleanups()`](#unittest.TestCase.doCleanups "unittest.TestCase.doCleanups") pops methods off the stack of cleanup functions one at a time, so it can be called at any time.
3\.1 新版功能.
*class* `unittest.``FunctionTestCase`(*testFunc*, *setUp=None*, *tearDown=None*, *description=None*)This class implements the portion of the [`TestCase`](#unittest.TestCase "unittest.TestCase") interface which allows the test runner to drive the test, but does not provide the methods which test code can use to check and report errors. This is used to create test cases using legacy test code, allowing it to be integrated into a [`unittest`](#module-unittest "unittest: Unit testing framework for Python.")-based test framework.
#### Deprecated aliases
For historical reasons, some of the [`TestCase`](#unittest.TestCase "unittest.TestCase") methods had one or more aliases that are now deprecated. The following table lists the correct names along with their deprecated aliases:
> Method Name
>
> Deprecated alias
>
> Deprecated alias
>
> [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual")
>
> failUnlessEqual
>
> assertEquals
>
> [`assertNotEqual()`](#unittest.TestCase.assertNotEqual "unittest.TestCase.assertNotEqual")
>
> failIfEqual
>
> assertNotEquals
>
> [`assertTrue()`](#unittest.TestCase.assertTrue "unittest.TestCase.assertTrue")
>
> failUnless
>
> assert\_
>
> [`assertFalse()`](#unittest.TestCase.assertFalse "unittest.TestCase.assertFalse")
>
> failIf
>
> [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises")
>
> failUnlessRaises
>
> [`assertAlmostEqual()`](#unittest.TestCase.assertAlmostEqual "unittest.TestCase.assertAlmostEqual")
>
> failUnlessAlmostEqual
>
> assertAlmostEquals
>
> [`assertNotAlmostEqual()`](#unittest.TestCase.assertNotAlmostEqual "unittest.TestCase.assertNotAlmostEqual")
>
> failIfAlmostEqual
>
> assertNotAlmostEquals
>
> [`assertRegex()`](#unittest.TestCase.assertRegex "unittest.TestCase.assertRegex")
>
> assertRegexpMatches
>
> [`assertNotRegex()`](#unittest.TestCase.assertNotRegex "unittest.TestCase.assertNotRegex")
>
> assertNotRegexpMatches
>
> [`assertRaisesRegex()`](#unittest.TestCase.assertRaisesRegex "unittest.TestCase.assertRaisesRegex")
>
> assertRaisesRegexp
>
> 3\.1 版后已移除: The fail\* aliases listed in the second column have been deprecated.
>
>
>
> 3\.2 版后已移除: The assert\* aliases listed in the third column have been deprecated.
>
>
>
> 3\.2 版后已移除: `assertRegexpMatches` and `assertRaisesRegexp` have been renamed to [`assertRegex()`](#unittest.TestCase.assertRegex "unittest.TestCase.assertRegex") and [`assertRaisesRegex()`](#unittest.TestCase.assertRaisesRegex "unittest.TestCase.assertRaisesRegex").
>
>
>
> 3\.5 版后已移除: The `assertNotRegexpMatches` name is deprecated in favor of [`assertNotRegex()`](#unittest.TestCase.assertNotRegex "unittest.TestCase.assertNotRegex").
### Grouping tests
*class* `unittest.``TestSuite`(*tests=()*)This class represents an aggregation of individual test cases and test suites. The class presents the interface needed by the test runner to allow it to be run as any other test case. Running a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") instance is the same as iterating over the suite, running each test individually.
If *tests* is given, it must be an iterable of individual test cases or other test suites that will be used to build the suite initially. Additional methods are provided to add test cases and suites to the collection later on.
[`TestSuite`](#unittest.TestSuite "unittest.TestSuite") objects behave much like [`TestCase`](#unittest.TestCase "unittest.TestCase") objects, except they do not actually implement a test. Instead, they are used to aggregate tests into groups of tests that should be run together. Some additional methods are available to add tests to [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") instances:
`addTest`(*test*)Add a [`TestCase`](#unittest.TestCase "unittest.TestCase") or [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") to the suite.
`addTests`(*tests*)Add all the tests from an iterable of [`TestCase`](#unittest.TestCase "unittest.TestCase") and [`TestSuite`](#unittest.TestSuite "unittest.TestSuite")instances to this test suite.
This is equivalent to iterating over *tests*, calling [`addTest()`](#unittest.TestSuite.addTest "unittest.TestSuite.addTest") for each element.
[`TestSuite`](#unittest.TestSuite "unittest.TestSuite") shares the following methods with [`TestCase`](#unittest.TestCase "unittest.TestCase"):
`run`(*result*)Run the tests associated with this suite, collecting the result into the test result object passed as *result*. Note that unlike [`TestCase.run()`](#unittest.TestCase.run "unittest.TestCase.run"), [`TestSuite.run()`](#unittest.TestSuite.run "unittest.TestSuite.run") requires the result object to be passed in.
`debug`()Run the tests associated with this suite without collecting the result. This allows exceptions raised by the test to be propagated to the caller and can be used to support running tests under a debugger.
`countTestCases`()Return the number of tests represented by this test object, including all individual tests and sub-suites.
`__iter__`()Tests grouped by a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") are always accessed by iteration. Subclasses can lazily provide tests by overriding [`__iter__()`](#unittest.TestSuite.__iter__ "unittest.TestSuite.__iter__"). Note that this method may be called several times on a single suite (for example when counting tests or comparing for equality) so the tests returned by repeated iterations before [`TestSuite.run()`](#unittest.TestSuite.run "unittest.TestSuite.run") must be the same for each call iteration. After [`TestSuite.run()`](#unittest.TestSuite.run "unittest.TestSuite.run"), callers should not rely on the tests returned by this method unless the caller uses a subclass that overrides `TestSuite._removeTestAtIndex()` to preserve test references.
在 3.2 版更改: In earlier versions the [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") accessed tests directly rather than through iteration, so overriding [`__iter__()`](#unittest.TestSuite.__iter__ "unittest.TestSuite.__iter__") wasn't sufficient for providing tests.
在 3.4 版更改: In earlier versions the [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") held references to each [`TestCase`](#unittest.TestCase "unittest.TestCase") after [`TestSuite.run()`](#unittest.TestSuite.run "unittest.TestSuite.run"). Subclasses can restore that behavior by overriding `TestSuite._removeTestAtIndex()`.
In the typical usage of a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") object, the [`run()`](#unittest.TestSuite.run "unittest.TestSuite.run") method is invoked by a `TestRunner` rather than by the end-user test harness.
### Loading and running tests
*class* `unittest.``TestLoader`The [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") class is used to create test suites from classes and modules. Normally, there is no need to create an instance of this class; the [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") module provides an instance that can be shared as [`unittest.defaultTestLoader`](#unittest.defaultTestLoader "unittest.defaultTestLoader"). Using a subclass or instance, however, allows customization of some configurable properties.
[`TestLoader`](#unittest.TestLoader "unittest.TestLoader") objects have the following attributes:
`errors`A list of the non-fatal errors encountered while loading tests. Not reset by the loader at any point. Fatal errors are signalled by the relevant a method raising an exception to the caller. Non-fatal errors are also indicated by a synthetic test that will raise the original error when run.
3\.5 新版功能.
[`TestLoader`](#unittest.TestLoader "unittest.TestLoader") objects have the following methods:
`loadTestsFromTestCase`(*testCaseClass*)Return a suite of all test cases contained in the [`TestCase`](#unittest.TestCase "unittest.TestCase")-derived `testCaseClass`.
A test case instance is created for each method named by [`getTestCaseNames()`](#unittest.TestLoader.getTestCaseNames "unittest.TestLoader.getTestCaseNames"). By default these are the method names beginning with `test`. If [`getTestCaseNames()`](#unittest.TestLoader.getTestCaseNames "unittest.TestLoader.getTestCaseNames") returns no methods, but the `runTest()` method is implemented, a single test case is created for that method instead.
`loadTestsFromModule`(*module*, *pattern=None*)Return a suite of all test cases contained in the given module. This method searches *module* for classes derived from [`TestCase`](#unittest.TestCase "unittest.TestCase") and creates an instance of the class for each test method defined for the class.
注解
While using a hierarchy of [`TestCase`](#unittest.TestCase "unittest.TestCase")-derived classes can be convenient in sharing fixtures and helper functions, defining test methods on base classes that are not intended to be instantiated directly does not play well with this method. Doing so, however, can be useful when the fixtures are different and defined in subclasses.
If a module provides a `load_tests` function it will be called to load the tests. This allows modules to customize test loading. This is the [load\_tests protocol](#load-tests-protocol). The *pattern* argument is passed as the third argument to `load_tests`.
在 3.2 版更改: Support for `load_tests` added.
在 3.5 版更改: The undocumented and unofficial *use\_load\_tests* default argument is deprecated and ignored, although it is still accepted for backward compatibility. The method also now accepts a keyword-only argument *pattern* which is passed to `load_tests` as the third argument.
`loadTestsFromName`(*name*, *module=None*)Return a suite of all test cases given a string specifier.
The specifier *name* is a "dotted name" that may resolve either to a module, a test case class, a test method within a test case class, a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") instance, or a callable object which returns a [`TestCase`](#unittest.TestCase "unittest.TestCase") or [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") instance. These checks are applied in the order listed here; that is, a method on a possible test case class will be picked up as "a test method within a test case class", rather than "a callable object".
For example, if you have a module `SampleTests` containing a [`TestCase`](#unittest.TestCase "unittest.TestCase")-derived class `SampleTestCase` with three test methods (`test_one()`, `test_two()`, and `test_three()`), the specifier `'SampleTests.SampleTestCase'` would cause this method to return a suite which will run all three test methods. Using the specifier `'SampleTests.SampleTestCase.test_two'` would cause it to return a test suite which will run only the `test_two()` test method. The specifier can refer to modules and packages which have not been imported; they will be imported as a side-effect.
The method optionally resolves *name* relative to the given *module*.
在 3.5 版更改: If an [`ImportError`](exceptions.xhtml#ImportError "ImportError") or [`AttributeError`](exceptions.xhtml#AttributeError "AttributeError") occurs while traversing *name* then a synthetic test that raises that error when run will be returned. These errors are included in the errors accumulated by self.errors.
`loadTestsFromNames`(*names*, *module=None*)Similar to [`loadTestsFromName()`](#unittest.TestLoader.loadTestsFromName "unittest.TestLoader.loadTestsFromName"), but takes a sequence of names rather than a single name. The return value is a test suite which supports all the tests defined for each name.
`getTestCaseNames`(*testCaseClass*)Return a sorted sequence of method names found within *testCaseClass*; this should be a subclass of [`TestCase`](#unittest.TestCase "unittest.TestCase").
`discover`(*start\_dir*, *pattern='test\*.py'*, *top\_level\_dir=None*)Find all the test modules by recursing into subdirectories from the specified start directory, and return a TestSuite object containing them. Only test files that match *pattern* will be loaded. (Using shell style pattern matching.) Only module names that are importable (i.e. are valid Python identifiers) will be loaded.
All test modules must be importable from the top level of the project. If the start directory is not the top level directory then the top level directory must be specified separately.
If importing a module fails, for example due to a syntax error, then this will be recorded as a single error and discovery will continue. If the import failure is due to [`SkipTest`](#unittest.SkipTest "unittest.SkipTest") being raised, it will be recorded as a skip instead of an error.
If a package (a directory containing a file named `__init__.py`) is found, the package will be checked for a `load_tests` function. If this exists then it will be called `package.load_tests(loader, tests, pattern)`. Test discovery takes care to ensure that a package is only checked for tests once during an invocation, even if the load\_tests function itself calls `loader.discover`.
If `load_tests` exists then discovery does *not* recurse into the package, `load_tests` is responsible for loading all tests in the package.
The pattern is deliberately not stored as a loader attribute so that packages can continue discovery themselves. *top\_level\_dir* is stored so `load_tests` does not need to pass this argument in to `loader.discover()`.
*start\_dir* can be a dotted module name as well as a directory.
3\.2 新版功能.
在 3.4 版更改: Modules that raise [`SkipTest`](#unittest.SkipTest "unittest.SkipTest") on import are recorded as skips, not errors. Discovery works for [namespace packages](../glossary.xhtml#term-namespace-package). Paths are sorted before being imported so that execution order is the same even if the underlying file system's ordering is not dependent on file name.
在 3.5 版更改: Found packages are now checked for `load_tests` regardless of whether their path matches *pattern*, because it is impossible for a package name to match the default pattern.
The following attributes of a [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") can be configured either by subclassing or assignment on an instance:
`testMethodPrefix`String giving the prefix of method names which will be interpreted as test methods. The default value is `'test'`.
This affects [`getTestCaseNames()`](#unittest.TestLoader.getTestCaseNames "unittest.TestLoader.getTestCaseNames") and all the `loadTestsFrom*()`methods.
`sortTestMethodsUsing`Function to be used to compare method names when sorting them in [`getTestCaseNames()`](#unittest.TestLoader.getTestCaseNames "unittest.TestLoader.getTestCaseNames") and all the `loadTestsFrom*()` methods.
`suiteClass`Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed. The default value is the [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") class.
This affects all the `loadTestsFrom*()` methods.
`testNamePatterns`List of Unix shell-style wildcard test name patterns that test methods have to match to be included in test suites (see `-v` option).
If this attribute is not `None` (the default), all test methods to be included in test suites must match one of the patterns in this list. Note that matches are always performed using [`fnmatch.fnmatchcase()`](fnmatch.xhtml#fnmatch.fnmatchcase "fnmatch.fnmatchcase"), so unlike patterns passed to the `-v` option, simple substring patterns will have to be converted using `*` wildcards.
This affects all the `loadTestsFrom*()` methods.
3\.7 新版功能.
*class* `unittest.``TestResult`This class is used to compile information about which tests have succeeded and which have failed.
A [`TestResult`](#unittest.TestResult "unittest.TestResult") object stores the results of a set of tests. The [`TestCase`](#unittest.TestCase "unittest.TestCase") and [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") classes ensure that results are properly recorded; test authors do not need to worry about recording the outcome of tests.
Testing frameworks built on top of [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") may want access to the [`TestResult`](#unittest.TestResult "unittest.TestResult") object generated by running a set of tests for reporting purposes; a [`TestResult`](#unittest.TestResult "unittest.TestResult") instance is returned by the `TestRunner.run()` method for this purpose.
[`TestResult`](#unittest.TestResult "unittest.TestResult") instances have the following attributes that will be of interest when inspecting the results of running a set of tests:
`errors`A list containing 2-tuples of [`TestCase`](#unittest.TestCase "unittest.TestCase") instances and strings holding formatted tracebacks. Each tuple represents a test which raised an unexpected exception.
`failures`A list containing 2-tuples of [`TestCase`](#unittest.TestCase "unittest.TestCase") instances and strings holding formatted tracebacks. Each tuple represents a test where a failure was explicitly signalled using the `TestCase.assert*()` methods.
`skipped`A list containing 2-tuples of [`TestCase`](#unittest.TestCase "unittest.TestCase") instances and strings holding the reason for skipping the test.
3\.1 新版功能.
`expectedFailures`A list containing 2-tuples of [`TestCase`](#unittest.TestCase "unittest.TestCase") instances and strings holding formatted tracebacks. Each tuple represents an expected failure of the test case.
`unexpectedSuccesses`A list containing [`TestCase`](#unittest.TestCase "unittest.TestCase") instances that were marked as expected failures, but succeeded.
`shouldStop`Set to `True` when the execution of tests should stop by [`stop()`](#unittest.TestResult.stop "unittest.TestResult.stop").
`testsRun`The total number of tests run so far.
`buffer`If set to true, `sys.stdout` and `sys.stderr` will be buffered in between [`startTest()`](#unittest.TestResult.startTest "unittest.TestResult.startTest") and [`stopTest()`](#unittest.TestResult.stopTest "unittest.TestResult.stopTest") being called. Collected output will only be echoed onto the real `sys.stdout` and `sys.stderr` if the test fails or errors. Any output is also attached to the failure / error message.
3\.2 新版功能.
`failfast`If set to true [`stop()`](#unittest.TestResult.stop "unittest.TestResult.stop") will be called on the first failure or error, halting the test run.
3\.2 新版功能.
`tb_locals`If set to true then local variables will be shown in tracebacks.
3\.5 新版功能.
`wasSuccessful`()Return `True` if all tests run so far have passed, otherwise returns `False`.
在 3.4 版更改: Returns `False` if there were any [`unexpectedSuccesses`](#unittest.TestResult.unexpectedSuccesses "unittest.TestResult.unexpectedSuccesses")from tests marked with the [`expectedFailure()`](#unittest.expectedFailure "unittest.expectedFailure") decorator.
`stop`()This method can be called to signal that the set of tests being run should be aborted by setting the [`shouldStop`](#unittest.TestResult.shouldStop "unittest.TestResult.shouldStop") attribute to `True`. `TestRunner` objects should respect this flag and return without running any additional tests.
For example, this feature is used by the [`TextTestRunner`](#unittest.TextTestRunner "unittest.TextTestRunner") class to stop the test framework when the user signals an interrupt from the keyboard. Interactive tools which provide `TestRunner`implementations can use this in a similar manner.
The following methods of the [`TestResult`](#unittest.TestResult "unittest.TestResult") class are used to maintain the internal data structures, and may be extended in subclasses to support additional reporting requirements. This is particularly useful in building tools which support interactive reporting while tests are being run.
`startTest`(*test*)Called when the test case *test* is about to be run.
`stopTest`(*test*)Called after the test case *test* has been executed, regardless of the outcome.
`startTestRun`()Called once before any tests are executed.
3\.1 新版功能.
`stopTestRun`()Called once after all tests are executed.
3\.1 新版功能.
`addError`(*test*, *err*)Called when the test case *test* raises an unexpected exception. *err* is a tuple of the form returned by [`sys.exc_info()`](sys.xhtml#sys.exc_info "sys.exc_info"):
```
(type, value,
traceback)
```
.
The default implementation appends a tuple `(test, formatted_err)` to the instance's [`errors`](#unittest.TestResult.errors "unittest.TestResult.errors") attribute, where *formatted\_err* is a formatted traceback derived from *err*.
`addFailure`(*test*, *err*)Called when the test case *test* signals a failure. *err* is a tuple of the form returned by [`sys.exc_info()`](sys.xhtml#sys.exc_info "sys.exc_info"): `(type, value, traceback)`.
The default implementation appends a tuple `(test, formatted_err)` to the instance's [`failures`](#unittest.TestResult.failures "unittest.TestResult.failures") attribute, where *formatted\_err* is a formatted traceback derived from *err*.
`addSuccess`(*test*)Called when the test case *test* succeeds.
The default implementation does nothing.
`addSkip`(*test*, *reason*)Called when the test case *test* is skipped. *reason* is the reason the test gave for skipping.
The default implementation appends a tuple `(test, reason)` to the instance's [`skipped`](#unittest.TestResult.skipped "unittest.TestResult.skipped") attribute.
`addExpectedFailure`(*test*, *err*)Called when the test case *test* fails, but was marked with the [`expectedFailure()`](#unittest.expectedFailure "unittest.expectedFailure") decorator.
The default implementation appends a tuple `(test, formatted_err)` to the instance's [`expectedFailures`](#unittest.TestResult.expectedFailures "unittest.TestResult.expectedFailures") attribute, where *formatted\_err*is a formatted traceback derived from *err*.
`addUnexpectedSuccess`(*test*)Called when the test case *test* was marked with the [`expectedFailure()`](#unittest.expectedFailure "unittest.expectedFailure") decorator, but succeeded.
The default implementation appends the test to the instance's [`unexpectedSuccesses`](#unittest.TestResult.unexpectedSuccesses "unittest.TestResult.unexpectedSuccesses") attribute.
`addSubTest`(*test*, *subtest*, *outcome*)Called when a subtest finishes. *test* is the test case corresponding to the test method. *subtest* is a custom [`TestCase`](#unittest.TestCase "unittest.TestCase") instance describing the subtest.
If *outcome* is [`None`](constants.xhtml#None "None"), the subtest succeeded. Otherwise, it failed with an exception where *outcome* is a tuple of the form returned by [`sys.exc_info()`](sys.xhtml#sys.exc_info "sys.exc_info"): `(type, value, traceback)`.
The default implementation does nothing when the outcome is a success, and records subtest failures as normal failures.
3\.4 新版功能.
*class* `unittest.``TextTestResult`(*stream*, *descriptions*, *verbosity*)A concrete implementation of [`TestResult`](#unittest.TestResult "unittest.TestResult") used by the [`TextTestRunner`](#unittest.TextTestRunner "unittest.TextTestRunner").
3\.2 新版功能: This class was previously named `_TextTestResult`. The old name still exists as an alias but is deprecated.
`unittest.``defaultTestLoader`Instance of the [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") class intended to be shared. If no customization of the [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") is needed, this instance can be used instead of repeatedly creating new instances.
*class* `unittest.``TextTestRunner`(*stream=None*, *descriptions=True*, *verbosity=1*, *failfast=False*, *buffer=False*, *resultclass=None*, *warnings=None*, *\**, *tb\_locals=False*)A basic test runner implementation that outputs results to a stream. If *stream*is `None`, the default, [`sys.stderr`](sys.xhtml#sys.stderr "sys.stderr") is used as the output stream. This class has a few configurable parameters, but is essentially very simple. Graphical applications which run test suites should provide alternate implementations. Such implementations should accept `**kwargs` as the interface to construct runners changes when features are added to unittest.
By default this runner shows [`DeprecationWarning`](exceptions.xhtml#DeprecationWarning "DeprecationWarning"), [`PendingDeprecationWarning`](exceptions.xhtml#PendingDeprecationWarning "PendingDeprecationWarning"), [`ResourceWarning`](exceptions.xhtml#ResourceWarning "ResourceWarning") and [`ImportWarning`](exceptions.xhtml#ImportWarning "ImportWarning") even if they are [ignored by default](warnings.xhtml#warning-ignored). Deprecation warnings caused by [deprecated unittest methods](#deprecated-aliases) are also special-cased and, when the warning filters are `'default'` or `'always'`, they will appear only once per-module, in order to avoid too many warning messages. This behavior can be overridden using Python's `-Wd` or `-Wa` options (see [Warning control](../using/cmdline.xhtml#using-on-warnings)) and leaving *warnings* to `None`.
在 3.2 版更改: Added the `warnings` argument.
在 3.2 版更改: The default stream is set to [`sys.stderr`](sys.xhtml#sys.stderr "sys.stderr") at instantiation time rather than import time.
在 3.5 版更改: Added the tb\_locals parameter.
`_makeResult`()This method returns the instance of `TestResult` used by [`run()`](#unittest.TextTestRunner.run "unittest.TextTestRunner.run"). It is not intended to be called directly, but can be overridden in subclasses to provide a custom `TestResult`.
`_makeResult()` instantiates the class or callable passed in the `TextTestRunner` constructor as the `resultclass` argument. It defaults to [`TextTestResult`](#unittest.TextTestResult "unittest.TextTestResult") if no `resultclass` is provided. The result class is instantiated with the following arguments:
```
stream, descriptions, verbosity
```
`run`(*test*)This method is the main public interface to the `TextTestRunner`. This method takes a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") or [`TestCase`](#unittest.TestCase "unittest.TestCase") instance. A [`TestResult`](#unittest.TestResult "unittest.TestResult") is created by calling [`_makeResult()`](#unittest.TextTestRunner._makeResult "unittest.TextTestRunner._makeResult") and the test(s) are run and the results printed to stdout.
`unittest.``main`(*module='\_\_main\_\_'*, *defaultTest=None*, *argv=None*, *testRunner=None*, *testLoader=unittest.defaultTestLoader*, *exit=True*, *verbosity=1*, *failfast=None*, *catchbreak=None*, *buffer=None*, *warnings=None*)A command-line program that loads a set of tests from *module* and runs them; this is primarily for making test modules conveniently executable. The simplest use for this function is to include the following line at the end of a test script:
```
if __name__ == '__main__':
unittest.main()
```
You can run tests with more detailed information by passing in the verbosity argument:
```
if __name__ == '__main__':
unittest.main(verbosity=2)
```
The *defaultTest* argument is either the name of a single test or an iterable of test names to run if no test names are specified via *argv*. If not specified or `None` and no test names are provided via *argv*, all tests found in *module* are run.
The *argv* argument can be a list of options passed to the program, with the first element being the program name. If not specified or `None`, the values of [`sys.argv`](sys.xhtml#sys.argv "sys.argv") are used.
The *testRunner* argument can either be a test runner class or an already created instance of it. By default `main` calls [`sys.exit()`](sys.xhtml#sys.exit "sys.exit") with an exit code indicating success or failure of the tests run.
The *testLoader* argument has to be a [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") instance, and defaults to [`defaultTestLoader`](#unittest.defaultTestLoader "unittest.defaultTestLoader").
`main` supports being used from the interactive interpreter by passing in the argument `exit=False`. This displays the result on standard output without calling [`sys.exit()`](sys.xhtml#sys.exit "sys.exit"):
```
>>> from unittest import main
>>> main(module='test_module', exit=False)
```
The *failfast*, *catchbreak* and *buffer* parameters have the same effect as the same-name [command-line options](#command-line-options).
The *warnings* argument specifies the [warning filter](warnings.xhtml#warning-filter)that should be used while running the tests. If it's not specified, it will remain `None` if a `-W` option is passed to **python**(see [Warning control](../using/cmdline.xhtml#using-on-warnings)), otherwise it will be set to `'default'`.
Calling `main` actually returns an instance of the `TestProgram` class. This stores the result of the tests run as the `result` attribute.
在 3.1 版更改: The *exit* parameter was added.
在 3.2 版更改: The *verbosity*, *failfast*, *catchbreak*, *buffer*and *warnings* parameters were added.
在 3.4 版更改: The *defaultTest* parameter was changed to also accept an iterable of test names.
#### load\_tests Protocol
3\.2 新版功能.
Modules or packages can customize how tests are loaded from them during normal test runs or test discovery by implementing a function called `load_tests`.
If a test module defines `load_tests` it will be called by [`TestLoader.loadTestsFromModule()`](#unittest.TestLoader.loadTestsFromModule "unittest.TestLoader.loadTestsFromModule") with the following arguments:
```
load_tests(loader, standard_tests, pattern)
```
where *pattern* is passed straight through from `loadTestsFromModule`. It defaults to `None`.
It should return a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite").
*loader* is the instance of [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") doing the loading. *standard\_tests* are the tests that would be loaded by default from the module. It is common for test modules to only want to add or remove tests from the standard set of tests. The third argument is used when loading packages as part of test discovery.
A typical `load_tests` function that loads tests from a specific set of [`TestCase`](#unittest.TestCase "unittest.TestCase") classes may look like:
```
test_cases = (TestCase1, TestCase2, TestCase3)
def load_tests(loader, tests, pattern):
suite = TestSuite()
for test_class in test_cases:
tests = loader.loadTestsFromTestCase(test_class)
suite.addTests(tests)
return suite
```
If discovery is started in a directory containing a package, either from the command line or by calling [`TestLoader.discover()`](#unittest.TestLoader.discover "unittest.TestLoader.discover"), then the package `__init__.py` will be checked for `load_tests`. If that function does not exist, discovery will recurse into the package as though it were just another directory. Otherwise, discovery of the package's tests will be left up to `load_tests` which is called with the following arguments:
```
load_tests(loader, standard_tests, pattern)
```
This should return a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") representing all the tests from the package. (`standard_tests` will only contain tests collected from `__init__.py`.)
Because the pattern is passed into `load_tests` the package is free to continue (and potentially modify) test discovery. A 'do nothing' `load_tests` function for a test package would look like:
```
def load_tests(loader, standard_tests, pattern):
# top level directory cached on loader instance
this_dir = os.path.dirname(__file__)
package_tests = loader.discover(start_dir=this_dir, pattern=pattern)
standard_tests.addTests(package_tests)
return standard_tests
```
在 3.5 版更改: Discovery no longer checks package names for matching *pattern* due to the impossibility of package names matching the default pattern.
## Class and Module Fixtures
Class and module level fixtures are implemented in [`TestSuite`](#unittest.TestSuite "unittest.TestSuite"). When the test suite encounters a test from a new class then `tearDownClass()`from the previous class (if there is one) is called, followed by `setUpClass()` from the new class.
Similarly if a test is from a different module from the previous test then `tearDownModule` from the previous module is run, followed by `setUpModule` from the new module.
After all the tests have run the final `tearDownClass` and `tearDownModule` are run.
Note that shared fixtures do not play well with \[potential\] features like test parallelization and they break test isolation. They should be used with care.
The default ordering of tests created by the unittest test loaders is to group all tests from the same modules and classes together. This will lead to `setUpClass` / `setUpModule` (etc) being called exactly once per class and module. If you randomize the order, so that tests from different modules and classes are adjacent to each other, then these shared fixture functions may be called multiple times in a single test run.
Shared fixtures are not intended to work with suites with non-standard ordering. A `BaseTestSuite` still exists for frameworks that don't want to support shared fixtures.
If there are any exceptions raised during one of the shared fixture functions the test is reported as an error. Because there is no corresponding test instance an `_ErrorHolder` object (that has the same interface as a [`TestCase`](#unittest.TestCase "unittest.TestCase")) is created to represent the error. If you are just using the standard unittest test runner then this detail doesn't matter, but if you are a framework author it may be relevant.
### setUpClass and tearDownClass
These must be implemented as class methods:
```
import unittest
class Test(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._connection = createExpensiveConnectionObject()
@classmethod
def tearDownClass(cls):
cls._connection.destroy()
```
If you want the `setUpClass` and `tearDownClass` on base classes called then you must call up to them yourself. The implementations in [`TestCase`](#unittest.TestCase "unittest.TestCase") are empty.
If an exception is raised during a `setUpClass` then the tests in the class are not run and the `tearDownClass` is not run. Skipped classes will not have `setUpClass` or `tearDownClass` run. If the exception is a [`SkipTest`](#unittest.SkipTest "unittest.SkipTest") exception then the class will be reported as having been skipped instead of as an error.
### setUpModule and tearDownModule
These should be implemented as functions:
```
def setUpModule():
createConnection()
def tearDownModule():
closeConnection()
```
If an exception is raised in a `setUpModule` then none of the tests in the module will be run and the `tearDownModule` will not be run. If the exception is a [`SkipTest`](#unittest.SkipTest "unittest.SkipTest") exception then the module will be reported as having been skipped instead of as an error.
## Signal Handling
3\.2 新版功能.
The [`-c/--catch`](#cmdoption-unittest-c) command-line option to unittest, along with the `catchbreak` parameter to [`unittest.main()`](#unittest.main "unittest.main"), provide more friendly handling of control-C during a test run. With catch break behavior enabled control-C will allow the currently running test to complete, and the test run will then end and report all the results so far. A second control-c will raise a [`KeyboardInterrupt`](exceptions.xhtml#KeyboardInterrupt "KeyboardInterrupt") in the usual way.
The control-c handling signal handler attempts to remain compatible with code or tests that install their own `signal.SIGINT` handler. If the `unittest`handler is called but *isn't* the installed `signal.SIGINT` handler, i.e. it has been replaced by the system under test and delegated to, then it calls the default handler. This will normally be the expected behavior by code that replaces an installed handler and delegates to it. For individual tests that need `unittest` control-c handling disabled the [`removeHandler()`](#unittest.removeHandler "unittest.removeHandler")decorator can be used.
There are a few utility functions for framework authors to enable control-c handling functionality within test frameworks.
`unittest.``installHandler`()Install the control-c handler. When a `signal.SIGINT` is received (usually in response to the user pressing control-c) all registered results have [`stop()`](#unittest.TestResult.stop "unittest.TestResult.stop") called.
`unittest.``registerResult`(*result*)Register a [`TestResult`](#unittest.TestResult "unittest.TestResult") object for control-c handling. Registering a result stores a weak reference to it, so it doesn't prevent the result from being garbage collected.
Registering a [`TestResult`](#unittest.TestResult "unittest.TestResult") object has no side-effects if control-c handling is not enabled, so test frameworks can unconditionally register all results they create independently of whether or not handling is enabled.
`unittest.``removeResult`(*result*)Remove a registered result. Once a result has been removed then [`stop()`](#unittest.TestResult.stop "unittest.TestResult.stop") will no longer be called on that result object in response to a control-c.
`unittest.``removeHandler`(*function=None*)When called without arguments this function removes the control-c handler if it has been installed. This function can also be used as a test decorator to temporarily remove the handler while the test is being executed:
```
@unittest.removeHandler
def test_signal_handling(self):
...
```
### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](unittest.mock.xhtml "unittest.mock --- mock object library") |
- [上一頁](doctest.xhtml "doctest --- Test interactive Python examples") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python 標準庫](index.xhtml) ?
- [開發工具](development.xhtml) ?
- $('.inline-search').show(0); |
? [版權所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 軟件基金會是一個非盈利組織。 [請捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [發現了問題](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 創建。
- Python文檔內容
- Python 有什么新變化?
- Python 3.7 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- C API 的改變
- 構建的改變
- 性能優化
- 其他 CPython 實現的改變
- 已棄用的 Python 行為
- 已棄用的 Python 模塊、函數和方法
- 已棄用的 C API 函數和類型
- 平臺支持的移除
- API 與特性的移除
- 移除的模塊
- Windows 專屬的改變
- 移植到 Python 3.7
- Python 3.7.1 中的重要變化
- Python 3.7.2 中的重要變化
- Python 3.6 有什么新變化A
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 其他改進
- 棄用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要變化
- Python 3.6.4 中的重要變化
- Python 3.6.5 中的重要變化
- Python 3.6.7 中的重要變化
- Python 3.5 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- Other module-level changes
- 性能優化
- Build and C API Changes
- 棄用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 發布重點
- 新的特性
- 新增模塊
- 改進的模塊
- CPython Implementation Changes
- 棄用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 發布重點
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他語言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 棄用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 多線程
- 性能優化
- Unicode
- Codecs
- 文檔
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 性能優化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他語言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新變化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他語言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他語言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推導式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最終版
- Python 3.7.3 發布候選版 1
- Python 3.7.2 最終版
- Python 3.7.2 發布候選版 1
- Python 3.7.1 最終版
- Python 3.7.1 RC 2版本
- Python 3.7.1 發布候選版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 課前甜點
- 使用 Python 解釋器
- 調用解釋器
- 解釋器的運行環境
- Python 的非正式介紹
- Python 作為計算器使用
- 走向編程的第一步
- 其他流程控制工具
- if 語句
- for 語句
- range() 函數
- break 和 continue 語句,以及循環中的 else 子句
- pass 語句
- 定義函數
- 函數定義的更多形式
- 小插曲:編碼風格
- 數據結構
- 列表的更多特性
- del 語句
- 元組和序列
- 集合
- 字典
- 循環的技巧
- 深入條件控制
- 序列和其它類型的比較
- 模塊
- 有關模塊的更多信息
- 標準模塊
- dir() 函數
- 包
- 輸入輸出
- 更漂亮的輸出格式
- 讀寫文件
- 錯誤和異常
- 語法錯誤
- 異常
- 處理異常
- 拋出異常
- 用戶自定義異常
- 定義清理操作
- 預定義的清理操作
- 類
- 名稱和對象
- Python 作用域和命名空間
- 初探類
- 補充說明
- 繼承
- 私有變量
- 雜項說明
- 迭代器
- 生成器
- 生成器表達式
- 標準庫簡介
- 操作系統接口
- 文件通配符
- 命令行參數
- 錯誤輸出重定向和程序終止
- 字符串模式匹配
- 數學
- 互聯網訪問
- 日期和時間
- 數據壓縮
- 性能測量
- 質量控制
- 自帶電池
- 標準庫簡介 —— 第二部分
- 格式化輸出
- 模板
- 使用二進制數據記錄格式
- 多線程
- 日志
- 弱引用
- 用于操作列表的工具
- 十進制浮點運算
- 虛擬環境和包
- 概述
- 創建虛擬環境
- 使用pip管理包
- 接下來?
- 交互式編輯和編輯歷史
- Tab 補全和編輯歷史
- 默認交互式解釋器的替代品
- 浮點算術:爭議和限制
- 表示性錯誤
- 附錄
- 交互模式
- 安裝和使用 Python
- 命令行與環境
- 命令行
- 環境變量
- 在Unix平臺中使用Python
- 獲取最新版本的Python
- 構建Python
- 與Python相關的路徑和文件
- 雜項
- 編輯器和集成開發環境
- 在Windows上使用 Python
- 完整安裝程序
- Microsoft Store包
- nuget.org 安裝包
- 可嵌入的包
- 替代捆綁包
- 配置Python
- 適用于Windows的Python啟動器
- 查找模塊
- 附加模塊
- 在Windows上編譯Python
- 其他平臺
- 在蘋果系統上使用 Python
- 獲取和安裝 MacPython
- IDE
- 安裝額外的 Python 包
- Mac 上的圖形界面編程
- 在 Mac 上分發 Python 應用程序
- 其他資源
- Python 語言參考
- 概述
- 其他實現
- 標注
- 詞法分析
- 行結構
- 其他形符
- 標識符和關鍵字
- 字面值
- 運算符
- 分隔符
- 數據模型
- 對象、值與類型
- 標準類型層級結構
- 特殊方法名稱
- 協程
- 執行模型
- 程序的結構
- 命名與綁定
- 異常
- 導入系統
- importlib
- 包
- 搜索
- 加載
- 基于路徑的查找器
- 替換標準導入系統
- Package Relative Imports
- 有關 main 的特殊事項
- 開放問題項
- 參考文獻
- 表達式
- 算術轉換
- 原子
- 原型
- await 表達式
- 冪運算符
- 一元算術和位運算
- 二元算術運算符
- 移位運算
- 二元位運算
- 比較運算
- 布爾運算
- 條件表達式
- lambda 表達式
- 表達式列表
- 求值順序
- 運算符優先級
- 簡單語句
- 表達式語句
- 賦值語句
- assert 語句
- pass 語句
- del 語句
- return 語句
- yield 語句
- raise 語句
- break 語句
- continue 語句
- import 語句
- global 語句
- nonlocal 語句
- 復合語句
- if 語句
- while 語句
- for 語句
- try 語句
- with 語句
- 函數定義
- 類定義
- 協程
- 最高層級組件
- 完整的 Python 程序
- 文件輸入
- 交互式輸入
- 表達式輸入
- 完整的語法規范
- Python 標準庫
- 概述
- 可用性注釋
- 內置函數
- 內置常量
- 由 site 模塊添加的常量
- 內置類型
- 邏輯值檢測
- 布爾運算 — and, or, not
- 比較
- 數字類型 — int, float, complex
- 迭代器類型
- 序列類型 — list, tuple, range
- 文本序列類型 — str
- 二進制序列類型 — bytes, bytearray, memoryview
- 集合類型 — set, frozenset
- 映射類型 — dict
- 上下文管理器類型
- 其他內置類型
- 特殊屬性
- 內置異常
- 基類
- 具體異常
- 警告
- 異常層次結構
- 文本處理服務
- string — 常見的字符串操作
- re — 正則表達式操作
- 模塊 difflib 是一個計算差異的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 數據庫
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函數
- 二進制數據服務
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 數據類型
- datetime — 基礎日期/時間數據類型
- calendar — General calendar-related functions
- collections — 容器數據類型
- collections.abc — 容器的抽象基類
- heapq — 堆隊列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 淺層 (shallow) 和深層 (deep) 復制操作
- pprint — 數據美化輸出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 數字和數學模塊
- numbers — 數字的抽象基類
- math — 數學函數
- cmath — Mathematical functions for complex numbers
- decimal — 十進制定點和浮點運算
- fractions — 分數
- random — 生成偽隨機數
- statistics — Mathematical statistics functions
- 函數式編程模塊
- itertools — 為高效循環而創建迭代器的函數
- functools — 高階函數和可調用對象上的操作
- operator — 標準運算符替代函數
- 文件和目錄訪問
- pathlib — 面向對象的文件系統路徑
- os.path — 常見路徑操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路徑操作函數
- 數據持久化
- pickle —— Python 對象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 數據庫 DB-API 2.0 接口模塊
- 數據壓縮和存檔
- zlib — 與 gzip 兼容的壓縮
- gzip — 對 gzip 格式的支持
- bz2 — 對 bzip2 壓縮算法的支持
- lzma — 用 LZMA 算法壓縮
- zipfile — 在 ZIP 歸檔中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件讀寫
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服務
- hashlib — 安全哈希與消息摘要
- hmac — 基于密鑰的消息驗證
- secrets — Generate secure random numbers for managing secrets
- 通用操作系統服務
- os — 操作系統接口模塊
- io — 處理流的核心工具
- time — 時間的訪問和轉換
- argparse — 命令行選項、參數和子命令解析器
- getopt — C-style parser for command line options
- 模塊 logging — Python 的日志記錄工具
- logging.config — 日志記錄配置
- logging.handlers — Logging handlers
- getpass — 便攜式密碼輸入工具
- curses — 終端字符單元顯示的處理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函數庫
- 并發執行
- threading — 基于線程的并行
- multiprocessing — 基于進程的并行
- concurrent 包
- concurrent.futures — 啟動并行任務
- subprocess — 子進程管理
- sched — 事件調度器
- queue — 一個同步的隊列類
- _thread — 底層多線程 API
- _dummy_thread — _thread 的替代模塊
- dummy_threading — 可直接替代 threading 模塊。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 網絡和進程間通信
- asyncio — 異步 I/O
- socket — 底層網絡接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高級 I/O 復用庫
- asyncore — 異步socket處理器
- asynchat — 異步 socket 指令/響應 處理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互聯網數據處理
- email — 電子郵件與 MIME 處理包
- json — JSON 編碼和解碼器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 數據編碼
- binhex — 對binhex4文件進行編碼和解碼
- binascii — 二進制和 ASCII 碼互轉
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 結構化標記處理工具
- html — 超文本標記語言支持
- html.parser — 簡單的 HTML 和 XHTML 解析器
- html.entities — HTML 一般實體的定義
- XML處理模塊
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互聯網協議和支持
- webbrowser — 方便的Web瀏覽器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 處理模塊
- urllib.request — 用于打開 URL 的可擴展庫
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模塊
- http.client — HTTP協議客戶端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP協議客戶端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服務器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服務端與客戶端模塊
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒體服務
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 讀寫 Sun AU 文件
- wave — 讀寫WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推測圖像類型
- sndhdr — 推測聲音文件的類型
- ossaudiodev — Access to OSS-compatible audio devices
- 國際化
- gettext — 多語種國際化服務
- locale — 國際化服務
- 程序框架
- turtle — 海龜繪圖
- cmd — 支持面向行的命令解釋器
- shlex — Simple lexical analysis
- Tk圖形用戶界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滾動文字控件
- IDLE
- 其他圖形用戶界面(GUI)包
- 開發工具
- typing — 類型標注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 單元測試框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自動將 Python 2 代碼轉為 Python 3 代碼
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 調試和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 測量小代碼片段的執行時間
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 軟件打包和分發
- distutils — 構建和安裝 Python 模塊
- ensurepip — Bootstrapping the pip installer
- venv — 創建虛擬環境
- zipapp — Manage executable Python zip archives
- Python運行時服務
- sys — 系統相關的參數和函數
- sysconfig — Provide access to Python's configuration information
- builtins — 內建對象
- main — 頂層腳本環境
- warnings — Warning control
- dataclasses — 數據類
- contextlib — Utilities for with-statement contexts
- abc — 抽象基類
- atexit — 退出處理器
- traceback — Print or retrieve a stack traceback
- future — Future 語句定義
- gc — 垃圾回收器接口
- inspect — 檢查對象
- site — Site-specific configuration hook
- 自定義 Python 解釋器
- code — Interpreter base classes
- codeop — Compile Python code
- 導入模塊
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找腳本使用的模塊
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 語言服務
- parser — Access Python parse trees
- ast — 抽象語法樹
- symtable — Access to the compiler's symbol tables
- symbol — 與 Python 解析樹一起使用的常量
- token — 與Python解析樹一起使用的常量
- keyword — 檢驗Python關鍵字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊縮進檢測
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字節碼反匯編器
- pickletools — Tools for pickle developers
- 雜項服務
- formatter — Generic output formatting
- Windows系統相關模塊
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注冊表訪問
- winsound — Sound-playing interface for Windows
- Unix 專有服務
- posix — The most common POSIX system calls
- pwd — 用戶密碼數據庫
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 終端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 庫例程
- 被取代的模塊
- optparse — Parser for command line options
- imp — Access the import internals
- 未創建文檔的模塊
- 平臺特定模塊
- 擴展和嵌入 Python 解釋器
- 推薦的第三方工具
- 不使用第三方工具創建擴展
- 使用 C 或 C++ 擴展 Python
- 自定義擴展類型:教程
- 定義擴展類型:已分類主題
- 構建C/C++擴展
- 在Windows平臺編譯C和C++擴展
- 在更大的應用程序中嵌入 CPython 運行時
- Embedding Python in Another Application
- Python/C API 參考手冊
- 概述
- 代碼標準
- 包含文件
- 有用的宏
- 對象、類型和引用計數
- 異常
- 嵌入Python
- 調試構建
- 穩定的應用程序二進制接口
- The Very High Level Layer
- Reference Counting
- 異常處理
- Printing and clearing
- 拋出異常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 標準異常
- 標準警告類別
- 工具
- 操作系統實用程序
- 系統功能
- 過程控制
- 導入模塊
- Data marshalling support
- 語句解釋及變量編譯
- 字符串轉換與格式化
- 反射
- 編解碼器注冊與支持功能
- 抽象對象層
- Object Protocol
- 數字協議
- Sequence Protocol
- Mapping Protocol
- 迭代器協議
- 緩沖協議
- Old Buffer Protocol
- 具體的對象層
- 基本對象
- 數值對象
- 序列對象
- 容器對象
- 函數對象
- 其他對象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置變量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 內存管理
- 概述
- 原始內存接口
- Memory Interface
- 對象分配器
- 默認內存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 對象實現支持
- 在堆中分配對象
- Common Object Structures
- Type 對象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使對象類型支持循環垃圾回收
- API 和 ABI 版本管理
- 分發 Python 模塊
- 關鍵術語
- 開源許可與協作
- 安裝工具
- 閱讀指南
- 我該如何...?
- ...為我的項目選擇一個名字?
- ...創建和分發二進制擴展?
- 安裝 Python 模塊
- 關鍵術語
- 基本使用
- 我應如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安裝 pip ?
- ... 只為當前用戶安裝軟件包?
- ... 安裝科學計算類 Python 軟件包?
- ... 使用并行安裝的多個 Python 版本?
- 常見的安裝問題
- 在 Linux 的系統 Python 版本上安裝
- 未安裝 pip
- 安裝二進制編譯擴展
- Python 常用指引
- 將 Python 2 代碼遷移到 Python 3
- 簡要說明
- 詳情
- 將擴展模塊移植到 Python 3
- 條件編譯
- 對象API的更改
- 模塊初始化和狀態
- CObject 替換為 Capsule
- 其他選項
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 實現描述器
- 摘要
- 定義和簡介
- 描述器協議
- 發起調用描述符
- 描述符示例
- Properties
- 函數和方法
- Static Methods and Class Methods
- 函數式編程指引
- 概述
- 迭代器
- 生成器表達式和列表推導式
- 生成器
- 內置函數
- itertools 模塊
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文獻
- 日志 HOWTO
- 日志基礎教程
- 進階日志教程
- 日志級別
- 有用的處理程序
- 記錄日志中引發的異常
- 使用任意對象作為消息
- 優化
- 日志操作手冊
- 在多個模塊中使用日志
- 在多線程中使用日志
- 使用多個日志處理器和多種格式化
- 在多個地方記錄日志
- 日志服務器配置示例
- 處理日志處理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正則表達式HOWTO
- 概述
- 簡單模式
- 使用正則表達式
- 更多模式能力
- 修改字符串
- 常見問題
- 反饋
- 套接字編程指南
- 套接字
- 創建套接字
- 使用一個套接字
- 斷開連接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 關鍵函數
- Operator 模塊函數
- 升序和降序
- 排序穩定性和排序復雜度
- 使用裝飾-排序-去裝飾的舊方法
- 使用 cmp 參數的舊方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包獲取網絡資源
- 概述
- Fetching URLs
- 處理異常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 腳注
- Argparse 教程
- 概念
- 基礎
- 位置參數介紹
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模塊介紹
- 創建 Address/Network/Interface 對象
- 審查 Address/Network/Interface 對象
- Network 作為 Address 列表
- 比較
- 將IP地址與其他模塊一起使用
- 實例創建失敗時獲取更多詳細信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 檢測CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常見問題
- Python常見問題
- 一般信息
- 現實世界中的 Python
- 編程常見問題
- 一般問題
- 核心語言
- 數字和字符串
- 性能
- 序列(元組/列表)
- 對象
- 模塊
- 設計和歷史常見問題
- 為什么Python使用縮進來分組語句?
- 為什么簡單的算術運算得到奇怪的結果?
- 為什么浮點計算不準確?
- 為什么Python字符串是不可變的?
- 為什么必須在方法定義和調用中顯式使用“self”?
- 為什么不能在表達式中賦值?
- 為什么Python對某些功能(例如list.index())使用方法來實現,而其他功能(例如len(List))使用函數實現?
- 為什么 join()是一個字符串方法而不是列表或元組方法?
- 異常有多快?
- 為什么Python中沒有switch或case語句?
- 難道不能在解釋器中模擬線程,而非得依賴特定于操作系統的線程實現嗎?
- 為什么lambda表達式不能包含語句?
- 可以將Python編譯為機器代碼,C或其他語言嗎?
- Python如何管理內存?
- 為什么CPython不使用更傳統的垃圾回收方案?
- CPython退出時為什么不釋放所有內存?
- 為什么有單獨的元組和列表數據類型?
- 列表是如何在CPython中實現的?
- 字典是如何在CPython中實現的?
- 為什么字典key必須是不可變的?
- 為什么 list.sort() 沒有返回排序列表?
- 如何在Python中指定和實施接口規范?
- 為什么沒有goto?
- 為什么原始字符串(r-strings)不能以反斜杠結尾?
- 為什么Python沒有屬性賦值的“with”語句?
- 為什么 if/while/def/class語句需要冒號?
- 為什么Python在列表和元組的末尾允許使用逗號?
- 代碼庫和插件 FAQ
- 通用的代碼庫問題
- 通用任務
- 線程相關
- 輸入輸出
- 網絡 / Internet 編程
- 數據庫
- 數學和數字
- 擴展/嵌入常見問題
- 可以使用C語言中創建自己的函數嗎?
- 可以使用C++語言中創建自己的函數嗎?
- C很難寫,有沒有其他選擇?
- 如何從C執行任意Python語句?
- 如何從C中評估任意Python表達式?
- 如何從Python對象中提取C的值?
- 如何使用Py_BuildValue()創建任意長度的元組?
- 如何從C調用對象的方法?
- 如何捕獲PyErr_Print()(或打印到stdout / stderr的任何內容)的輸出?
- 如何從C訪問用Python編寫的模塊?
- 如何從Python接口到C ++對象?
- 我使用Setup文件添加了一個模塊,為什么make失敗了?
- 如何調試擴展?
- 我想在Linux系統上編譯一個Python模塊,但是缺少一些文件。為什么?
- 如何區分“輸入不完整”和“輸入無效”?
- 如何找到未定義的g++符號__builtin_new或__pure_virtual?
- 能否創建一個對象類,其中部分方法在C中實現,而其他方法在Python中實現(例如通過繼承)?
- Python在Windows上的常見問題
- 我怎樣在Windows下運行一個Python程序?
- 我怎么讓 Python 腳本可執行?
- 為什么有時候 Python 程序會啟動緩慢?
- 我怎樣使用Python腳本制作可執行文件?
- *.pyd 文件和DLL文件相同嗎?
- 我怎樣將Python嵌入一個Windows程序?
- 如何讓編輯器不要在我的 Python 源代碼中插入 tab ?
- 如何在不阻塞的情況下檢查按鍵?
- 圖形用戶界面(GUI)常見問題
- 圖形界面常見問題
- Python 是否有平臺無關的圖形界面工具包?
- 有哪些Python的GUI工具是某個平臺專用的?
- 有關Tkinter的問題
- “為什么我的電腦上安裝了 Python ?”
- 什么是Python?
- 為什么我的電腦上安裝了 Python ?
- 我能刪除 Python 嗎?
- 術語對照表
- 文檔說明
- Python 文檔貢獻者
- 解決 Bug
- 文檔錯誤
- 使用 Python 的錯誤追蹤系統
- 開始為 Python 貢獻您的知識
- 版權
- 歷史和許可證
- 軟件歷史
- 訪問Python或以其他方式使用Python的條款和條件
- Python 3.7.3 的 PSF 許可協議
- Python 2.0 的 BeOpen.com 許可協議
- Python 1.6.1 的 CNRI 許可協議
- Python 0.9.0 至 1.2 的 CWI 許可協議
- 集成軟件的許可和認可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec