### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](memory.xhtml "內存管理") |
- [上一頁](datetime.xhtml "DateTime 對象") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python/C API 參考手冊](index.xhtml) ?
- $('.inline-search').show(0); |
# Initialization, Finalization, and Threads
## 在Python初始化之前
In an application embedding Python, the [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") function must be called before using any other Python/C API functions; with the exception of a few functions and the [global configuration variables](#global-conf-vars).
在初始化Python之前,可以安全地調用以下函數:
- 配置函數:
- [`PyImport_AppendInittab()`](import.xhtml#c.PyImport_AppendInittab "PyImport_AppendInittab")
- [`PyImport_ExtendInittab()`](import.xhtml#c.PyImport_ExtendInittab "PyImport_ExtendInittab")
- `PyInitFrozenExtensions()`
- [`PyMem_SetAllocator()`](memory.xhtml#c.PyMem_SetAllocator "PyMem_SetAllocator")
- [`PyMem_SetupDebugHooks()`](memory.xhtml#c.PyMem_SetupDebugHooks "PyMem_SetupDebugHooks")
- [`PyObject_SetArenaAllocator()`](memory.xhtml#c.PyObject_SetArenaAllocator "PyObject_SetArenaAllocator")
- [`Py_SetPath()`](#c.Py_SetPath "Py_SetPath")
- [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName")
- [`Py_SetPythonHome()`](#c.Py_SetPythonHome "Py_SetPythonHome")
- [`Py_SetStandardStreamEncoding()`](#c.Py_SetStandardStreamEncoding "Py_SetStandardStreamEncoding")
- [`PySys_AddWarnOption()`](sys.xhtml#c.PySys_AddWarnOption "PySys_AddWarnOption")
- [`PySys_AddXOption()`](sys.xhtml#c.PySys_AddXOption "PySys_AddXOption")
- [`PySys_ResetWarnOptions()`](sys.xhtml#c.PySys_ResetWarnOptions "PySys_ResetWarnOptions")
- 信息函數:
- [`Py_IsInitialized()`](#c.Py_IsInitialized "Py_IsInitialized")
- [`PyMem_GetAllocator()`](memory.xhtml#c.PyMem_GetAllocator "PyMem_GetAllocator")
- [`PyObject_GetArenaAllocator()`](memory.xhtml#c.PyObject_GetArenaAllocator "PyObject_GetArenaAllocator")
- [`Py_GetBuildInfo()`](#c.Py_GetBuildInfo "Py_GetBuildInfo")
- [`Py_GetCompiler()`](#c.Py_GetCompiler "Py_GetCompiler")
- [`Py_GetCopyright()`](#c.Py_GetCopyright "Py_GetCopyright")
- [`Py_GetPlatform()`](#c.Py_GetPlatform "Py_GetPlatform")
- [`Py_GetVersion()`](#c.Py_GetVersion "Py_GetVersion")
- 公用
- [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale")
- 內存分配器:
- [`PyMem_RawMalloc()`](memory.xhtml#c.PyMem_RawMalloc "PyMem_RawMalloc")
- [`PyMem_RawRealloc()`](memory.xhtml#c.PyMem_RawRealloc "PyMem_RawRealloc")
- [`PyMem_RawCalloc()`](memory.xhtml#c.PyMem_RawCalloc "PyMem_RawCalloc")
- [`PyMem_RawFree()`](memory.xhtml#c.PyMem_RawFree "PyMem_RawFree")
注解
以下函數 **不應該** 在 [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"): [`Py_EncodeLocale()`](sys.xhtml#c.Py_EncodeLocale "Py_EncodeLocale"), [`Py_GetPath()`](#c.Py_GetPath "Py_GetPath"), [`Py_GetPrefix()`](#c.Py_GetPrefix "Py_GetPrefix"), [`Py_GetExecPrefix()`](#c.Py_GetExecPrefix "Py_GetExecPrefix"), [`Py_GetProgramFullPath()`](#c.Py_GetProgramFullPath "Py_GetProgramFullPath"), [`Py_GetPythonHome()`](#c.Py_GetPythonHome "Py_GetPythonHome"), [`Py_GetProgramName()`](#c.Py_GetProgramName "Py_GetProgramName") 和 [`PyEval_InitThreads()`](#c.PyEval_InitThreads "PyEval_InitThreads") 前調用。
## 全局配置變量
Python has variables for the global configuration to control different features and options. By default, these flags are controlled by [command line options](../using/cmdline.xhtml#using-on-interface-options).
When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, `-b` sets [`Py_BytesWarningFlag`](#c.Py_BytesWarningFlag "Py_BytesWarningFlag")to 1 and `-bb` sets [`Py_BytesWarningFlag`](#c.Py_BytesWarningFlag "Py_BytesWarningFlag") to 2.
`Py_BytesWarningFlag`Issue a warning when comparing [`bytes`](../library/stdtypes.xhtml#bytes "bytes") or [`bytearray`](../library/stdtypes.xhtml#bytearray "bytearray") with [`str`](../library/stdtypes.xhtml#str "str") or [`bytes`](../library/stdtypes.xhtml#bytes "bytes") with [`int`](../library/functions.xhtml#int "int"). Issue an error if greater or equal to `2`.
由 [`-b`](../using/cmdline.xhtml#cmdoption-b) 選項設置。
`Py_DebugFlag`Turn on parser debugging output (for expert only, depending on compilation options).
Set by the [`-d`](../using/cmdline.xhtml#cmdoption-d) option and the [`PYTHONDEBUG`](../using/cmdline.xhtml#envvar-PYTHONDEBUG) environment variable.
`Py_DontWriteBytecodeFlag`If set to non-zero, Python won't try to write `.pyc` files on the import of source modules.
Set by the [`-B`](../using/cmdline.xhtml#id1) option and the [`PYTHONDONTWRITEBYTECODE`](../using/cmdline.xhtml#envvar-PYTHONDONTWRITEBYTECODE)environment variable.
`Py_FrozenFlag`Suppress error messages when calculating the module search path in [`Py_GetPath()`](#c.Py_GetPath "Py_GetPath").
Private flag used by `_freeze_importlib` and `frozenmain` programs.
`Py_HashRandomizationFlag`Set to `1` if the [`PYTHONHASHSEED`](../using/cmdline.xhtml#envvar-PYTHONHASHSEED) environment variable is set to a non-empty string.
If the flag is non-zero, read the [`PYTHONHASHSEED`](../using/cmdline.xhtml#envvar-PYTHONHASHSEED) environment variable to initialize the secret hash seed.
`Py_IgnoreEnvironmentFlag`忽略所有 `PYTHON*` 環境變量,例如可能已設置的 [`PYTHONPATH`](../using/cmdline.xhtml#envvar-PYTHONPATH) 和 [`PYTHONHOME`](../using/cmdline.xhtml#envvar-PYTHONHOME)。
由 [`-E`](../using/cmdline.xhtml#cmdoption-e) 和 [`-I`](../using/cmdline.xhtml#id2) 選項設置。
`Py_InspectFlag`When a script is passed as first argument or the [`-c`](../using/cmdline.xhtml#cmdoption-c) option is used, enter interactive mode after executing the script or the command, even when [`sys.stdin`](../library/sys.xhtml#sys.stdin "sys.stdin") does not appear to be a terminal.
Set by the [`-i`](../using/cmdline.xhtml#cmdoption-i) option and the [`PYTHONINSPECT`](../using/cmdline.xhtml#envvar-PYTHONINSPECT) environment variable.
`Py_InteractiveFlag`由 [`-i`](../using/cmdline.xhtml#cmdoption-i) 選項設置。
`Py_IsolatedFlag`Run Python in isolated mode. In isolated mode [`sys.path`](../library/sys.xhtml#sys.path "sys.path") contains neither the script's directory nor the user's site-packages directory.
由 [`-I`](../using/cmdline.xhtml#id2) 選項設置。
3\.4 新版功能.
`Py_LegacyWindowsFSEncodingFlag`If the flag is non-zero, use the `mbcs` encoding instead of the UTF-8 encoding for the filesystem encoding.
Set to `1` if the [`PYTHONLEGACYWINDOWSFSENCODING`](../using/cmdline.xhtml#envvar-PYTHONLEGACYWINDOWSFSENCODING) environment variable is set to a non-empty string.
有關更多詳細信息,請參閱 [**PEP 529**](https://www.python.org/dev/peps/pep-0529) \[https://www.python.org/dev/peps/pep-0529\]。
[可用性](../library/intro.xhtml#availability): Windows。
`Py_LegacyWindowsStdioFlag`If the flag is non-zero, use [`io.FileIO`](../library/io.xhtml#io.FileIO "io.FileIO") instead of `WindowsConsoleIO` for [`sys`](../library/sys.xhtml#module-sys "sys: Access system-specific parameters and functions.") standard streams.
Set to `1` if the [`PYTHONLEGACYWINDOWSSTDIO`](../using/cmdline.xhtml#envvar-PYTHONLEGACYWINDOWSSTDIO) environment variable is set to a non-empty string.
See [**PEP 528**](https://www.python.org/dev/peps/pep-0528) \[https://www.python.org/dev/peps/pep-0528\] for more details.
[可用性](../library/intro.xhtml#availability): Windows。
`Py_NoSiteFlag`禁用 [`site`](../library/site.xhtml#module-site "site: Module responsible for site-specific configuration.") 的導入及其所附帶的基于站點對 [`sys.path`](../library/sys.xhtml#sys.path "sys.path") 的操作。 如果 [`site`](../library/site.xhtml#module-site "site: Module responsible for site-specific configuration.") 會在稍后被顯式地導入也會禁用這些操作 (如果你希望觸發它們則應調用 [`site.main()`](../library/site.xhtml#site.main "site.main"))。
Set by the [`-S`](../using/cmdline.xhtml#id3) option.
`Py_NoUserSiteDirectory`不要將 [`用戶 site-packages 目錄`](../library/site.xhtml#site.USER_SITE "site.USER_SITE") 添加到 [`sys.path`](../library/sys.xhtml#sys.path "sys.path")。
Set by the [`-s`](../using/cmdline.xhtml#cmdoption-s) and [`-I`](../using/cmdline.xhtml#id2) options, and the [`PYTHONNOUSERSITE`](../using/cmdline.xhtml#envvar-PYTHONNOUSERSITE) environment variable.
`Py_OptimizeFlag`Set by the [`-O`](../using/cmdline.xhtml#cmdoption-o) option and the [`PYTHONOPTIMIZE`](../using/cmdline.xhtml#envvar-PYTHONOPTIMIZE) environment variable.
`Py_QuietFlag`即使在交互模式下也不顯示版權和版本信息。
Set by the [`-q`](../using/cmdline.xhtml#cmdoption-q) option.
3\.2 新版功能.
`Py_UnbufferedStdioFlag`Force the stdout and stderr streams to be unbuffered.
Set by the [`-u`](../using/cmdline.xhtml#cmdoption-u) option and the [`PYTHONUNBUFFERED`](../using/cmdline.xhtml#envvar-PYTHONUNBUFFERED)environment variable.
`Py_VerboseFlag`Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is loaded. If greater or equal to `2`, print a message for each file that is checked for when searching for a module. Also provides information on module cleanup at exit.
Set by the [`-v`](../using/cmdline.xhtml#id4) option and the [`PYTHONVERBOSE`](../using/cmdline.xhtml#envvar-PYTHONVERBOSE) environment variable.
## Initializing and finalizing the interpreter
void `Py_Initialize`()Initialize the Python interpreter. In an application embedding Python, this should be called before using any other Python/C API functions; see [Before Python Initialization](#pre-init-safe) for the few exceptions.
This initializes the table of loaded modules (`sys.modules`), and creates the fundamental modules [`builtins`](../library/builtins.xhtml#module-builtins "builtins: The module that provides the built-in namespace."), [`__main__`](../library/__main__.xhtml#module-__main__ "__main__: The environment where the top-level script is run.") and [`sys`](../library/sys.xhtml#module-sys "sys: Access system-specific parameters and functions."). It also initializes the module search path (`sys.path`). It does not set `sys.argv`; use [`PySys_SetArgvEx()`](#c.PySys_SetArgvEx "PySys_SetArgvEx") for that. This is a no-op when called for a second time (without calling [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") first). There is no return value; it is a fatal error if the initialization fails.
注解
On Windows, changes the console mode from `O_TEXT` to `O_BINARY`, which will also affect non-Python uses of the console using the C Runtime.
void `Py_InitializeEx`(int *initsigs*)This function works like [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") if *initsigs* is `1`. If *initsigs* is `0`, it skips initialization registration of signal handlers, which might be useful when Python is embedded.
int `Py_IsInitialized`()Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") is called, this returns false until [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") is called again.
int `Py_FinalizeEx`()Undo all initializations made by [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") and subsequent use of Python/C API functions, and destroy all sub-interpreters (see [`Py_NewInterpreter()`](#c.Py_NewInterpreter "Py_NewInterpreter") below) that were created and not yet destroyed since the last call to [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op when called for a second time (without calling [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") again first). Normally the return value is `0`. If there were errors during finalization (flushing buffered data), `-1` is returned.
This function is provided for a number of reasons. An embedding application might want to restart Python without having to restart the application itself. An application that has loaded the Python interpreter from a dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before exiting from the application.
**Bugs and caveats:** The destruction of modules and objects in modules is done in random order; this may cause destructors ([`__del__()`](../reference/datamodel.xhtml#object.__del__ "object.__del__") methods) to fail when they depend on other objects (even functions) or modules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions may not work properly if their initialization routine is called more than once; this can happen if an application calls [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") and [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") more than once.
3\.6 新版功能.
void `Py_Finalize`()This is a backwards-compatible version of [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") that disregards the return value.
## Process-wide parameters
int `Py_SetStandardStreamEncoding`(const char *\*encoding*, const char *\*errors*)This function should be called before [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"), if it is called at all. It specifies which encoding and error handling to use with standard IO, with the same meanings as in [`str.encode()`](../library/stdtypes.xhtml#str.encode "str.encode").
It overrides [`PYTHONIOENCODING`](../using/cmdline.xhtml#envvar-PYTHONIOENCODING) values, and allows embedding code to control IO encoding when the environment variable does not work.
`encoding` and/or `errors` may be NULL to use [`PYTHONIOENCODING`](../using/cmdline.xhtml#envvar-PYTHONIOENCODING) and/or default values (depending on other settings).
Note that [`sys.stderr`](../library/sys.xhtml#sys.stderr "sys.stderr") always uses the "backslashreplace" error handler, regardless of this (or any other) setting.
If [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") is called, this function will need to be called again in order to affect subsequent calls to [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize").
Returns `0` if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
3\.4 新版功能.
void `Py_SetProgramName`(const wchar\_t *\*name*)This function should be called before [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") is called for the first time, if it is called at all. It tells the interpreter the value of the `argv[0]` argument to the `main()` function of the program (converted to wide characters). This is used by [`Py_GetPath()`](#c.Py_GetPath "Py_GetPath") and some other functions below to find the Python run-time libraries relative to the interpreter executable. The default value is `'python'`. The argument should point to a zero-terminated wide character string in static storage whose contents will not change for the duration of the program's execution. No code in the Python interpreter will change the contents of this storage.
Use [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale") to decode a bytes string to get a `wchar_*` string.
wchar\* `Py_GetProgramName`()Return the program name set with [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName"), or the default. The returned string points into static storage; the caller should not modify its value.
wchar\_t\* `Py_GetPrefix`()Return the *prefix* for installed platform-independent files. This is derived through a number of complicated rules from the program name set with [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName") and some environment variables; for example, if the program name is `'/usr/local/bin/python'`, the prefix is `'/usr/local'`. The returned string points into static storage; the caller should not modify its value. This corresponds to the **prefix** variable in the top-level `Makefile` and the `--prefix` argument to the **configure**script at build time. The value is available to Python code as `sys.prefix`. It is only useful on Unix. See also the next function.
wchar\_t\* `Py_GetExecPrefix`()Return the *exec-prefix* for installed platform-*dependent* files. This is derived through a number of complicated rules from the program name set with [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName") and some environment variables; for example, if the program name is `'/usr/local/bin/python'`, the exec-prefix is `'/usr/local'`. The returned string points into static storage; the caller should not modify its value. This corresponds to the **exec\_prefix**variable in the top-level `Makefile` and the `--exec-prefix`argument to the **configure** script at build time. The value is available to Python code as `sys.exec_prefix`. It is only useful on Unix.
Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed in the `/usr/local/plat` subtree while platform independent may be installed in `/usr/local`.
Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different major revisions of the same operating system generally also form different platforms. Non-Unix operating systems are a different story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from the Python version by which they were compiled!).
System administrators will know how to configure the **mount** or **automount** programs to share `/usr/local` between platforms while having `/usr/local/plat` be a different filesystem for each platform.
wchar\_t\* `Py_GetProgramFullPath`()Return the full program name of the Python executable; this is computed as a side-effect of deriving the default module search path from the program name (set by [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName") above). The returned string points into static storage; the caller should not modify its value. The value is available to Python code as `sys.executable`.
wchar\_t\* `Py_GetPath`()Return the default module search path; this is computed from the program name (set by [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName") above) and some environment variables. The returned string consists of a series of directory names separated by a platform dependent delimiter character. The delimiter character is `':'`on Unix and Mac OS X, `';'` on Windows. The returned string points into static storage; the caller should not modify its value. The list [`sys.path`](../library/sys.xhtml#sys.path "sys.path") is initialized with this value on interpreter startup; it can be (and usually is) modified later to change the search path for loading modules.
void `Py_SetPath`(const wchar\_t *\**)Set the default module search path. If this function is called before [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"), then [`Py_GetPath()`](#c.Py_GetPath "Py_GetPath") won't attempt to compute a default search path but uses the one provided instead. This is useful if Python is embedded by an application that has full knowledge of the location of all modules. The path components should be separated by the platform dependent delimiter character, which is `':'` on Unix and Mac OS X, `';'`on Windows.
This also causes [`sys.executable`](../library/sys.xhtml#sys.executable "sys.executable") to be set only to the raw program name (see [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName")) and for [`sys.prefix`](../library/sys.xhtml#sys.prefix "sys.prefix") and [`sys.exec_prefix`](../library/sys.xhtml#sys.exec_prefix "sys.exec_prefix") to be empty. It is up to the caller to modify these if required after calling [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize").
Use [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale") to decode a bytes string to get a `wchar_*` string.
The path argument is copied internally, so the caller may free it after the call completes.
const char\* `Py_GetVersion`()Return the version of this Python interpreter. This is a string that looks something like
```
"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"
```
The first word (up to the first space character) is the current Python version; the first three characters are the major and minor version separated by a period. The returned string points into static storage; the caller should not modify its value. The value is available to Python code as [`sys.version`](../library/sys.xhtml#sys.version "sys.version").
const char\* `Py_GetPlatform`()Return the platform identifier for the current platform. On Unix, this is formed from the "official" name of the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is `'sunos5'`. On Mac OS X, it is `'darwin'`. On Windows, it is `'win'`. The returned string points into static storage; the caller should not modify its value. The value is available to Python code as `sys.platform`.
const char\* `Py_GetCopyright`()Return the official copyright string for the current Python version, for example
`'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'`
The returned string points into static storage; the caller should not modify its value. The value is available to Python code as `sys.copyright`.
const char\* `Py_GetCompiler`()Return an indication of the compiler used to build the current Python version, in square brackets, for example:
```
"[GCC 2.7.2.2]"
```
The returned string points into static storage; the caller should not modify its value. The value is available to Python code as part of the variable `sys.version`.
const char\* `Py_GetBuildInfo`()Return information about the sequence number and build date and time of the current Python interpreter instance, for example
```
"#67, Aug 1 1997, 22:34:28"
```
The returned string points into static storage; the caller should not modify its value. The value is available to Python code as part of the variable `sys.version`.
void `PySys_SetArgvEx`(int *argc*, wchar\_t *\*\*argv*, int *updatepath*)Set [`sys.argv`](../library/sys.xhtml#sys.argv "sys.argv") based on *argc* and *argv*. These parameters are similar to those passed to the program's `main()` function with the difference that the first entry should refer to the script file to be executed rather than the executable hosting the Python interpreter. If there isn't a script that will be run, the first entry in *argv* can be an empty string. If this function fails to initialize [`sys.argv`](../library/sys.xhtml#sys.argv "sys.argv"), a fatal condition is signalled using [`Py_FatalError()`](sys.xhtml#c.Py_FatalError "Py_FatalError").
If *updatepath* is zero, this is all the function does. If *updatepath*is non-zero, the function also modifies [`sys.path`](../library/sys.xhtml#sys.path "sys.path") according to the following algorithm:
- If the name of an existing script is passed in `argv[0]`, the absolute path of the directory where the script is located is prepended to [`sys.path`](../library/sys.xhtml#sys.path "sys.path").
- Otherwise (that is, if *argc* is `0` or `argv[0]` doesn't point to an existing file name), an empty string is prepended to [`sys.path`](../library/sys.xhtml#sys.path "sys.path"), which is the same as prepending the current working directory (`"."`).
Use [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale") to decode a bytes string to get a `wchar_*` string.
注解
It is recommended that applications embedding the Python interpreter for purposes other than executing a single script pass `0` as *updatepath*, and update [`sys.path`](../library/sys.xhtml#sys.path "sys.path") themselves if desired. See [CVE-2008-5983](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983) \[https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983\].
On versions before 3.1.3, you can achieve the same effect by manually popping the first [`sys.path`](../library/sys.xhtml#sys.path "sys.path") element after having called [`PySys_SetArgv()`](#c.PySys_SetArgv "PySys_SetArgv"), for example using:
```
PyRun_SimpleString("import sys; sys.path.pop(0)\n");
```
3\.1.3 新版功能.
void `PySys_SetArgv`(int *argc*, wchar\_t *\*\*argv*)This function works like [`PySys_SetArgvEx()`](#c.PySys_SetArgvEx "PySys_SetArgvEx") with *updatepath* set to `1` unless the **python** interpreter was started with the [`-I`](../using/cmdline.xhtml#id2).
Use [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale") to decode a bytes string to get a `wchar_*` string.
在 3.4 版更改: The *updatepath* value depends on [`-I`](../using/cmdline.xhtml#id2).
void `Py_SetPythonHome`(const wchar\_t *\*home*)Set the default "home" directory, that is, the location of the standard Python libraries. See [`PYTHONHOME`](../using/cmdline.xhtml#envvar-PYTHONHOME) for the meaning of the argument string.
The argument should point to a zero-terminated character string in static storage whose contents will not change for the duration of the program's execution. No code in the Python interpreter will change the contents of this storage.
Use [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale") to decode a bytes string to get a `wchar_*` string.
w\_char\* `Py_GetPythonHome`()Return the default "home", that is, the value set by a previous call to [`Py_SetPythonHome()`](#c.Py_SetPythonHome "Py_SetPythonHome"), or the value of the [`PYTHONHOME`](../using/cmdline.xhtml#envvar-PYTHONHOME)environment variable if it is set.
## Thread State and the Global Interpreter Lock
The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there's a global lock, called the [global interpreter lock](../glossary.xhtml#term-global-interpreter-lock) or [GIL](../glossary.xhtml#term-gil), that must be held by the current thread before it can safely access Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when two threads simultaneously increment the reference count of the same object, the reference count could end up being incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired the [GIL](../glossary.xhtml#term-gil) may operate on Python objects or call Python/C API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see [`sys.setswitchinterval()`](../library/sys.xhtml#sys.setswitchinterval "sys.setswitchinterval")). The lock is also released around potentially blocking I/O operations like reading or writing a file, so that other Python threads can run in the meantime.
The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called [`PyThreadState`](#c.PyThreadState "PyThreadState"). There's also one global variable pointing to the current [`PyThreadState`](#c.PyThreadState "PyThreadState"): it can be retrieved using [`PyThreadState_Get()`](#c.PyThreadState_Get "PyThreadState_Get").
### Releasing the GIL from extension code
Most extension code manipulating the [GIL](../glossary.xhtml#term-gil) has the following simple structure:
```
Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.
```
This is so common that a pair of macros exists to simplify it:
```
Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS
```
The [`Py_BEGIN_ALLOW_THREADS`](#c.Py_BEGIN_ALLOW_THREADS "Py_BEGIN_ALLOW_THREADS") macro opens a new block and declares a hidden local variable; the [`Py_END_ALLOW_THREADS`](#c.Py_END_ALLOW_THREADS "Py_END_ALLOW_THREADS") macro closes the block.
The block above expands to the following code:
```
PyThreadState *_save;
_save = PyEval_SaveThread();
... Do some blocking I/O operation ...
PyEval_RestoreThread(_save);
```
Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is released (since another thread could immediately acquire the lock and store its own thread state in the global variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.
注解
Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before calling long-running computations which don't need access to Python objects, such as compression or cryptographic functions operating over memory buffers. For example, the standard [`zlib`](../library/zlib.xhtml#module-zlib "zlib: Low-level interface to compression and decompression routines compatible with gzip.") and [`hashlib`](../library/hashlib.xhtml#module-hashlib "hashlib: Secure hash and message digest algorithms.") modules release the GIL when compressing or hashing data.
### Non-Python created threads
When threads are created using the dedicated Python APIs (such as the [`threading`](../library/threading.xhtml#module-threading "threading: Thread-based parallelism.") module), a thread state is automatically associated to them and the code showed above is therefore correct. However, when threads are created from C (for example by a third-party library with its own thread management), they don't hold the GIL, nor is there a thread state structure for them.
If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.
The [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") and [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release") functions do all of the above automatically. The typical idiom for calling into Python from a C thread is:
```
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */
/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);
```
Note that the `PyGILState_*()` functions assume there is only one global interpreter (created automatically by [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize")). Python supports the creation of additional interpreters (using [`Py_NewInterpreter()`](#c.Py_NewInterpreter "Py_NewInterpreter")), but mixing multiple interpreters and the `PyGILState_*()` API is unsupported.
Another important thing to note about threads is their behaviour in the face of the C `fork()` call. On most systems with `fork()`, after a process forks only the thread that issued the fork will exist. That also means any locks held by other threads will never be released. Python solves this for [`os.fork()`](../library/os.xhtml#os.fork "os.fork") by acquiring the locks it uses internally before the fork, and releasing them afterwards. In addition, it resets any [鎖對象](../library/threading.xhtml#lock-objects) in the child. When extending or embedding Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such as `pthread_atfork()` would need to be used to accomplish the same thing. Additionally, when extending or embedding Python, calling `fork()`directly rather than through [`os.fork()`](../library/os.xhtml#os.fork "os.fork") (and returning to or calling into Python) may result in a deadlock by one of Python's internal locks being held by a thread that is defunct after the fork. [`PyOS_AfterFork_Child()`](sys.xhtml#c.PyOS_AfterFork_Child "PyOS_AfterFork_Child") tries to reset the necessary locks, but is not always able to.
### High-level API
These are the most commonly used types and functions when writing C extension code, or when embedding the Python interpreter:
`PyInterpreterState`This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same interpreter share their module administration and a few other internal items. There are no public members in this structure.
Threads belonging to different interpreters initially share nothing, except process state like available memory, open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter they belong.
`PyThreadState`This data structure represents the state of a single thread. The only public data member is [`PyInterpreterState *`](#c.PyInterpreterState "PyInterpreterState")`interp`, which points to this thread's interpreter state.
void `PyEval_InitThreads`()Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a second thread or engaging in any other thread operations such as `PyEval_ReleaseThread(tstate)`. It is not needed before calling [`PyEval_SaveThread()`](#c.PyEval_SaveThread "PyEval_SaveThread") or [`PyEval_RestoreThread()`](#c.PyEval_RestoreThread "PyEval_RestoreThread").
This is a no-op when called for a second time.
在 3.7 版更改: This function is now called by [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"), so you don't have to call it yourself anymore.
在 3.2 版更改: This function cannot be called before [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") anymore.
int `PyEval_ThreadsInitialized`()Returns a non-zero value if [`PyEval_InitThreads()`](#c.PyEval_InitThreads "PyEval_InitThreads") has been called. This function can be called without holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.
在 3.7 版更改: The [GIL](../glossary.xhtml#term-gil) is now initialized by [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize").
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyEval_SaveThread`()Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state to *NULL*, returning the previous thread state (which is not *NULL*). If the lock has been created, the current thread must have acquired it.
void `PyEval_RestoreThread`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state to *tstate*, which must not be *NULL*. If the lock has been created, the current thread must not have acquired it, otherwise deadlock ensues.
注解
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use `_Py_IsFinalizing()` or [`sys.is_finalizing()`](../library/sys.xhtml#sys.is_finalizing "sys.is_finalizing") to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyThreadState_Get`()Return the current thread state. The global interpreter lock must be held. When the current thread state is *NULL*, this issues a fatal error (so that the caller needn't check for *NULL*).
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyThreadState_Swap`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Swap the current thread state with the thread state given by the argument *tstate*, which may be *NULL*. The global interpreter lock must be held and is not released.
void `PyEval_ReInitThreads`()This function is called from [`PyOS_AfterFork_Child()`](sys.xhtml#c.PyOS_AfterFork_Child "PyOS_AfterFork_Child") to ensure that newly created child processes don't hold locks referring to threads which are not running in the child process.
The following functions use thread-local storage, and are not compatible with sub-interpreters:
PyGILState\_STATE `PyGILState_Ensure`()Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is matched with a call to [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release"). In general, other thread-related APIs may be used between [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") and [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release") calls as long as the thread state is restored to its previous state before the Release(). For example, normal usage of the [`Py_BEGIN_ALLOW_THREADS`](#c.Py_BEGIN_ALLOW_THREADS "Py_BEGIN_ALLOW_THREADS") and [`Py_END_ALLOW_THREADS`](#c.Py_END_ALLOW_THREADS "Py_END_ALLOW_THREADS") macros is acceptable.
The return value is an opaque "handle" to the thread state when [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") was called, and must be passed to [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release") to ensure Python is left in the same state. Even though recursive calls are allowed, these handles *cannot* be shared - each unique call to [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") must save the handle for its call to [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release").
When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure is a fatal error.
注解
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use `_Py_IsFinalizing()` or [`sys.is_finalizing()`](../library/sys.xhtml#sys.is_finalizing "sys.is_finalizing") to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.
void `PyGILState_Release`(PyGILState\_STATE)Release any resources previously acquired. After this call, Python's state will be the same as it was prior to the corresponding [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") call (but generally this state will be unknown to the caller, hence the use of the GILState API).
Every call to [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") must be matched by a call to [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release") on the same thread.
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyGILState_GetThisThreadState`()Get the current thread state for this thread. May return `NULL` if no GILState API has been used on the current thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made on the main thread. This is mainly a helper/diagnostic function.
int `PyGILState_Check`()Return `1` if the current thread is holding the GIL and `0` otherwise. This function can be called from any thread at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return `1`. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave differently.
3\.4 新版功能.
The following macros are normally used without a trailing semicolon; look for example usage in the Python source distribution.
`Py_BEGIN_ALLOW_THREADS`This macro expands to `{ PyThreadState *_save; _save = PyEval_SaveThread();`. Note that it contains an opening brace; it must be matched with a following [`Py_END_ALLOW_THREADS`](#c.Py_END_ALLOW_THREADS "Py_END_ALLOW_THREADS") macro. See above for further discussion of this macro.
`Py_END_ALLOW_THREADS`This macro expands to `PyEval_RestoreThread(_save); }`. Note that it contains a closing brace; it must be matched with an earlier [`Py_BEGIN_ALLOW_THREADS`](#c.Py_BEGIN_ALLOW_THREADS "Py_BEGIN_ALLOW_THREADS") macro. See above for further discussion of this macro.
`Py_BLOCK_THREADS`This macro expands to `PyEval_RestoreThread(_save);`: it is equivalent to [`Py_END_ALLOW_THREADS`](#c.Py_END_ALLOW_THREADS "Py_END_ALLOW_THREADS") without the closing brace.
`Py_UNBLOCK_THREADS`This macro expands to `_save = PyEval_SaveThread();`: it is equivalent to [`Py_BEGIN_ALLOW_THREADS`](#c.Py_BEGIN_ALLOW_THREADS "Py_BEGIN_ALLOW_THREADS") without the opening brace and variable declaration.
### Low-level API
All of the following functions must be called after [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize").
在 3.7 版更改: [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") now initializes the [GIL](../glossary.xhtml#term-gil).
[PyInterpreterState](#c.PyInterpreterState "PyInterpreterState")\* `PyInterpreterState_New`()Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.
void `PyInterpreterState_Clear`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Reset all information in an interpreter state object. The global interpreter lock must be held.
void `PyInterpreterState_Delete`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have been reset with a previous call to [`PyInterpreterState_Clear()`](#c.PyInterpreterState_Clear "PyInterpreterState_Clear").
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyThreadState_New`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.
void `PyThreadState_Clear`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Reset all information in a thread state object. The global interpreter lock must be held.
void `PyThreadState_Delete`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset with a previous call to [`PyThreadState_Clear()`](#c.PyThreadState_Clear "PyThreadState_Clear").
PY\_INT64\_T `PyInterpreterState_GetID`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Return the interpreter's unique ID. If there was any error in doing so then `-1` is returned and an error is set.
3\.7 新版功能.
[PyObject](structures.xhtml#c.PyObject "PyObject")\* `PyThreadState_GetDict`()*Return value: Borrowed reference.*Return a dictionary in which extensions can store thread-specific state information. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function when no current thread state is available. If this function returns *NULL*, no exception has been raised and the caller should assume no current thread state is available.
int `PyThreadState_SetAsyncExc`(unsigned long *id*, [PyObject](structures.xhtml#c.PyObject "PyObject") *\*exc*)Asynchronously raise an exception in a thread. The *id* argument is the thread id of the target thread; *exc* is the exception object to be raised. This function does not steal any references to *exc*. To prevent naive misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn't found. If *exc* is `NULL`, the pending exception (if any) for the thread is cleared. This raises no exceptions.
在 3.7 版更改: The type of the *id* parameter changed from `long` to `unsigned long`.
void `PyEval_AcquireThread`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Acquire the global interpreter lock and set the current thread state to *tstate*, which should not be *NULL*. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.
[`PyEval_RestoreThread()`](#c.PyEval_RestoreThread "PyEval_RestoreThread") is a higher-level function which is always available (even when threads have not been initialized).
void `PyEval_ReleaseThread`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Reset the current thread state to *NULL* and release the global interpreter lock. The lock must have been created earlier and must be held by the current thread. The *tstate* argument, which must not be *NULL*, is only used to check that it represents the current thread state --- if it isn't, a fatal error is reported.
[`PyEval_SaveThread()`](#c.PyEval_SaveThread "PyEval_SaveThread") is a higher-level function which is always available (even when threads have not been initialized).
void `PyEval_AcquireLock`()Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a deadlock ensues.
3\.2 版后已移除: This function does not update the current thread state. Please use [`PyEval_RestoreThread()`](#c.PyEval_RestoreThread "PyEval_RestoreThread") or [`PyEval_AcquireThread()`](#c.PyEval_AcquireThread "PyEval_AcquireThread")instead.
void `PyEval_ReleaseLock`()Release the global interpreter lock. The lock must have been created earlier.
3\.2 版后已移除: This function does not update the current thread state. Please use [`PyEval_SaveThread()`](#c.PyEval_SaveThread "PyEval_SaveThread") or [`PyEval_ReleaseThread()`](#c.PyEval_ReleaseThread "PyEval_ReleaseThread")instead.
## Sub-interpreter support
While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that. You can switch between sub-interpreters using the [`PyThreadState_Swap()`](#c.PyThreadState_Swap "PyThreadState_Swap") function. You can create and destroy them using the following functions:
[PyThreadState](#c.PyThreadState "PyThreadState")\* `Py_NewInterpreter`()Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code. In particular, the new interpreter has separate, independent versions of all imported modules, including the fundamental modules [`builtins`](../library/builtins.xhtml#module-builtins "builtins: The module that provides the built-in namespace."), [`__main__`](../library/__main__.xhtml#module-__main__ "__main__: The environment where the top-level script is run.") and [`sys`](../library/sys.xhtml#module-sys "sys: Access system-specific parameters and functions."). The table of loaded modules (`sys.modules`) and the module search path (`sys.path`) are also separate. The new environment has no `sys.argv`variable. It has new standard I/O stream file objects `sys.stdin`, `sys.stdout` and `sys.stderr` (however these refer to the same underlying file descriptors).
The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation of the new interpreter is unsuccessful, *NULL* is returned; no exception is set since the exception state is stored in the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the global interpreter lock must be held before calling this function and is still held when it returns; however, unlike most other Python/C API functions, there needn't be a current thread state on entry.)
Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is imported, it is initialized normally, and a (shallow) copy of its module's dictionary is squirreled away. When the same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents of this copy; the extension's `init` function is not called. Note that this is different from what happens when an extension is imported after the interpreter has been completely re-initialized by calling [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") and [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"); in that case, the extension's `initmodule` function *is* called again.
void `Py_EndInterpreter`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current thread state. See the discussion of thread states below. When the call returns, the current thread state is *NULL*. All thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling this function and is still held when it returns.) [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") will destroy all sub-interpreters that haven't been explicitly destroyed at that point.
### Bugs and caveats
Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn't perfect --- for example, using low-level file operations like [`os.close()`](../library/os.xhtml#os.close "os.close") they can (accidentally or maliciously) affect each other's open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not work properly; this is especially likely when the extension makes use of (static) global variables, or when the extension manipulates its module's dictionary after its initialization. It is possible to insert objects created in one sub-interpreter into a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-defined functions, methods, instances or classes between sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter's dictionary of loaded modules.
Also note that combining this functionality with `PyGILState_*()` APIs is delicate, because these APIs assume a bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It is highly recommended that you don't switch sub-interpreters between a pair of matching [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") and [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release") calls. Furthermore, extensions (such as [`ctypes`](../library/ctypes.xhtml#module-ctypes "ctypes: A foreign function library for Python.")) using these APIs to allow calling of Python code from non-Python created threads will probably be broken when using sub-interpreters.
## Asynchronous Notifications
A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the form of a function pointer and a void pointer argument.
int `Py_AddPendingCall`(int (*\*func*)(void \*), void *\*arg*)Schedule a function to be called from the main interpreter thread. On success, `0` is returned and *func* is queued for being called in the main thread. On failure, `-1` is returned without setting any exception.
When successfully queued, *func* will be *eventually* called from the main interpreter thread with the argument *arg*. It will be called asynchronously with respect to normally running Python code, but with both these conditions met:
- on a [bytecode](../glossary.xhtml#term-bytecode) boundary;
- with the main thread holding the [global interpreter lock](../glossary.xhtml#term-global-interpreter-lock)(*func* can therefore use the full C API).
*func* must return `0` on success, or `-1` on failure with an exception set. *func* won't be interrupted to perform another asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock is released.
This function doesn't need a current thread state to run, and it doesn't need the global interpreter lock.
警告
This is a low-level function, only useful for very special cases. There is no guarantee that *func* will be called as quick as possible. If the main thread is busy executing a system call, *func* won't be called before the system call returns. This function is generally **not** suitable for calling Python code from arbitrary C threads. Instead, use the [PyGILState API](#gilstate).
3\.1 新版功能.
## Profiling and Tracing
The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are used for profiling, debugging, and coverage analysis tools.
This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported to the Python-level trace functions in previous versions.
int `(*Py_tracefunc)`([PyObject](structures.xhtml#c.PyObject "PyObject") *\*obj*, [PyFrameObject](veryhigh.xhtml#c.PyFrameObject "PyFrameObject") *\*frame*, int *what*, [PyObject](structures.xhtml#c.PyObject "PyObject") *\*arg*)The type of the trace function registered using [`PyEval_SetProfile()`](#c.PyEval_SetProfile "PyEval_SetProfile") and [`PyEval_SetTrace()`](#c.PyEval_SetTrace "PyEval_SetTrace"). The first parameter is the object passed to the registration function as *obj*, *frame* is the frame object to which the event pertains, *what* is one of the constants `PyTrace_CALL`, `PyTrace_EXCEPTION`, `PyTrace_LINE`, `PyTrace_RETURN`, `PyTrace_C_CALL`, `PyTrace_C_EXCEPTION`, `PyTrace_C_RETURN`, or `PyTrace_OPCODE`, and *arg* depends on the value of *what*:
*what* 的值
*arg* 的含義
`PyTrace_CALL`
總是 [`Py_None`](none.xhtml#c.Py_None "Py_None").
`PyTrace_EXCEPTION`
[`sys.exc_info()`](../library/sys.xhtml#sys.exc_info "sys.exc_info") 返回的異常信息。
`PyTrace_LINE`
總是 [`Py_None`](none.xhtml#c.Py_None "Py_None").
`PyTrace_RETURN`
返回給調用方的值,如果由異常引起,則返回NULL。
`PyTrace_C_CALL`
正在調用函數對象。
`PyTrace_C_EXCEPTION`
正在調用函數對象。
`PyTrace_C_RETURN`
正在調用函數對象。
`PyTrace_OPCODE`
總是 [`Py_None`](none.xhtml#c.Py_None "Py_None").
int `PyTrace_CALL`The value of the *what* parameter to a [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") function when a new call to a function or method is being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not reported as there is no control transfer to the Python bytecode in the corresponding frame.
int `PyTrace_EXCEPTION`The value of the *what* parameter to a [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") function when an exception has been raised. The callback function is called with this value for *what* when after any bytecode is processed after which the exception becomes set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives these events; they are not needed by the profiler.
int `PyTrace_LINE`The value passed as the *what* parameter to a [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") function (but not a profiling function) when a line-number event is being reported. It may be disabled for a frame by setting `f_trace_lines` to on that frame.
int `PyTrace_RETURN`The value for the *what* parameter to [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") functions when a call is about to return.
int `PyTrace_C_CALL`The value for the *what* parameter to [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") functions when a C function is about to be called.
int `PyTrace_C_EXCEPTION`The value for the *what* parameter to [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") functions when a C function has raised an exception.
int `PyTrace_C_RETURN`The value for the *what* parameter to [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") functions when a C function has returned.
int `PyTrace_OPCODE`The value for the *what* parameter to [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") functions (but not profiling functions) when a new opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by setting `f_trace_opcodes` to *1* on the frame.
void `PyEval_SetProfile`([Py\_tracefunc](#c.Py_tracefunc "Py_tracefunc") *func*, [PyObject](structures.xhtml#c.PyObject "PyObject") *\*obj*)Set the profiler function to *func*. The *obj* parameter is passed to the function as its first parameter, and may be any Python object, or *NULL*. If the profile function needs to maintain state, using a different value for *obj*for each thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events except `PyTrace_LINE``PyTrace_OPCODE` and `PyTrace_EXCEPTION`.
void `PyEval_SetTrace`([Py\_tracefunc](#c.Py_tracefunc "Py_tracefunc") *func*, [PyObject](structures.xhtml#c.PyObject "PyObject") *\*obj*)Set the tracing function to *func*. This is similar to [`PyEval_SetProfile()`](#c.PyEval_SetProfile "PyEval_SetProfile"), except the tracing function does receive line-number events and per-opcode events, but does not receive any event related to C function objects being called. Any trace function registered using [`PyEval_SetTrace()`](#c.PyEval_SetTrace "PyEval_SetTrace")will not receive `PyTrace_C_CALL`, `PyTrace_C_EXCEPTION` or `PyTrace_C_RETURN` as a value for the *what* parameter.
## Advanced Debugger Support
These functions are only intended to be used by advanced debugging tools.
[PyInterpreterState](#c.PyInterpreterState "PyInterpreterState")\* `PyInterpreterState_Head`()Return the interpreter state object at the head of the list of all such objects.
[PyInterpreterState](#c.PyInterpreterState "PyInterpreterState")\* `PyInterpreterState_Main`()Return the main interpreter state object.
[PyInterpreterState](#c.PyInterpreterState "PyInterpreterState")\* `PyInterpreterState_Next`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Return the next interpreter state object after *interp* from the list of all such objects.
[PyThreadState](#c.PyThreadState "PyThreadState") \* `PyInterpreterState_ThreadHead`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Return the pointer to the first [`PyThreadState`](#c.PyThreadState "PyThreadState") object in the list of threads associated with the interpreter *interp*.
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyThreadState_Next`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Return the next thread state object after *tstate* from the list of all such objects belonging to the same [`PyInterpreterState`](#c.PyInterpreterState "PyInterpreterState") object.
## Thread Local Storage Support
The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native TLS implementation to support the Python-level thread local storage API ([`threading.local`](../library/threading.xhtml#threading.local "threading.local")). The CPython C level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a `void*` value per thread.
The GIL does *not* need to be held when calling these functions; they supply their own locking.
Note that `Python.h` does not include the declaration of the TLS APIs, you need to include `pythread.h` to use thread-local storage.
注解
None of these API functions handle memory management on behalf of the `void*` values. You need to allocate and deallocate them yourself. If the `void*` values happen to be [`PyObject*`](structures.xhtml#c.PyObject "PyObject"), these functions don't do refcount operations on them either.
### Thread Specific Storage (TSS) API
TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses a new type [`Py_tss_t`](#c.Py_tss_t "Py_tss_t") instead of `int` to represent thread keys.
3\.7 新版功能.
參見
"A New C-API for Thread-Local Storage in CPython" ([**PEP 539**](https://www.python.org/dev/peps/pep-0539) \[https://www.python.org/dev/peps/pep-0539\])
`Py_tss_t`This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS implementation, and it has an internal field representing the key's initialization state. There are no public members in this structure.
When [Py\_LIMITED\_API](stable.xhtml#stable) is not defined, static allocation of this type by [`Py_tss_NEEDS_INIT`](#c.Py_tss_NEEDS_INIT "Py_tss_NEEDS_INIT") is allowed.
`Py_tss_NEEDS_INIT`This macro expands to the initializer for [`Py_tss_t`](#c.Py_tss_t "Py_tss_t") variables. Note that this macro won't be defined with [Py\_LIMITED\_API](stable.xhtml#stable).
#### Dynamic Allocation
Dynamic allocation of the [`Py_tss_t`](#c.Py_tss_t "Py_tss_t"), required in extension modules built with [Py\_LIMITED\_API](stable.xhtml#stable), where static allocation of this type is not possible due to its implementation being opaque at build time.
[Py\_tss\_t](#c.Py_tss_t "Py_tss_t")\* `PyThread_tss_alloc`()Return a value which is the same state as a value initialized with [`Py_tss_NEEDS_INIT`](#c.Py_tss_NEEDS_INIT "Py_tss_NEEDS_INIT"), or *NULL* in the case of dynamic allocation failure.
void `PyThread_tss_free`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*)Free the given *key* allocated by [`PyThread_tss_alloc()`](#c.PyThread_tss_alloc "PyThread_tss_alloc"), after first calling [`PyThread_tss_delete()`](#c.PyThread_tss_delete "PyThread_tss_delete") to ensure any associated thread locals have been unassigned. This is a no-op if the *key*argument is NULL.
注解
A freed key becomes a dangling pointer, you should reset the key to NULL.
#### 方法
The parameter *key* of these functions must not be *NULL*. Moreover, the behaviors of [`PyThread_tss_set()`](#c.PyThread_tss_set "PyThread_tss_set") and [`PyThread_tss_get()`](#c.PyThread_tss_get "PyThread_tss_get") are undefined if the given [`Py_tss_t`](#c.Py_tss_t "Py_tss_t") has not been initialized by [`PyThread_tss_create()`](#c.PyThread_tss_create "PyThread_tss_create").
int `PyThread_tss_is_created`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*)Return a non-zero value if the given [`Py_tss_t`](#c.Py_tss_t "Py_tss_t") has been initialized by [`PyThread_tss_create()`](#c.PyThread_tss_create "PyThread_tss_create").
int `PyThread_tss_create`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*)Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to by the *key* argument is not initialized by [`Py_tss_NEEDS_INIT`](#c.Py_tss_NEEDS_INIT "Py_tss_NEEDS_INIT"). This function can be called repeatedly on the same key -- calling it on an already initialized key is a no-op and immediately returns success.
void `PyThread_tss_delete`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*)Destroy a TSS key to forget the values associated with the key across all threads, and change the key's initialization state to uninitialized. A destroyed key is able to be initialized again by [`PyThread_tss_create()`](#c.PyThread_tss_create "PyThread_tss_create"). This function can be called repeatedly on the same key -- calling it on an already destroyed key is a no-op.
int `PyThread_tss_set`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*, void *\*value*)Return a zero value to indicate successfully associating a `void*`value with a TSS key in the current thread. Each thread has a distinct mapping of the key to a `void*` value.
void\* `PyThread_tss_get`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*)Return the `void*` value associated with a TSS key in the current thread. This returns *NULL* if no value is associated with the key in the current thread.
### Thread Local Storage (TLS) API
3\.7 版后已移除: This API is superseded by [Thread Specific Storage (TSS) API](#thread-specific-storage-api).
注解
This version of the API does not support platforms where the native TLS key is defined in a way that cannot be safely cast to `int`. On such platforms, [`PyThread_create_key()`](#c.PyThread_create_key "PyThread_create_key") will return immediately with a failure status, and the other TLS functions will all be no-ops on such platforms.
由于上面提到的兼容性問題,不應在新代碼中使用此版本的API。
int `PyThread_create_key`()void `PyThread_delete_key`(int *key*)int `PyThread_set_key_value`(int *key*, void *\*value*)void\* `PyThread_get_key_value`(int *key*)void `PyThread_delete_key_value`(int *key*)void `PyThread_ReInitTLS`()
### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](memory.xhtml "內存管理") |
- [上一頁](datetime.xhtml "DateTime 對象") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [Python/C API 參考手冊](index.xhtml) ?
- $('.inline-search').show(0); |
? [版權所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 軟件基金會是一個非盈利組織。 [請捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [發現了問題](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 創建。
- Python文檔內容
- Python 有什么新變化?
- Python 3.7 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- C API 的改變
- 構建的改變
- 性能優化
- 其他 CPython 實現的改變
- 已棄用的 Python 行為
- 已棄用的 Python 模塊、函數和方法
- 已棄用的 C API 函數和類型
- 平臺支持的移除
- API 與特性的移除
- 移除的模塊
- Windows 專屬的改變
- 移植到 Python 3.7
- Python 3.7.1 中的重要變化
- Python 3.7.2 中的重要變化
- Python 3.6 有什么新變化A
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 其他改進
- 棄用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要變化
- Python 3.6.4 中的重要變化
- Python 3.6.5 中的重要變化
- Python 3.6.7 中的重要變化
- Python 3.5 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- Other module-level changes
- 性能優化
- Build and C API Changes
- 棄用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 發布重點
- 新的特性
- 新增模塊
- 改進的模塊
- CPython Implementation Changes
- 棄用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 發布重點
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他語言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 棄用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 多線程
- 性能優化
- Unicode
- Codecs
- 文檔
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 性能優化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他語言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新變化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他語言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他語言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推導式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最終版
- Python 3.7.3 發布候選版 1
- Python 3.7.2 最終版
- Python 3.7.2 發布候選版 1
- Python 3.7.1 最終版
- Python 3.7.1 RC 2版本
- Python 3.7.1 發布候選版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 課前甜點
- 使用 Python 解釋器
- 調用解釋器
- 解釋器的運行環境
- Python 的非正式介紹
- Python 作為計算器使用
- 走向編程的第一步
- 其他流程控制工具
- if 語句
- for 語句
- range() 函數
- break 和 continue 語句,以及循環中的 else 子句
- pass 語句
- 定義函數
- 函數定義的更多形式
- 小插曲:編碼風格
- 數據結構
- 列表的更多特性
- del 語句
- 元組和序列
- 集合
- 字典
- 循環的技巧
- 深入條件控制
- 序列和其它類型的比較
- 模塊
- 有關模塊的更多信息
- 標準模塊
- dir() 函數
- 包
- 輸入輸出
- 更漂亮的輸出格式
- 讀寫文件
- 錯誤和異常
- 語法錯誤
- 異常
- 處理異常
- 拋出異常
- 用戶自定義異常
- 定義清理操作
- 預定義的清理操作
- 類
- 名稱和對象
- Python 作用域和命名空間
- 初探類
- 補充說明
- 繼承
- 私有變量
- 雜項說明
- 迭代器
- 生成器
- 生成器表達式
- 標準庫簡介
- 操作系統接口
- 文件通配符
- 命令行參數
- 錯誤輸出重定向和程序終止
- 字符串模式匹配
- 數學
- 互聯網訪問
- 日期和時間
- 數據壓縮
- 性能測量
- 質量控制
- 自帶電池
- 標準庫簡介 —— 第二部分
- 格式化輸出
- 模板
- 使用二進制數據記錄格式
- 多線程
- 日志
- 弱引用
- 用于操作列表的工具
- 十進制浮點運算
- 虛擬環境和包
- 概述
- 創建虛擬環境
- 使用pip管理包
- 接下來?
- 交互式編輯和編輯歷史
- Tab 補全和編輯歷史
- 默認交互式解釋器的替代品
- 浮點算術:爭議和限制
- 表示性錯誤
- 附錄
- 交互模式
- 安裝和使用 Python
- 命令行與環境
- 命令行
- 環境變量
- 在Unix平臺中使用Python
- 獲取最新版本的Python
- 構建Python
- 與Python相關的路徑和文件
- 雜項
- 編輯器和集成開發環境
- 在Windows上使用 Python
- 完整安裝程序
- Microsoft Store包
- nuget.org 安裝包
- 可嵌入的包
- 替代捆綁包
- 配置Python
- 適用于Windows的Python啟動器
- 查找模塊
- 附加模塊
- 在Windows上編譯Python
- 其他平臺
- 在蘋果系統上使用 Python
- 獲取和安裝 MacPython
- IDE
- 安裝額外的 Python 包
- Mac 上的圖形界面編程
- 在 Mac 上分發 Python 應用程序
- 其他資源
- Python 語言參考
- 概述
- 其他實現
- 標注
- 詞法分析
- 行結構
- 其他形符
- 標識符和關鍵字
- 字面值
- 運算符
- 分隔符
- 數據模型
- 對象、值與類型
- 標準類型層級結構
- 特殊方法名稱
- 協程
- 執行模型
- 程序的結構
- 命名與綁定
- 異常
- 導入系統
- importlib
- 包
- 搜索
- 加載
- 基于路徑的查找器
- 替換標準導入系統
- Package Relative Imports
- 有關 main 的特殊事項
- 開放問題項
- 參考文獻
- 表達式
- 算術轉換
- 原子
- 原型
- await 表達式
- 冪運算符
- 一元算術和位運算
- 二元算術運算符
- 移位運算
- 二元位運算
- 比較運算
- 布爾運算
- 條件表達式
- lambda 表達式
- 表達式列表
- 求值順序
- 運算符優先級
- 簡單語句
- 表達式語句
- 賦值語句
- assert 語句
- pass 語句
- del 語句
- return 語句
- yield 語句
- raise 語句
- break 語句
- continue 語句
- import 語句
- global 語句
- nonlocal 語句
- 復合語句
- if 語句
- while 語句
- for 語句
- try 語句
- with 語句
- 函數定義
- 類定義
- 協程
- 最高層級組件
- 完整的 Python 程序
- 文件輸入
- 交互式輸入
- 表達式輸入
- 完整的語法規范
- Python 標準庫
- 概述
- 可用性注釋
- 內置函數
- 內置常量
- 由 site 模塊添加的常量
- 內置類型
- 邏輯值檢測
- 布爾運算 — and, or, not
- 比較
- 數字類型 — int, float, complex
- 迭代器類型
- 序列類型 — list, tuple, range
- 文本序列類型 — str
- 二進制序列類型 — bytes, bytearray, memoryview
- 集合類型 — set, frozenset
- 映射類型 — dict
- 上下文管理器類型
- 其他內置類型
- 特殊屬性
- 內置異常
- 基類
- 具體異常
- 警告
- 異常層次結構
- 文本處理服務
- string — 常見的字符串操作
- re — 正則表達式操作
- 模塊 difflib 是一個計算差異的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 數據庫
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函數
- 二進制數據服務
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 數據類型
- datetime — 基礎日期/時間數據類型
- calendar — General calendar-related functions
- collections — 容器數據類型
- collections.abc — 容器的抽象基類
- heapq — 堆隊列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 淺層 (shallow) 和深層 (deep) 復制操作
- pprint — 數據美化輸出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 數字和數學模塊
- numbers — 數字的抽象基類
- math — 數學函數
- cmath — Mathematical functions for complex numbers
- decimal — 十進制定點和浮點運算
- fractions — 分數
- random — 生成偽隨機數
- statistics — Mathematical statistics functions
- 函數式編程模塊
- itertools — 為高效循環而創建迭代器的函數
- functools — 高階函數和可調用對象上的操作
- operator — 標準運算符替代函數
- 文件和目錄訪問
- pathlib — 面向對象的文件系統路徑
- os.path — 常見路徑操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路徑操作函數
- 數據持久化
- pickle —— Python 對象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 數據庫 DB-API 2.0 接口模塊
- 數據壓縮和存檔
- zlib — 與 gzip 兼容的壓縮
- gzip — 對 gzip 格式的支持
- bz2 — 對 bzip2 壓縮算法的支持
- lzma — 用 LZMA 算法壓縮
- zipfile — 在 ZIP 歸檔中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件讀寫
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服務
- hashlib — 安全哈希與消息摘要
- hmac — 基于密鑰的消息驗證
- secrets — Generate secure random numbers for managing secrets
- 通用操作系統服務
- os — 操作系統接口模塊
- io — 處理流的核心工具
- time — 時間的訪問和轉換
- argparse — 命令行選項、參數和子命令解析器
- getopt — C-style parser for command line options
- 模塊 logging — Python 的日志記錄工具
- logging.config — 日志記錄配置
- logging.handlers — Logging handlers
- getpass — 便攜式密碼輸入工具
- curses — 終端字符單元顯示的處理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函數庫
- 并發執行
- threading — 基于線程的并行
- multiprocessing — 基于進程的并行
- concurrent 包
- concurrent.futures — 啟動并行任務
- subprocess — 子進程管理
- sched — 事件調度器
- queue — 一個同步的隊列類
- _thread — 底層多線程 API
- _dummy_thread — _thread 的替代模塊
- dummy_threading — 可直接替代 threading 模塊。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 網絡和進程間通信
- asyncio — 異步 I/O
- socket — 底層網絡接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高級 I/O 復用庫
- asyncore — 異步socket處理器
- asynchat — 異步 socket 指令/響應 處理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互聯網數據處理
- email — 電子郵件與 MIME 處理包
- json — JSON 編碼和解碼器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 數據編碼
- binhex — 對binhex4文件進行編碼和解碼
- binascii — 二進制和 ASCII 碼互轉
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 結構化標記處理工具
- html — 超文本標記語言支持
- html.parser — 簡單的 HTML 和 XHTML 解析器
- html.entities — HTML 一般實體的定義
- XML處理模塊
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互聯網協議和支持
- webbrowser — 方便的Web瀏覽器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 處理模塊
- urllib.request — 用于打開 URL 的可擴展庫
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模塊
- http.client — HTTP協議客戶端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP協議客戶端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服務器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服務端與客戶端模塊
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒體服務
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 讀寫 Sun AU 文件
- wave — 讀寫WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推測圖像類型
- sndhdr — 推測聲音文件的類型
- ossaudiodev — Access to OSS-compatible audio devices
- 國際化
- gettext — 多語種國際化服務
- locale — 國際化服務
- 程序框架
- turtle — 海龜繪圖
- cmd — 支持面向行的命令解釋器
- shlex — Simple lexical analysis
- Tk圖形用戶界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滾動文字控件
- IDLE
- 其他圖形用戶界面(GUI)包
- 開發工具
- typing — 類型標注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 單元測試框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自動將 Python 2 代碼轉為 Python 3 代碼
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 調試和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 測量小代碼片段的執行時間
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 軟件打包和分發
- distutils — 構建和安裝 Python 模塊
- ensurepip — Bootstrapping the pip installer
- venv — 創建虛擬環境
- zipapp — Manage executable Python zip archives
- Python運行時服務
- sys — 系統相關的參數和函數
- sysconfig — Provide access to Python's configuration information
- builtins — 內建對象
- main — 頂層腳本環境
- warnings — Warning control
- dataclasses — 數據類
- contextlib — Utilities for with-statement contexts
- abc — 抽象基類
- atexit — 退出處理器
- traceback — Print or retrieve a stack traceback
- future — Future 語句定義
- gc — 垃圾回收器接口
- inspect — 檢查對象
- site — Site-specific configuration hook
- 自定義 Python 解釋器
- code — Interpreter base classes
- codeop — Compile Python code
- 導入模塊
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找腳本使用的模塊
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 語言服務
- parser — Access Python parse trees
- ast — 抽象語法樹
- symtable — Access to the compiler's symbol tables
- symbol — 與 Python 解析樹一起使用的常量
- token — 與Python解析樹一起使用的常量
- keyword — 檢驗Python關鍵字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊縮進檢測
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字節碼反匯編器
- pickletools — Tools for pickle developers
- 雜項服務
- formatter — Generic output formatting
- Windows系統相關模塊
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注冊表訪問
- winsound — Sound-playing interface for Windows
- Unix 專有服務
- posix — The most common POSIX system calls
- pwd — 用戶密碼數據庫
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 終端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 庫例程
- 被取代的模塊
- optparse — Parser for command line options
- imp — Access the import internals
- 未創建文檔的模塊
- 平臺特定模塊
- 擴展和嵌入 Python 解釋器
- 推薦的第三方工具
- 不使用第三方工具創建擴展
- 使用 C 或 C++ 擴展 Python
- 自定義擴展類型:教程
- 定義擴展類型:已分類主題
- 構建C/C++擴展
- 在Windows平臺編譯C和C++擴展
- 在更大的應用程序中嵌入 CPython 運行時
- Embedding Python in Another Application
- Python/C API 參考手冊
- 概述
- 代碼標準
- 包含文件
- 有用的宏
- 對象、類型和引用計數
- 異常
- 嵌入Python
- 調試構建
- 穩定的應用程序二進制接口
- The Very High Level Layer
- Reference Counting
- 異常處理
- Printing and clearing
- 拋出異常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 標準異常
- 標準警告類別
- 工具
- 操作系統實用程序
- 系統功能
- 過程控制
- 導入模塊
- Data marshalling support
- 語句解釋及變量編譯
- 字符串轉換與格式化
- 反射
- 編解碼器注冊與支持功能
- 抽象對象層
- Object Protocol
- 數字協議
- Sequence Protocol
- Mapping Protocol
- 迭代器協議
- 緩沖協議
- Old Buffer Protocol
- 具體的對象層
- 基本對象
- 數值對象
- 序列對象
- 容器對象
- 函數對象
- 其他對象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置變量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 內存管理
- 概述
- 原始內存接口
- Memory Interface
- 對象分配器
- 默認內存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 對象實現支持
- 在堆中分配對象
- Common Object Structures
- Type 對象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使對象類型支持循環垃圾回收
- API 和 ABI 版本管理
- 分發 Python 模塊
- 關鍵術語
- 開源許可與協作
- 安裝工具
- 閱讀指南
- 我該如何...?
- ...為我的項目選擇一個名字?
- ...創建和分發二進制擴展?
- 安裝 Python 模塊
- 關鍵術語
- 基本使用
- 我應如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安裝 pip ?
- ... 只為當前用戶安裝軟件包?
- ... 安裝科學計算類 Python 軟件包?
- ... 使用并行安裝的多個 Python 版本?
- 常見的安裝問題
- 在 Linux 的系統 Python 版本上安裝
- 未安裝 pip
- 安裝二進制編譯擴展
- Python 常用指引
- 將 Python 2 代碼遷移到 Python 3
- 簡要說明
- 詳情
- 將擴展模塊移植到 Python 3
- 條件編譯
- 對象API的更改
- 模塊初始化和狀態
- CObject 替換為 Capsule
- 其他選項
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 實現描述器
- 摘要
- 定義和簡介
- 描述器協議
- 發起調用描述符
- 描述符示例
- Properties
- 函數和方法
- Static Methods and Class Methods
- 函數式編程指引
- 概述
- 迭代器
- 生成器表達式和列表推導式
- 生成器
- 內置函數
- itertools 模塊
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文獻
- 日志 HOWTO
- 日志基礎教程
- 進階日志教程
- 日志級別
- 有用的處理程序
- 記錄日志中引發的異常
- 使用任意對象作為消息
- 優化
- 日志操作手冊
- 在多個模塊中使用日志
- 在多線程中使用日志
- 使用多個日志處理器和多種格式化
- 在多個地方記錄日志
- 日志服務器配置示例
- 處理日志處理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正則表達式HOWTO
- 概述
- 簡單模式
- 使用正則表達式
- 更多模式能力
- 修改字符串
- 常見問題
- 反饋
- 套接字編程指南
- 套接字
- 創建套接字
- 使用一個套接字
- 斷開連接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 關鍵函數
- Operator 模塊函數
- 升序和降序
- 排序穩定性和排序復雜度
- 使用裝飾-排序-去裝飾的舊方法
- 使用 cmp 參數的舊方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包獲取網絡資源
- 概述
- Fetching URLs
- 處理異常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 腳注
- Argparse 教程
- 概念
- 基礎
- 位置參數介紹
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模塊介紹
- 創建 Address/Network/Interface 對象
- 審查 Address/Network/Interface 對象
- Network 作為 Address 列表
- 比較
- 將IP地址與其他模塊一起使用
- 實例創建失敗時獲取更多詳細信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 檢測CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常見問題
- Python常見問題
- 一般信息
- 現實世界中的 Python
- 編程常見問題
- 一般問題
- 核心語言
- 數字和字符串
- 性能
- 序列(元組/列表)
- 對象
- 模塊
- 設計和歷史常見問題
- 為什么Python使用縮進來分組語句?
- 為什么簡單的算術運算得到奇怪的結果?
- 為什么浮點計算不準確?
- 為什么Python字符串是不可變的?
- 為什么必須在方法定義和調用中顯式使用“self”?
- 為什么不能在表達式中賦值?
- 為什么Python對某些功能(例如list.index())使用方法來實現,而其他功能(例如len(List))使用函數實現?
- 為什么 join()是一個字符串方法而不是列表或元組方法?
- 異常有多快?
- 為什么Python中沒有switch或case語句?
- 難道不能在解釋器中模擬線程,而非得依賴特定于操作系統的線程實現嗎?
- 為什么lambda表達式不能包含語句?
- 可以將Python編譯為機器代碼,C或其他語言嗎?
- Python如何管理內存?
- 為什么CPython不使用更傳統的垃圾回收方案?
- CPython退出時為什么不釋放所有內存?
- 為什么有單獨的元組和列表數據類型?
- 列表是如何在CPython中實現的?
- 字典是如何在CPython中實現的?
- 為什么字典key必須是不可變的?
- 為什么 list.sort() 沒有返回排序列表?
- 如何在Python中指定和實施接口規范?
- 為什么沒有goto?
- 為什么原始字符串(r-strings)不能以反斜杠結尾?
- 為什么Python沒有屬性賦值的“with”語句?
- 為什么 if/while/def/class語句需要冒號?
- 為什么Python在列表和元組的末尾允許使用逗號?
- 代碼庫和插件 FAQ
- 通用的代碼庫問題
- 通用任務
- 線程相關
- 輸入輸出
- 網絡 / Internet 編程
- 數據庫
- 數學和數字
- 擴展/嵌入常見問題
- 可以使用C語言中創建自己的函數嗎?
- 可以使用C++語言中創建自己的函數嗎?
- C很難寫,有沒有其他選擇?
- 如何從C執行任意Python語句?
- 如何從C中評估任意Python表達式?
- 如何從Python對象中提取C的值?
- 如何使用Py_BuildValue()創建任意長度的元組?
- 如何從C調用對象的方法?
- 如何捕獲PyErr_Print()(或打印到stdout / stderr的任何內容)的輸出?
- 如何從C訪問用Python編寫的模塊?
- 如何從Python接口到C ++對象?
- 我使用Setup文件添加了一個模塊,為什么make失敗了?
- 如何調試擴展?
- 我想在Linux系統上編譯一個Python模塊,但是缺少一些文件。為什么?
- 如何區分“輸入不完整”和“輸入無效”?
- 如何找到未定義的g++符號__builtin_new或__pure_virtual?
- 能否創建一個對象類,其中部分方法在C中實現,而其他方法在Python中實現(例如通過繼承)?
- Python在Windows上的常見問題
- 我怎樣在Windows下運行一個Python程序?
- 我怎么讓 Python 腳本可執行?
- 為什么有時候 Python 程序會啟動緩慢?
- 我怎樣使用Python腳本制作可執行文件?
- *.pyd 文件和DLL文件相同嗎?
- 我怎樣將Python嵌入一個Windows程序?
- 如何讓編輯器不要在我的 Python 源代碼中插入 tab ?
- 如何在不阻塞的情況下檢查按鍵?
- 圖形用戶界面(GUI)常見問題
- 圖形界面常見問題
- Python 是否有平臺無關的圖形界面工具包?
- 有哪些Python的GUI工具是某個平臺專用的?
- 有關Tkinter的問題
- “為什么我的電腦上安裝了 Python ?”
- 什么是Python?
- 為什么我的電腦上安裝了 Python ?
- 我能刪除 Python 嗎?
- 術語對照表
- 文檔說明
- Python 文檔貢獻者
- 解決 Bug
- 文檔錯誤
- 使用 Python 的錯誤追蹤系統
- 開始為 Python 貢獻您的知識
- 版權
- 歷史和許可證
- 軟件歷史
- 訪問Python或以其他方式使用Python的條款和條件
- Python 3.7.3 的 PSF 許可協議
- Python 2.0 的 BeOpen.com 許可協議
- Python 1.6.1 的 CNRI 許可協議
- Python 0.9.0 至 1.2 的 CWI 許可協議
- 集成軟件的許可和認可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec