### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](newtypes.xhtml "3. 定義擴展類型:已分類主題") |
- [上一頁](extending.xhtml "1. 使用 C 或 C++ 擴展 Python") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [擴展和嵌入 Python 解釋器](index.xhtml) ?
- $('.inline-search').show(0); |
# 2. 自定義擴展類型:教程
Python 允許編寫 C 擴展模塊定義可以從 Python 代碼中操縱的新類型,這很像內置的 [`str`](../library/stdtypes.xhtml#str "str") 和 [`list`](../library/stdtypes.xhtml#list "list") 類型。所有擴展類型的代碼都遵循一個模式,但是在您開始之前,您需要了解一些細節。這份文件是對這個主題介紹。
## 2.1. 基礎
[CPython](../glossary.xhtml#term-cpython) 運行時將所有 Python 對象都視為類型 [`PyObject*`](../c-api/structures.xhtml#c.PyObject "PyObject") 的變量,即所有 Python 對象的"基礎類型"。 [`PyObject`](../c-api/structures.xhtml#c.PyObject "PyObject") 結構體本身包含了對象的 [reference count](../glossary.xhtml#term-reference-count) 和對象的"類型對象"。 類型對象確定解釋器需要調用哪些 (C) 函數,例如一個屬性查詢一個對象,一個方法調用,或者與另一個對象相乘。 這些 C 函數被稱為“類型方法”。
所以,如果你想要定義新的擴展類型,需要創建新的類型對象。
這類事情只能用例子解釋,這里用一個最小化但完整的的模塊,定義了新的類型叫做 `Custom` 在C擴展模塊 `custom` 里。
注解
這里展示的方法是定義 *static* 擴展類型的傳統方法。可以適合大部分用途。C API也可以定義在堆上分配的擴展類型,使用 [`PyType_FromSpec()`](../c-api/type.xhtml#c.PyType_FromSpec "PyType_FromSpec") 函數,但不在本入門里討論。
```
#define PY_SSIZE_T_CLEAN
#include <Python.h>
typedef struct {
PyObject_HEAD
/* Type-specific fields go here. */
} CustomObject;
static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,
};
static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,
};
PyMODINIT_FUNC
PyInit_custom(void)
{
PyObject *m;
if (PyType_Ready(&CustomType) < 0)
return NULL;
m = PyModule_Create(&custommodule);
if (m == NULL)
return NULL;
Py_INCREF(&CustomType);
PyModule_AddObject(m, "Custom", (PyObject *) &CustomType);
return m;
}
```
這部分很容易理解,這是為了跟上一章能對接上。這個文件定義了三件事:
1. `Custom` 類的對象 **object** 包含了: `CustomObject` 結構,這會為每個 `Custom` 實例分配一次。
2. `Custom` **type** 的行為:這是 `CustomType` 結構體,其定義了一堆標識和函數指針,會指向解釋器里請求的操作。
3. 初始化 `custom` 模塊: `PyInit_custom` 函數和對應的 `custommodule` 結構體。
結構的第一塊是
```
typedef struct {
PyObject_HEAD
} CustomObject;
```
This is what a Custom object will contain. `PyObject_HEAD` is mandatory at the start of each object struct and defines a field called `ob_base`of type [`PyObject`](../c-api/structures.xhtml#c.PyObject "PyObject"), containing a pointer to a type object and a reference count (these can be accessed using the macros [`Py_REFCNT`](../c-api/structures.xhtml#c.Py_REFCNT "Py_REFCNT")and [`Py_TYPE`](../c-api/structures.xhtml#c.Py_TYPE "Py_TYPE") respectively). The reason for the macro is to abstract away the layout and to enable additional fields in debug builds.
注解
There is no semicolon above after the [`PyObject_HEAD`](../c-api/structures.xhtml#c.PyObject_HEAD "PyObject_HEAD") macro. Be wary of adding one by accident: some compilers will complain.
Of course, objects generally store additional data besides the standard `PyObject_HEAD` boilerplate; for example, here is the definition for standard Python floats:
```
typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObject;
```
The second bit is the definition of the type object.
```
static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,
};
```
注解
We recommend using C99-style designated initializers as above, to avoid listing all the [`PyTypeObject`](../c-api/type.xhtml#c.PyTypeObject "PyTypeObject") fields that you don't care about and also to avoid caring about the fields' declaration order.
The actual definition of [`PyTypeObject`](../c-api/type.xhtml#c.PyTypeObject "PyTypeObject") in `object.h` has many more [fields](../c-api/typeobj.xhtml#type-structs) than the definition above. The remaining fields will be filled with zeros by the C compiler, and it's common practice to not specify them explicitly unless you need them.
We're going to pick it apart, one field at a time:
```
PyVarObject_HEAD_INIT(NULL, 0)
```
This line is mandatory boilerplate to initialize the `ob_base`field mentioned above.
```
.tp_name = "custom.Custom",
```
The name of our type. This will appear in the default textual representation of our objects and in some error messages, for example:
```
>>> "" + custom.Custom()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str
```
Note that the name is a dotted name that includes both the module name and the name of the type within the module. The module in this case is `custom` and the type is `Custom`, so we set the type name to `custom.Custom`. Using the real dotted import path is important to make your type compatible with the [`pydoc`](../library/pydoc.xhtml#module-pydoc "pydoc: Documentation generator and online help system.") and [`pickle`](../library/pickle.xhtml#module-pickle "pickle: Convert Python objects to streams of bytes and back.") modules.
```
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
```
This is so that Python knows how much memory to allocate when creating new `Custom` instances. [`tp_itemsize`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_itemsize "PyTypeObject.tp_itemsize") is only used for variable-sized objects and should otherwise be zero.
注解
If you want your type to be subclassable from Python, and your type has the same [`tp_basicsize`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_basicsize "PyTypeObject.tp_basicsize") as its base type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type first in its [`__bases__`](../library/stdtypes.xhtml#class.__bases__ "class.__bases__"), or else it will not be able to call your type's [`__new__()`](../reference/datamodel.xhtml#object.__new__ "object.__new__") method without getting an error. You can avoid this problem by ensuring that your type has a larger value for [`tp_basicsize`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_basicsize "PyTypeObject.tp_basicsize") than its base type does. Most of the time, this will be true anyway, because either your base type will be [`object`](../library/functions.xhtml#object "object"), or else you will be adding data members to your base type, and therefore increasing its size.
We set the class flags to [`Py_TPFLAGS_DEFAULT`](../c-api/typeobj.xhtml#Py_TPFLAGS_DEFAULT "Py_TPFLAGS_DEFAULT").
```
.tp_flags = Py_TPFLAGS_DEFAULT,
```
All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If you need further members, you will need to OR the corresponding flags.
We provide a doc string for the type in [`tp_doc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_doc "PyTypeObject.tp_doc").
```
.tp_doc = "Custom objects",
```
To enable object creation, we have to provide a [`tp_new`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_new "PyTypeObject.tp_new")handler. This is the equivalent of the Python method [`__new__()`](../reference/datamodel.xhtml#object.__new__ "object.__new__"), but has to be specified explicitly. In this case, we can just use the default implementation provided by the API function [`PyType_GenericNew()`](../c-api/type.xhtml#c.PyType_GenericNew "PyType_GenericNew").
```
.tp_new = PyType_GenericNew,
```
Everything else in the file should be familiar, except for some code in `PyInit_custom()`:
```
if (PyType_Ready(&CustomType) < 0)
return;
```
This initializes the `Custom` type, filling in a number of members to the appropriate default values, including `ob_type` that we initially set to *NULL*.
```
PyModule_AddObject(m, "Custom", (PyObject *) &CustomType);
```
This adds the type to the module dictionary. This allows us to create `Custom` instances by calling the `Custom` class:
```
>>> import custom
>>> mycustom = custom.Custom()
```
That's it! All that remains is to build it; put the above code in a file called `custom.c` and:
```
from distutils.core import setup, Extension
setup(name="custom", version="1.0",
ext_modules=[Extension("custom", ["custom.c"])])
```
in a file called `setup.py`; then typing
```
$ python setup.py build
```
at a shell should produce a file `custom.so` in a subdirectory; move to that directory and fire up Python --- you should be able to `import custom` and play around with Custom objects.
That wasn't so hard, was it?
Of course, the current Custom type is pretty uninteresting. It has no data and doesn't do anything. It can't even be subclassed.
注解
While this documentation showcases the standard [`distutils`](../library/distutils.xhtml#module-distutils "distutils: Support for building and installing Python modules into an existing Python installation.") module for building C extensions, it is recommended in real-world use cases to use the newer and better-maintained `setuptools` library. Documentation on how to do this is out of scope for this document and can be found in the [Python Packaging User's Guide](https://packaging.python.org/tutorials/distributing-packages/) \[https://packaging.python.org/tutorials/distributing-packages/\].
## 2.2. Adding data and methods to the Basic example
Let's extend the basic example to add some data and methods. Let's also make the type usable as a base class. We'll create a new module, `custom2` that adds these capabilities:
```
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "structmember.h"
typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;
} CustomObject;
static void
Custom_dealloc(CustomObject *self)
{
Py_XDECREF(self->first);
Py_XDECREF(self->last);
Py_TYPE(self)->tp_free((PyObject *) self);
}
static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {
Py_DECREF(self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF(self);
return NULL;
}
self->number = 0;
}
return (PyObject *) self;
}
static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
&first, &last,
&self->number))
return -1;
if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_XDECREF(tmp);
}
if (last) {
tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_XDECREF(tmp);
}
return 0;
}
static PyMemberDef Custom_members[] = {
{"first", T_OBJECT_EX, offsetof(CustomObject, first), 0,
"first name"},
{"last", T_OBJECT_EX, offsetof(CustomObject, last), 0,
"last name"},
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */
};
static PyObject *
Custom_name(CustomObject *self, PyObject *Py_UNUSED(ignored))
{
if (self->first == NULL) {
PyErr_SetString(PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) {
PyErr_SetString(PyExc_AttributeError, "last");
return NULL;
}
return PyUnicode_FromFormat("%S %S", self->first, self->last);
}
static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
},
{NULL} /* Sentinel */
};
static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom2.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
};
static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,
};
PyMODINIT_FUNC
PyInit_custom2(void)
{
PyObject *m;
if (PyType_Ready(&CustomType) < 0)
return NULL;
m = PyModule_Create(&custommodule);
if (m == NULL)
return NULL;
Py_INCREF(&CustomType);
PyModule_AddObject(m, "Custom", (PyObject *) &CustomType);
return m;
}
```
This version of the module has a number of changes.
We've added an extra include:
```
#include <structmember.h>
```
This include provides declarations that we use to handle attributes, as described a bit later.
The `Custom` type now has three data attributes in its C struct, *first*, *last*, and *number*. The *first* and *last* variables are Python strings containing first and last names. The *number* attribute is a C integer.
The object structure is updated accordingly:
```
typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;
} CustomObject;
```
Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a minimum, we need a deallocation method:
```
static void
Custom_dealloc(CustomObject *self)
{
Py_XDECREF(self->first);
Py_XDECREF(self->last);
Py_TYPE(self)->tp_free((PyObject *) self);
}
```
which is assigned to the [`tp_dealloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_dealloc "PyTypeObject.tp_dealloc") member:
```
.tp_dealloc = (destructor) Custom_dealloc,
```
This method first clears the reference counts of the two Python attributes. [`Py_XDECREF()`](../c-api/refcounting.xhtml#c.Py_XDECREF "Py_XDECREF") correctly handles the case where its argument is *NULL* (which might happen here if `tp_new` failed midway). It then calls the [`tp_free`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_free "PyTypeObject.tp_free") member of the object's type (computed by `Py_TYPE(self)`) to free the object's memory. Note that the object's type might not be `CustomType`, because the object may be an instance of a subclass.
注解
The explicit cast to `destructor` above is needed because we defined `Custom_dealloc` to take a `CustomObject *` argument, but the `tp_dealloc`function pointer expects to receive a `PyObject *` argument. Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!
We want to make sure that the first and last names are initialized to empty strings, so we provide a `tp_new` implementation:
```
static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {
Py_DECREF(self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF(self);
return NULL;
}
self->number = 0;
}
return (PyObject *) self;
}
```
and install it in the [`tp_new`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_new "PyTypeObject.tp_new") member:
```
.tp_new = Custom_new,
```
The `tp_new` handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python as the [`__new__()`](../reference/datamodel.xhtml#object.__new__ "object.__new__") method. It is not required to define a `tp_new` member, and indeed many extension types will simply reuse [`PyType_GenericNew()`](../c-api/type.xhtml#c.PyType_GenericNew "PyType_GenericNew") as done in the first version of the `Custom` type above. In this case, we use the `tp_new`handler to initialize the `first` and `last` attributes to non-*NULL*default values.
`tp_new` is passed the type being instantiated (not necessarily `CustomType`, if a subclass is instantiated) and any arguments passed when the type was called, and is expected to return the instance created. `tp_new` handlers always accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to initializer (a.k.a. `tp_init`in C or `__init__` in Python) methods.
注解
`tp_new` shouldn't call `tp_init` explicitly, as the interpreter will do it itself.
The `tp_new` implementation calls the [`tp_alloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_alloc "PyTypeObject.tp_alloc")slot to allocate memory:
```
self = (CustomObject *) type->tp_alloc(type, 0);
```
Since memory allocation may fail, we must check the [`tp_alloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_alloc "PyTypeObject.tp_alloc")result against *NULL* before proceeding.
注解
We didn't fill the [`tp_alloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_alloc "PyTypeObject.tp_alloc") slot ourselves. Rather [`PyType_Ready()`](../c-api/type.xhtml#c.PyType_Ready "PyType_Ready") fills it for us by inheriting it from our base class, which is [`object`](../library/functions.xhtml#object "object") by default. Most types use the default allocation strategy.
注解
If you are creating a co-operative [`tp_new`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_new "PyTypeObject.tp_new") (one that calls a base type's [`tp_new`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_new "PyTypeObject.tp_new") or [`__new__()`](../reference/datamodel.xhtml#object.__new__ "object.__new__")), you must *not* try to determine what method to call using method resolution order at runtime. Always statically determine what type you are going to call, and call its [`tp_new`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_new "PyTypeObject.tp_new") directly, or via `type->tp_base->tp_new`. If you do not do this, Python subclasses of your type that also inherit from other Python-defined classes may not work correctly. (Specifically, you may not be able to create instances of such subclasses without getting a [`TypeError`](../library/exceptions.xhtml#TypeError "TypeError").)
We also define an initialization function which accepts arguments to provide initial values for our instance:
```
static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
&first, &last,
&self->number))
return -1;
if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_XDECREF(tmp);
}
if (last) {
tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_XDECREF(tmp);
}
return 0;
}
```
by filling the [`tp_init`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_init "PyTypeObject.tp_init") slot.
```
.tp_init = (initproc) Custom_init,
```
The [`tp_init`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_init "PyTypeObject.tp_init") slot is exposed in Python as the [`__init__()`](../reference/datamodel.xhtml#object.__init__ "object.__init__") method. It is used to initialize an object after it's created. Initializers always accept positional and keyword arguments, and they should return either `0` on success or `-1` on error.
Unlike the `tp_new` handler, there is no guarantee that `tp_init`is called at all (for example, the [`pickle`](../library/pickle.xhtml#module-pickle "pickle: Convert Python objects to streams of bytes and back.") module by default doesn't call [`__init__()`](../reference/datamodel.xhtml#object.__init__ "object.__init__") on unpickled instances). It can also be called multiple times. Anyone can call the [`__init__()`](../reference/datamodel.xhtml#object.__init__ "object.__init__") method on our objects. For this reason, we have to be extra careful when assigning the new attribute values. We might be tempted, for example to assign the `first` member like this:
```
if (first) {
Py_XDECREF(self->first);
Py_INCREF(first);
self->first = first;
}
```
But this would be risky. Our type doesn't restrict the type of the `first` member, so it could be any kind of object. It could have a destructor that causes code to be executed that tries to access the `first` member; or that destructor could release the [Global interpreter Lock](../glossary.xhtml#term-global-interpreter-lock) and let arbitrary code run in other threads that accesses and modifies our object.
To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing their reference counts. When don't we have to do this?
- when we absolutely know that the reference count is greater than 1;
- when we know that deallocation of the object [1](#id5) will neither release the [GIL](../glossary.xhtml#term-gil) nor cause any calls back into our type's code;
- when decrementing a reference count in a [`tp_dealloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_dealloc "PyTypeObject.tp_dealloc")handler on a type which doesn't support cyclic garbage collection [2](#id6).
We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to define member definitions:
```
static PyMemberDef Custom_members[] = {
{"first", T_OBJECT_EX, offsetof(CustomObject, first), 0,
"first name"},
{"last", T_OBJECT_EX, offsetof(CustomObject, last), 0,
"last name"},
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */
};
```
and put the definitions in the [`tp_members`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_members "PyTypeObject.tp_members") slot:
```
.tp_members = Custom_members,
```
Each member definition has a member name, type, offset, access flags and documentation string. See the [Generic Attribute Management](newtypes.xhtml#generic-attribute-management) section below for details.
A disadvantage of this approach is that it doesn't provide a way to restrict the types of objects that can be assigned to the Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned. Further, the attributes can be deleted, setting the C pointers to *NULL*. Even though we can make sure the members are initialized to non-*NULL* values, the members can be set to *NULL* if the attributes are deleted.
We define a single method, `Custom.name()`, that outputs the objects name as the concatenation of the first and last names.
```
static PyObject *
Custom_name(CustomObject *self)
{
if (self->first == NULL) {
PyErr_SetString(PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) {
PyErr_SetString(PyExc_AttributeError, "last");
return NULL;
}
return PyUnicode_FromFormat("%S %S", self->first, self->last);
}
```
The method is implemented as a C function that takes a `Custom` (or `Custom` subclass) instance as the first argument. Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well, but in this case we don't take any and don't need to accept a positional argument tuple or keyword argument dictionary. This method is equivalent to the Python method:
```
def name(self):
return "%s %s" % (self.first, self.last)
```
Note that we have to check for the possibility that our `first` and `last` members are *NULL*. This is because they can be deleted, in which case they are set to *NULL*. It would be better to prevent deletion of these attributes and to restrict the attribute values to be strings. We'll see how to do that in the next section.
Now that we've defined the method, we need to create an array of method definitions:
```
static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
},
{NULL} /* Sentinel */
};
```
(note that we used the [`METH_NOARGS`](../c-api/structures.xhtml#METH_NOARGS "METH_NOARGS") flag to indicate that the method is expecting no arguments other than *self*)
and assign it to the [`tp_methods`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_methods "PyTypeObject.tp_methods") slot:
```
.tp_methods = Custom_methods,
```
Finally, we'll make our type usable as a base class for subclassing. We've written our methods carefully so far so that they don't make any assumptions about the type of the object being created or used, so all we need to do is to add the [`Py_TPFLAGS_BASETYPE`](../c-api/typeobj.xhtml#Py_TPFLAGS_BASETYPE "Py_TPFLAGS_BASETYPE") to our class flag definition:
```
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
```
We rename `PyInit_custom()` to `PyInit_custom2()`, update the module name in the [`PyModuleDef`](../c-api/module.xhtml#c.PyModuleDef "PyModuleDef") struct, and update the full class name in the [`PyTypeObject`](../c-api/type.xhtml#c.PyTypeObject "PyTypeObject") struct.
Finally, we update our `setup.py` file to build the new module:
```
from distutils.core import setup, Extension
setup(name="custom", version="1.0",
ext_modules=[
Extension("custom", ["custom.c"]),
Extension("custom2", ["custom2.c"]),
])
```
## 2.3. Providing finer control over data attributes
In this section, we'll provide finer control over how the `first` and `last` attributes are set in the `Custom` example. In the previous version of our module, the instance variables `first` and `last`could be set to non-string values or even deleted. We want to make sure that these attributes always contain strings.
```
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "structmember.h"
typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;
} CustomObject;
static void
Custom_dealloc(CustomObject *self)
{
Py_XDECREF(self->first);
Py_XDECREF(self->last);
Py_TYPE(self)->tp_free((PyObject *) self);
}
static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {
Py_DECREF(self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF(self);
return NULL;
}
self->number = 0;
}
return (PyObject *) self;
}
static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))
return -1;
if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_DECREF(tmp);
}
if (last) {
tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_DECREF(tmp);
}
return 0;
}
static PyMemberDef Custom_members[] = {
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */
};
static PyObject *
Custom_getfirst(CustomObject *self, void *closure)
{
Py_INCREF(self->first);
return self->first;
}
static int
Custom_setfirst(CustomObject *self, PyObject *value, void *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF(value);
self->first = value;
Py_DECREF(tmp);
return 0;
}
static PyObject *
Custom_getlast(CustomObject *self, void *closure)
{
Py_INCREF(self->last);
return self->last;
}
static int
Custom_setlast(CustomObject *self, PyObject *value, void *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
tmp = self->last;
Py_INCREF(value);
self->last = value;
Py_DECREF(tmp);
return 0;
}
static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
};
static PyObject *
Custom_name(CustomObject *self, PyObject *Py_UNUSED(ignored))
{
return PyUnicode_FromFormat("%S %S", self->first, self->last);
}
static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
},
{NULL} /* Sentinel */
};
static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom3.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,
};
static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom3",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,
};
PyMODINIT_FUNC
PyInit_custom3(void)
{
PyObject *m;
if (PyType_Ready(&CustomType) < 0)
return NULL;
m = PyModule_Create(&custommodule);
if (m == NULL)
return NULL;
Py_INCREF(&CustomType);
PyModule_AddObject(m, "Custom", (PyObject *) &CustomType);
return m;
}
```
To provide greater control, over the `first` and `last` attributes, we'll use custom getter and setter functions. Here are the functions for getting and setting the `first` attribute:
```
static PyObject *
Custom_getfirst(CustomObject *self, void *closure)
{
Py_INCREF(self->first);
return self->first;
}
static int
Custom_setfirst(CustomObject *self, PyObject *value, void *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF(value);
self->first = value;
Py_DECREF(tmp);
return 0;
}
```
The getter function is passed a `Custom` object and a "closure", which is a void pointer. In this case, the closure is ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This could, for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set based on data in the closure.)
The setter function is passed the `Custom` object, the new value, and the closure. The new value may be *NULL*, in which case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value is not a string.
We create an array of [`PyGetSetDef`](../c-api/structures.xhtml#c.PyGetSetDef "PyGetSetDef") structures:
```
static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
};
```
and register it in the [`tp_getset`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_getset "PyTypeObject.tp_getset") slot:
```
.tp_getset = Custom_getsetters,
```
The last item in a [`PyGetSetDef`](../c-api/structures.xhtml#c.PyGetSetDef "PyGetSetDef") structure is the "closure" mentioned above. In this case, we aren't using a closure, so we just pass *NULL*.
We also remove the member definitions for these attributes:
```
static PyMemberDef Custom_members[] = {
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */
};
```
We also need to update the [`tp_init`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_init "PyTypeObject.tp_init") handler to only allow strings [3](#id7) to be passed:
```
static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))
return -1;
if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_DECREF(tmp);
}
if (last) {
tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_DECREF(tmp);
}
return 0;
}
```
With these changes, we can assure that the `first` and `last` members are never *NULL* so we can remove checks for *NULL* values in almost all cases. This means that most of the [`Py_XDECREF()`](../c-api/refcounting.xhtml#c.Py_XDECREF "Py_XDECREF") calls can be converted to [`Py_DECREF()`](../c-api/refcounting.xhtml#c.Py_DECREF "Py_DECREF") calls. The only place we can't change these calls is in the `tp_dealloc` implementation, where there is the possibility that the initialization of these members failed in `tp_new`.
We also rename the module initialization function and module name in the initialization function, as we did before, and we add an extra definition to the `setup.py` file.
## 2.4. Supporting cyclic garbage collection
Python has a [cyclic garbage collector (GC)](../glossary.xhtml#term-garbage-collection) that can identify unneeded objects even when their reference counts are not zero. This can happen when objects are involved in cycles. For example, consider:
```
>>> l = []
>>> l.append(l)
>>> del l
```
In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference count doesn't drop to zero. Fortunately, Python's cyclic garbage collector will eventually figure out that the list is garbage and free it.
In the second version of the `Custom` example, we allowed any kind of object to be stored in the `first` or `last` attributes [4](#id8). Besides, in the second and third versions, we allowed subclassing `Custom`, and subclasses may add arbitrary attributes. For any of those two reasons, `Custom` objects can participate in cycles:
```
>>> import custom3
>>> class Derived(custom3.Custom): pass
...
>>> n = Derived()
>>> n.some_attribute = n
```
To allow a `Custom` instance participating in a reference cycle to be properly detected and collected by the cyclic GC, our `Custom` type needs to fill two additional slots and to enable a flag that enables these slots:
```
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "structmember.h"
typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;
} CustomObject;
static int
Custom_traverse(CustomObject *self, visitproc visit, void *arg)
{
Py_VISIT(self->first);
Py_VISIT(self->last);
return 0;
}
static int
Custom_clear(CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0;
}
static void
Custom_dealloc(CustomObject *self)
{
PyObject_GC_UnTrack(self);
Custom_clear(self);
Py_TYPE(self)->tp_free((PyObject *) self);
}
static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {
Py_DECREF(self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF(self);
return NULL;
}
self->number = 0;
}
return (PyObject *) self;
}
static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))
return -1;
if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_DECREF(tmp);
}
if (last) {
tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_DECREF(tmp);
}
return 0;
}
static PyMemberDef Custom_members[] = {
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */
};
static PyObject *
Custom_getfirst(CustomObject *self, void *closure)
{
Py_INCREF(self->first);
return self->first;
}
static int
Custom_setfirst(CustomObject *self, PyObject *value, void *closure)
{
if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
Py_INCREF(value);
Py_CLEAR(self->first);
self->first = value;
return 0;
}
static PyObject *
Custom_getlast(CustomObject *self, void *closure)
{
Py_INCREF(self->last);
return self->last;
}
static int
Custom_setlast(CustomObject *self, PyObject *value, void *closure)
{
if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
Py_INCREF(value);
Py_CLEAR(self->last);
self->last = value;
return 0;
}
static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
};
static PyObject *
Custom_name(CustomObject *self, PyObject *Py_UNUSED(ignored))
{
return PyUnicode_FromFormat("%S %S", self->first, self->last);
}
static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
},
{NULL} /* Sentinel */
};
static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom4.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,
};
static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom4",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,
};
PyMODINIT_FUNC
PyInit_custom4(void)
{
PyObject *m;
if (PyType_Ready(&CustomType) < 0)
return NULL;
m = PyModule_Create(&custommodule);
if (m == NULL)
return NULL;
Py_INCREF(&CustomType);
PyModule_AddObject(m, "Custom", (PyObject *) &CustomType);
return m;
}
```
First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:
```
static int
Custom_traverse(CustomObject *self, visitproc visit, void *arg)
{
int vret;
if (self->first) {
vret = visit(self->first, arg);
if (vret != 0)
return vret;
}
if (self->last) {
vret = visit(self->last, arg);
if (vret != 0)
return vret;
}
return 0;
}
```
For each subobject that can participate in cycles, we need to call the `visit()` function, which is passed to the traversal method. The `visit()` function takes as arguments the subobject and the extra argument *arg* passed to the traversal method. It returns an integer value that must be returned if it is non-zero.
Python provides a [`Py_VISIT()`](../c-api/gcsupport.xhtml#c.Py_VISIT "Py_VISIT") macro that automates calling visit functions. With [`Py_VISIT()`](../c-api/gcsupport.xhtml#c.Py_VISIT "Py_VISIT"), we can minimize the amount of boilerplate in `Custom_traverse`:
```
static int
Custom_traverse(CustomObject *self, visitproc visit, void *arg)
{
Py_VISIT(self->first);
Py_VISIT(self->last);
return 0;
}
```
注解
The [`tp_traverse`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_traverse "PyTypeObject.tp_traverse") implementation must name its arguments exactly *visit* and *arg* in order to use [`Py_VISIT()`](../c-api/gcsupport.xhtml#c.Py_VISIT "Py_VISIT").
Second, we need to provide a method for clearing any subobjects that can participate in cycles:
```
static int
Custom_clear(CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0;
}
```
Notice the use of the [`Py_CLEAR()`](../c-api/refcounting.xhtml#c.Py_CLEAR "Py_CLEAR") macro. It is the recommended and safe way to clear data attributes of arbitrary types while decrementing their reference counts. If you were to call [`Py_XDECREF()`](../c-api/refcounting.xhtml#c.Py_XDECREF "Py_XDECREF") instead on the attribute before setting it to *NULL*, there is a possibility that the attribute's destructor would call back into code that reads the attribute again (*especially* if there is a reference cycle).
注解
You could emulate [`Py_CLEAR()`](../c-api/refcounting.xhtml#c.Py_CLEAR "Py_CLEAR") by writing:
```
PyObject *tmp;
tmp = self->first;
self->first = NULL;
Py_XDECREF(tmp);
```
Nevertheless, it is much easier and less error-prone to always use [`Py_CLEAR()`](../c-api/refcounting.xhtml#c.Py_CLEAR "Py_CLEAR") when deleting an attribute. Don't try to micro-optimize at the expense of robustness!
The deallocator `Custom_dealloc` may call arbitrary code when clearing attributes. It means the circular GC can be triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from the GC by calling [`PyObject_GC_UnTrack()`](../c-api/gcsupport.xhtml#c.PyObject_GC_UnTrack "PyObject_GC_UnTrack") before clearing members. Here is our reimplemented deallocator using [`PyObject_GC_UnTrack()`](../c-api/gcsupport.xhtml#c.PyObject_GC_UnTrack "PyObject_GC_UnTrack")and `Custom_clear`:
```
static void
Custom_dealloc(CustomObject *self)
{
PyObject_GC_UnTrack(self);
Custom_clear(self);
Py_TYPE(self)->tp_free((PyObject *) self);
}
```
Finally, we add the [`Py_TPFLAGS_HAVE_GC`](../c-api/typeobj.xhtml#Py_TPFLAGS_HAVE_GC "Py_TPFLAGS_HAVE_GC") flag to the class flags:
```
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
```
That's pretty much it. If we had written custom [`tp_alloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_alloc "PyTypeObject.tp_alloc") or [`tp_free`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_free "PyTypeObject.tp_free") handlers, we'd need to modify them for cyclic garbage collection. Most extensions will use the versions automatically provided.
## 2.5. Subclassing other types
It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the built in types, since an extension can easily use the [`PyTypeObject`](../c-api/type.xhtml#c.PyTypeObject "PyTypeObject") it needs. It can be difficult to share these [`PyTypeObject`](../c-api/type.xhtml#c.PyTypeObject "PyTypeObject") structures between extension modules.
In this example we will create a `SubList` type that inherits from the built-in [`list`](../library/stdtypes.xhtml#list "list") type. The new type will be completely compatible with regular lists, but will have an additional `increment()` method that increases an internal counter:
```
>>> import sublist
>>> s = sublist.SubList(range(3))
>>> s.extend(s)
>>> print(len(s))
6
>>> print(s.increment())
1
>>> print(s.increment())
2
```
```
#define PY_SSIZE_T_CLEAN
#include <Python.h>
typedef struct {
PyListObject list;
int state;
} SubListObject;
static PyObject *
SubList_increment(SubListObject *self, PyObject *unused)
{
self->state++;
return PyLong_FromLong(self->state);
}
static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},
{NULL},
};
static int
SubList_init(SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0;
}
static PyTypeObject SubListType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "sublist.SubList",
.tp_doc = "SubList objects",
.tp_basicsize = sizeof(SubListObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,
.tp_methods = SubList_methods,
};
static PyModuleDef sublistmodule = {
PyModuleDef_HEAD_INIT,
.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,
};
PyMODINIT_FUNC
PyInit_sublist(void)
{
PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready(&SubListType) < 0)
return NULL;
m = PyModule_Create(&sublistmodule);
if (m == NULL)
return NULL;
Py_INCREF(&SubListType);
PyModule_AddObject(m, "SubList", (PyObject *) &SubListType);
return m;
}
```
As you can see, the source code closely resembles the `Custom` examples in previous sections. We will break down the main differences between them.
```
typedef struct {
PyListObject list;
int state;
} SubListObject;
```
The primary difference for derived type objects is that the base type's object structure must be the first value. The base type will already include the [`PyObject_HEAD()`](../c-api/structures.xhtml#c.PyObject_HEAD "PyObject_HEAD") at the beginning of its structure.
When a Python object is a `SubList` instance, its `PyObject *` pointer can be safely cast to both `PyListObject *` and `SubListObject *`:
```
static int
SubList_init(SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0;
}
```
We see above how to call through to the `__init__` method of the base type.
This pattern is important when writing a type with custom [`tp_new`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_new "PyTypeObject.tp_new") and [`tp_dealloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_dealloc "PyTypeObject.tp_dealloc")members. The [`tp_new`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_new "PyTypeObject.tp_new") handler should not actually create the memory for the object with its [`tp_alloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_alloc "PyTypeObject.tp_alloc"), but let the base class handle it by calling its own [`tp_new`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_new "PyTypeObject.tp_new").
The [`PyTypeObject`](../c-api/type.xhtml#c.PyTypeObject "PyTypeObject") struct supports a [`tp_base`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_base "PyTypeObject.tp_base")specifying the type's concrete base class. Due to cross-platform compiler issues, you can't fill that field directly with a reference to [`PyList_Type`](../c-api/list.xhtml#c.PyList_Type "PyList_Type"); it should be done later in the module initialization function:
```
PyMODINIT_FUNC
PyInit_sublist(void)
{
PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready(&SubListType) < 0)
return NULL;
m = PyModule_Create(&sublistmodule);
if (m == NULL)
return NULL;
Py_INCREF(&SubListType);
PyModule_AddObject(m, "SubList", (PyObject *) &SubListType);
return m;
}
```
Before calling [`PyType_Ready()`](../c-api/type.xhtml#c.PyType_Ready "PyType_Ready"), the type structure must have the [`tp_base`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_base "PyTypeObject.tp_base") slot filled in. When we are deriving an existing type, it is not necessary to fill out the [`tp_alloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_alloc "PyTypeObject.tp_alloc")slot with [`PyType_GenericNew()`](../c-api/type.xhtml#c.PyType_GenericNew "PyType_GenericNew") -- the allocation function from the base type will be inherited.
After that, calling [`PyType_Ready()`](../c-api/type.xhtml#c.PyType_Ready "PyType_Ready") and adding the type object to the module is the same as with the basic `Custom` examples.
腳注
[1](#id1)This is true when we know that the object is a basic type, like a string or a float.
[2](#id2)We relied on this in the [`tp_dealloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_dealloc "PyTypeObject.tp_dealloc") handler in this example, because our type doesn't support garbage collection.
[3](#id3)We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts, however, we accept instances of string subclasses. Even though deallocating normal strings won't call back into our objects, we can't guarantee that deallocating an instance of a string subclass won't call back into our objects.
[4](#id4)Also, even with our attributes restricted to strings instances, the user could pass arbitrary [`str`](../library/stdtypes.xhtml#str "str") subclasses and therefore still create reference cycles.
### 導航
- [索引](../genindex.xhtml "總目錄")
- [模塊](../py-modindex.xhtml "Python 模塊索引") |
- [下一頁](newtypes.xhtml "3. 定義擴展類型:已分類主題") |
- [上一頁](extending.xhtml "1. 使用 C 或 C++ 擴展 Python") |
- 
- [Python](https://www.python.org/) ?
- zh\_CN 3.7.3 [文檔](../index.xhtml) ?
- [擴展和嵌入 Python 解釋器](index.xhtml) ?
- $('.inline-search').show(0); |
? [版權所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 軟件基金會是一個非盈利組織。 [請捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [發現了問題](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 創建。
- Python文檔內容
- Python 有什么新變化?
- Python 3.7 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- C API 的改變
- 構建的改變
- 性能優化
- 其他 CPython 實現的改變
- 已棄用的 Python 行為
- 已棄用的 Python 模塊、函數和方法
- 已棄用的 C API 函數和類型
- 平臺支持的移除
- API 與特性的移除
- 移除的模塊
- Windows 專屬的改變
- 移植到 Python 3.7
- Python 3.7.1 中的重要變化
- Python 3.7.2 中的重要變化
- Python 3.6 有什么新變化A
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 其他改進
- 棄用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要變化
- Python 3.6.4 中的重要變化
- Python 3.6.5 中的重要變化
- Python 3.6.7 中的重要變化
- Python 3.5 有什么新變化
- 摘要 - 發布重點
- 新的特性
- 其他語言特性修改
- 新增模塊
- 改進的模塊
- Other module-level changes
- 性能優化
- Build and C API Changes
- 棄用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 發布重點
- 新的特性
- 新增模塊
- 改進的模塊
- CPython Implementation Changes
- 棄用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 發布重點
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他語言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模塊
- 改進的模塊
- 性能優化
- Build and C API Changes
- 棄用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 多線程
- 性能優化
- Unicode
- Codecs
- 文檔
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- 性能優化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他語言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新變化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他語言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他語言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他語言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推導式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最終版
- Python 3.7.3 發布候選版 1
- Python 3.7.2 最終版
- Python 3.7.2 發布候選版 1
- Python 3.7.1 最終版
- Python 3.7.1 RC 2版本
- Python 3.7.1 發布候選版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 課前甜點
- 使用 Python 解釋器
- 調用解釋器
- 解釋器的運行環境
- Python 的非正式介紹
- Python 作為計算器使用
- 走向編程的第一步
- 其他流程控制工具
- if 語句
- for 語句
- range() 函數
- break 和 continue 語句,以及循環中的 else 子句
- pass 語句
- 定義函數
- 函數定義的更多形式
- 小插曲:編碼風格
- 數據結構
- 列表的更多特性
- del 語句
- 元組和序列
- 集合
- 字典
- 循環的技巧
- 深入條件控制
- 序列和其它類型的比較
- 模塊
- 有關模塊的更多信息
- 標準模塊
- dir() 函數
- 包
- 輸入輸出
- 更漂亮的輸出格式
- 讀寫文件
- 錯誤和異常
- 語法錯誤
- 異常
- 處理異常
- 拋出異常
- 用戶自定義異常
- 定義清理操作
- 預定義的清理操作
- 類
- 名稱和對象
- Python 作用域和命名空間
- 初探類
- 補充說明
- 繼承
- 私有變量
- 雜項說明
- 迭代器
- 生成器
- 生成器表達式
- 標準庫簡介
- 操作系統接口
- 文件通配符
- 命令行參數
- 錯誤輸出重定向和程序終止
- 字符串模式匹配
- 數學
- 互聯網訪問
- 日期和時間
- 數據壓縮
- 性能測量
- 質量控制
- 自帶電池
- 標準庫簡介 —— 第二部分
- 格式化輸出
- 模板
- 使用二進制數據記錄格式
- 多線程
- 日志
- 弱引用
- 用于操作列表的工具
- 十進制浮點運算
- 虛擬環境和包
- 概述
- 創建虛擬環境
- 使用pip管理包
- 接下來?
- 交互式編輯和編輯歷史
- Tab 補全和編輯歷史
- 默認交互式解釋器的替代品
- 浮點算術:爭議和限制
- 表示性錯誤
- 附錄
- 交互模式
- 安裝和使用 Python
- 命令行與環境
- 命令行
- 環境變量
- 在Unix平臺中使用Python
- 獲取最新版本的Python
- 構建Python
- 與Python相關的路徑和文件
- 雜項
- 編輯器和集成開發環境
- 在Windows上使用 Python
- 完整安裝程序
- Microsoft Store包
- nuget.org 安裝包
- 可嵌入的包
- 替代捆綁包
- 配置Python
- 適用于Windows的Python啟動器
- 查找模塊
- 附加模塊
- 在Windows上編譯Python
- 其他平臺
- 在蘋果系統上使用 Python
- 獲取和安裝 MacPython
- IDE
- 安裝額外的 Python 包
- Mac 上的圖形界面編程
- 在 Mac 上分發 Python 應用程序
- 其他資源
- Python 語言參考
- 概述
- 其他實現
- 標注
- 詞法分析
- 行結構
- 其他形符
- 標識符和關鍵字
- 字面值
- 運算符
- 分隔符
- 數據模型
- 對象、值與類型
- 標準類型層級結構
- 特殊方法名稱
- 協程
- 執行模型
- 程序的結構
- 命名與綁定
- 異常
- 導入系統
- importlib
- 包
- 搜索
- 加載
- 基于路徑的查找器
- 替換標準導入系統
- Package Relative Imports
- 有關 main 的特殊事項
- 開放問題項
- 參考文獻
- 表達式
- 算術轉換
- 原子
- 原型
- await 表達式
- 冪運算符
- 一元算術和位運算
- 二元算術運算符
- 移位運算
- 二元位運算
- 比較運算
- 布爾運算
- 條件表達式
- lambda 表達式
- 表達式列表
- 求值順序
- 運算符優先級
- 簡單語句
- 表達式語句
- 賦值語句
- assert 語句
- pass 語句
- del 語句
- return 語句
- yield 語句
- raise 語句
- break 語句
- continue 語句
- import 語句
- global 語句
- nonlocal 語句
- 復合語句
- if 語句
- while 語句
- for 語句
- try 語句
- with 語句
- 函數定義
- 類定義
- 協程
- 最高層級組件
- 完整的 Python 程序
- 文件輸入
- 交互式輸入
- 表達式輸入
- 完整的語法規范
- Python 標準庫
- 概述
- 可用性注釋
- 內置函數
- 內置常量
- 由 site 模塊添加的常量
- 內置類型
- 邏輯值檢測
- 布爾運算 — and, or, not
- 比較
- 數字類型 — int, float, complex
- 迭代器類型
- 序列類型 — list, tuple, range
- 文本序列類型 — str
- 二進制序列類型 — bytes, bytearray, memoryview
- 集合類型 — set, frozenset
- 映射類型 — dict
- 上下文管理器類型
- 其他內置類型
- 特殊屬性
- 內置異常
- 基類
- 具體異常
- 警告
- 異常層次結構
- 文本處理服務
- string — 常見的字符串操作
- re — 正則表達式操作
- 模塊 difflib 是一個計算差異的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 數據庫
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函數
- 二進制數據服務
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 數據類型
- datetime — 基礎日期/時間數據類型
- calendar — General calendar-related functions
- collections — 容器數據類型
- collections.abc — 容器的抽象基類
- heapq — 堆隊列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 淺層 (shallow) 和深層 (deep) 復制操作
- pprint — 數據美化輸出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 數字和數學模塊
- numbers — 數字的抽象基類
- math — 數學函數
- cmath — Mathematical functions for complex numbers
- decimal — 十進制定點和浮點運算
- fractions — 分數
- random — 生成偽隨機數
- statistics — Mathematical statistics functions
- 函數式編程模塊
- itertools — 為高效循環而創建迭代器的函數
- functools — 高階函數和可調用對象上的操作
- operator — 標準運算符替代函數
- 文件和目錄訪問
- pathlib — 面向對象的文件系統路徑
- os.path — 常見路徑操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路徑操作函數
- 數據持久化
- pickle —— Python 對象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 數據庫 DB-API 2.0 接口模塊
- 數據壓縮和存檔
- zlib — 與 gzip 兼容的壓縮
- gzip — 對 gzip 格式的支持
- bz2 — 對 bzip2 壓縮算法的支持
- lzma — 用 LZMA 算法壓縮
- zipfile — 在 ZIP 歸檔中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件讀寫
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服務
- hashlib — 安全哈希與消息摘要
- hmac — 基于密鑰的消息驗證
- secrets — Generate secure random numbers for managing secrets
- 通用操作系統服務
- os — 操作系統接口模塊
- io — 處理流的核心工具
- time — 時間的訪問和轉換
- argparse — 命令行選項、參數和子命令解析器
- getopt — C-style parser for command line options
- 模塊 logging — Python 的日志記錄工具
- logging.config — 日志記錄配置
- logging.handlers — Logging handlers
- getpass — 便攜式密碼輸入工具
- curses — 終端字符單元顯示的處理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函數庫
- 并發執行
- threading — 基于線程的并行
- multiprocessing — 基于進程的并行
- concurrent 包
- concurrent.futures — 啟動并行任務
- subprocess — 子進程管理
- sched — 事件調度器
- queue — 一個同步的隊列類
- _thread — 底層多線程 API
- _dummy_thread — _thread 的替代模塊
- dummy_threading — 可直接替代 threading 模塊。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 網絡和進程間通信
- asyncio — 異步 I/O
- socket — 底層網絡接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高級 I/O 復用庫
- asyncore — 異步socket處理器
- asynchat — 異步 socket 指令/響應 處理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互聯網數據處理
- email — 電子郵件與 MIME 處理包
- json — JSON 編碼和解碼器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 數據編碼
- binhex — 對binhex4文件進行編碼和解碼
- binascii — 二進制和 ASCII 碼互轉
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 結構化標記處理工具
- html — 超文本標記語言支持
- html.parser — 簡單的 HTML 和 XHTML 解析器
- html.entities — HTML 一般實體的定義
- XML處理模塊
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互聯網協議和支持
- webbrowser — 方便的Web瀏覽器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 處理模塊
- urllib.request — 用于打開 URL 的可擴展庫
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模塊
- http.client — HTTP協議客戶端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP協議客戶端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服務器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服務端與客戶端模塊
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒體服務
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 讀寫 Sun AU 文件
- wave — 讀寫WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推測圖像類型
- sndhdr — 推測聲音文件的類型
- ossaudiodev — Access to OSS-compatible audio devices
- 國際化
- gettext — 多語種國際化服務
- locale — 國際化服務
- 程序框架
- turtle — 海龜繪圖
- cmd — 支持面向行的命令解釋器
- shlex — Simple lexical analysis
- Tk圖形用戶界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滾動文字控件
- IDLE
- 其他圖形用戶界面(GUI)包
- 開發工具
- typing — 類型標注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 單元測試框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自動將 Python 2 代碼轉為 Python 3 代碼
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 調試和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 測量小代碼片段的執行時間
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 軟件打包和分發
- distutils — 構建和安裝 Python 模塊
- ensurepip — Bootstrapping the pip installer
- venv — 創建虛擬環境
- zipapp — Manage executable Python zip archives
- Python運行時服務
- sys — 系統相關的參數和函數
- sysconfig — Provide access to Python's configuration information
- builtins — 內建對象
- main — 頂層腳本環境
- warnings — Warning control
- dataclasses — 數據類
- contextlib — Utilities for with-statement contexts
- abc — 抽象基類
- atexit — 退出處理器
- traceback — Print or retrieve a stack traceback
- future — Future 語句定義
- gc — 垃圾回收器接口
- inspect — 檢查對象
- site — Site-specific configuration hook
- 自定義 Python 解釋器
- code — Interpreter base classes
- codeop — Compile Python code
- 導入模塊
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找腳本使用的模塊
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 語言服務
- parser — Access Python parse trees
- ast — 抽象語法樹
- symtable — Access to the compiler's symbol tables
- symbol — 與 Python 解析樹一起使用的常量
- token — 與Python解析樹一起使用的常量
- keyword — 檢驗Python關鍵字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊縮進檢測
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字節碼反匯編器
- pickletools — Tools for pickle developers
- 雜項服務
- formatter — Generic output formatting
- Windows系統相關模塊
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注冊表訪問
- winsound — Sound-playing interface for Windows
- Unix 專有服務
- posix — The most common POSIX system calls
- pwd — 用戶密碼數據庫
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 終端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 庫例程
- 被取代的模塊
- optparse — Parser for command line options
- imp — Access the import internals
- 未創建文檔的模塊
- 平臺特定模塊
- 擴展和嵌入 Python 解釋器
- 推薦的第三方工具
- 不使用第三方工具創建擴展
- 使用 C 或 C++ 擴展 Python
- 自定義擴展類型:教程
- 定義擴展類型:已分類主題
- 構建C/C++擴展
- 在Windows平臺編譯C和C++擴展
- 在更大的應用程序中嵌入 CPython 運行時
- Embedding Python in Another Application
- Python/C API 參考手冊
- 概述
- 代碼標準
- 包含文件
- 有用的宏
- 對象、類型和引用計數
- 異常
- 嵌入Python
- 調試構建
- 穩定的應用程序二進制接口
- The Very High Level Layer
- Reference Counting
- 異常處理
- Printing and clearing
- 拋出異常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 標準異常
- 標準警告類別
- 工具
- 操作系統實用程序
- 系統功能
- 過程控制
- 導入模塊
- Data marshalling support
- 語句解釋及變量編譯
- 字符串轉換與格式化
- 反射
- 編解碼器注冊與支持功能
- 抽象對象層
- Object Protocol
- 數字協議
- Sequence Protocol
- Mapping Protocol
- 迭代器協議
- 緩沖協議
- Old Buffer Protocol
- 具體的對象層
- 基本對象
- 數值對象
- 序列對象
- 容器對象
- 函數對象
- 其他對象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置變量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 內存管理
- 概述
- 原始內存接口
- Memory Interface
- 對象分配器
- 默認內存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 對象實現支持
- 在堆中分配對象
- Common Object Structures
- Type 對象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使對象類型支持循環垃圾回收
- API 和 ABI 版本管理
- 分發 Python 模塊
- 關鍵術語
- 開源許可與協作
- 安裝工具
- 閱讀指南
- 我該如何...?
- ...為我的項目選擇一個名字?
- ...創建和分發二進制擴展?
- 安裝 Python 模塊
- 關鍵術語
- 基本使用
- 我應如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安裝 pip ?
- ... 只為當前用戶安裝軟件包?
- ... 安裝科學計算類 Python 軟件包?
- ... 使用并行安裝的多個 Python 版本?
- 常見的安裝問題
- 在 Linux 的系統 Python 版本上安裝
- 未安裝 pip
- 安裝二進制編譯擴展
- Python 常用指引
- 將 Python 2 代碼遷移到 Python 3
- 簡要說明
- 詳情
- 將擴展模塊移植到 Python 3
- 條件編譯
- 對象API的更改
- 模塊初始化和狀態
- CObject 替換為 Capsule
- 其他選項
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 實現描述器
- 摘要
- 定義和簡介
- 描述器協議
- 發起調用描述符
- 描述符示例
- Properties
- 函數和方法
- Static Methods and Class Methods
- 函數式編程指引
- 概述
- 迭代器
- 生成器表達式和列表推導式
- 生成器
- 內置函數
- itertools 模塊
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文獻
- 日志 HOWTO
- 日志基礎教程
- 進階日志教程
- 日志級別
- 有用的處理程序
- 記錄日志中引發的異常
- 使用任意對象作為消息
- 優化
- 日志操作手冊
- 在多個模塊中使用日志
- 在多線程中使用日志
- 使用多個日志處理器和多種格式化
- 在多個地方記錄日志
- 日志服務器配置示例
- 處理日志處理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正則表達式HOWTO
- 概述
- 簡單模式
- 使用正則表達式
- 更多模式能力
- 修改字符串
- 常見問題
- 反饋
- 套接字編程指南
- 套接字
- 創建套接字
- 使用一個套接字
- 斷開連接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 關鍵函數
- Operator 模塊函數
- 升序和降序
- 排序穩定性和排序復雜度
- 使用裝飾-排序-去裝飾的舊方法
- 使用 cmp 參數的舊方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包獲取網絡資源
- 概述
- Fetching URLs
- 處理異常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 腳注
- Argparse 教程
- 概念
- 基礎
- 位置參數介紹
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模塊介紹
- 創建 Address/Network/Interface 對象
- 審查 Address/Network/Interface 對象
- Network 作為 Address 列表
- 比較
- 將IP地址與其他模塊一起使用
- 實例創建失敗時獲取更多詳細信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 檢測CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常見問題
- Python常見問題
- 一般信息
- 現實世界中的 Python
- 編程常見問題
- 一般問題
- 核心語言
- 數字和字符串
- 性能
- 序列(元組/列表)
- 對象
- 模塊
- 設計和歷史常見問題
- 為什么Python使用縮進來分組語句?
- 為什么簡單的算術運算得到奇怪的結果?
- 為什么浮點計算不準確?
- 為什么Python字符串是不可變的?
- 為什么必須在方法定義和調用中顯式使用“self”?
- 為什么不能在表達式中賦值?
- 為什么Python對某些功能(例如list.index())使用方法來實現,而其他功能(例如len(List))使用函數實現?
- 為什么 join()是一個字符串方法而不是列表或元組方法?
- 異常有多快?
- 為什么Python中沒有switch或case語句?
- 難道不能在解釋器中模擬線程,而非得依賴特定于操作系統的線程實現嗎?
- 為什么lambda表達式不能包含語句?
- 可以將Python編譯為機器代碼,C或其他語言嗎?
- Python如何管理內存?
- 為什么CPython不使用更傳統的垃圾回收方案?
- CPython退出時為什么不釋放所有內存?
- 為什么有單獨的元組和列表數據類型?
- 列表是如何在CPython中實現的?
- 字典是如何在CPython中實現的?
- 為什么字典key必須是不可變的?
- 為什么 list.sort() 沒有返回排序列表?
- 如何在Python中指定和實施接口規范?
- 為什么沒有goto?
- 為什么原始字符串(r-strings)不能以反斜杠結尾?
- 為什么Python沒有屬性賦值的“with”語句?
- 為什么 if/while/def/class語句需要冒號?
- 為什么Python在列表和元組的末尾允許使用逗號?
- 代碼庫和插件 FAQ
- 通用的代碼庫問題
- 通用任務
- 線程相關
- 輸入輸出
- 網絡 / Internet 編程
- 數據庫
- 數學和數字
- 擴展/嵌入常見問題
- 可以使用C語言中創建自己的函數嗎?
- 可以使用C++語言中創建自己的函數嗎?
- C很難寫,有沒有其他選擇?
- 如何從C執行任意Python語句?
- 如何從C中評估任意Python表達式?
- 如何從Python對象中提取C的值?
- 如何使用Py_BuildValue()創建任意長度的元組?
- 如何從C調用對象的方法?
- 如何捕獲PyErr_Print()(或打印到stdout / stderr的任何內容)的輸出?
- 如何從C訪問用Python編寫的模塊?
- 如何從Python接口到C ++對象?
- 我使用Setup文件添加了一個模塊,為什么make失敗了?
- 如何調試擴展?
- 我想在Linux系統上編譯一個Python模塊,但是缺少一些文件。為什么?
- 如何區分“輸入不完整”和“輸入無效”?
- 如何找到未定義的g++符號__builtin_new或__pure_virtual?
- 能否創建一個對象類,其中部分方法在C中實現,而其他方法在Python中實現(例如通過繼承)?
- Python在Windows上的常見問題
- 我怎樣在Windows下運行一個Python程序?
- 我怎么讓 Python 腳本可執行?
- 為什么有時候 Python 程序會啟動緩慢?
- 我怎樣使用Python腳本制作可執行文件?
- *.pyd 文件和DLL文件相同嗎?
- 我怎樣將Python嵌入一個Windows程序?
- 如何讓編輯器不要在我的 Python 源代碼中插入 tab ?
- 如何在不阻塞的情況下檢查按鍵?
- 圖形用戶界面(GUI)常見問題
- 圖形界面常見問題
- Python 是否有平臺無關的圖形界面工具包?
- 有哪些Python的GUI工具是某個平臺專用的?
- 有關Tkinter的問題
- “為什么我的電腦上安裝了 Python ?”
- 什么是Python?
- 為什么我的電腦上安裝了 Python ?
- 我能刪除 Python 嗎?
- 術語對照表
- 文檔說明
- Python 文檔貢獻者
- 解決 Bug
- 文檔錯誤
- 使用 Python 的錯誤追蹤系統
- 開始為 Python 貢獻您的知識
- 版權
- 歷史和許可證
- 軟件歷史
- 訪問Python或以其他方式使用Python的條款和條件
- Python 3.7.3 的 PSF 許可協議
- Python 2.0 的 BeOpen.com 許可協議
- Python 1.6.1 的 CNRI 許可協議
- Python 0.9.0 至 1.2 的 CWI 許可協議
- 集成軟件的許可和認可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec