### 4.2.2 用函數改善程序結構
上一節討論了函數的減少重復代碼、精簡程序的作用,并利用函數的這個功能將程序 4.1 改進成了程序 4.2。在該節的最后,我們也給出了一個不宜用函數來減少重復代碼的情況。
還能不能利用函數將程序 4.2 變得更好呢?
我們在 4.1 節中一般地討論了模塊化編程,在 Python 中,函數就是用于模塊化編程的 重要工具。當算法很復雜時,程序就會變得難以理解。據說人類擅長同時應付 8 到 10 件事 情,當面對成百上千行的算法時,最好的程序員也會感到難以把握。應對程序復雜性的一種 方法就是模塊化,將程序分解成多個較小的相對獨立的子程序。下面我們來看程序 4.2 還能 怎樣改進。
我們定義一個新函數 treetrunk,它的語句序列就是程序 4.2 的主函數中用于畫樹干的三條 print 語句。即:
```
def treetrunk():
print " #"
print " #"
print " #"
```
然后我們用這個函數取代主函數的那三條 print 語句,就得到畫樹程序的一個新版本。
【程序 4.3】tree3.py
```
def treetop():
print " *"
print " ***"
print " *****"
print "*******"
def treetrunk():
print " #"
print " #"
print " #"
def main():
treetop()
treetop()
treetrunk()
main()
```
注意我們將程序主函數的名字從 tree 改成了更符合慣例的 main。
簡單地比較一下程序 4.2 與 4.3 這兩個版本就看出,由于多了函數 treetrunk 的定義與調用,新版本的代碼不但沒有減少,反而增加了。那為何要引進 treetrunk 函數呢?其實我們的目的是使主程序的結構更清晰,從而更容易理解程序功能。通過將一些實現細節轉移到一個單獨的函數中,并對函數進行合適的命名,能夠使程序的可讀性大大增強。例如我 們來讀程序 4.3 的主程序 main,就會發現該程序不過是先畫樹冠(由兩個相同形狀組成), 再畫樹干而已,程序的功能一目了然。
如果進一步發揮上述思想,就會發現程序 4.3 的結構還不夠完美。問題出在主程序的第 一步——畫樹冠,這一項任務邏輯上是個整體卻用了兩個函數調用來完成,這就好比老師對 學生說“請大家畫上一半樹冠,再畫下一半樹冠”,顯然不如直接說“請大家畫樹冠”來得 清晰易懂。因此,我們再引入一個新函數用于隱藏樹冠的實現細節(上下兩部分),從而得 到程序 4.4,這個版本在避免重復代碼和模塊化兩方面可以說達到了完美。
【程序 4.4】tree4.py
```
def treetop1():
print " *"
print " ***"
print " *****"
print "*******"
def treetop():
treetop1()
treetop1()
def treetrunk():
print " #"
print " #"
print " #"
def main():
treetop()
treetrunk()
main()
```
現在再來讀主程序 main,顯然更容易理解了——從程序頂層看,整個程序不外乎就是畫樹 冠、畫樹干兩步而已。如果只想了解程序的總體功能,那么讀懂 main 函數就夠了;如果還 想了解更多細節,那就再去讀輔助函數 treetop1 和 treetrunk 等。
讀者在編程時應當多模仿、多體會程序 4.4 中函數的用法,并學會欣賞模塊化程序在結 構方面的優美。
- 前言
- 第 1 章 計算與計算思維
- 1.1 什么是計算?
- 1.1.1 計算機與計算
- 1.1.2 計算機語言
- 1.1.3 算法
- 1.1.4 實現
- 1.2 什么是計算思維?
- 1.2.1 計算思維的基本原則
- 1.2.2 計算思維的具體例子
- 1.2.3 日常生活中的計算思維
- 1.2.4 計算思維對其他學科的影響
- 1.3 初識 Python
- 1.3.1 Python 簡介
- 1.3.2 第一個程序
- 1.3.3 程序的執行方式
- 1.3.4 Python 語言的基本成分
- 1.4 程序排錯
- 1.5 練習
- 第 2 章 用數據表示現實世界
- 2.1 數據和數據類型
- 2.1.1 數據是對現實的抽象
- 2.1.1 常量與變量
- 2.1.2 數據類型
- 2.1.3 Python 的動態類型*
- 2.2 數值類型
- 2.2.1 整數類型 int
- 2.2.2 長整數類型 long
- 2.2.3 浮點數類型 float
- 2.2.4 數學庫模塊 math
- 2.2.5 復數類型 complex*
- 2.3 字符串類型 str
- 2.3.1 字符串類型的字面值形式
- 2.3.2 字符串類型的操作
- 2.3.3 字符的機內表示
- 2.3.4 字符串類型與其他類型的轉換
- 2.3.5 字符串庫 string
- 2.4 布爾類型 bool
- 2.4.1 關系運算
- 2.4.2 邏輯運算
- 2.4.3 布爾代數運算定律*
- 2.4.4 Python 中真假的表示與計算*
- 2.5 列表和元組類型
- 2.5.1 列表類型 list
- 2.5.2 元組類型 tuple
- 2.6 數據的輸入和輸出
- 2.6.1 數據的輸入
- 2.6.2 數據的輸出
- 2.6.3 格式化輸出
- 2.7 編程案例:查找問題
- 2.8 練習
- 第 3 章 數據處理的流程控制
- 3.1 順序控制結構
- 3.2 分支控制結構
- 3.2.1 單分支結構
- 3.2.2 兩路分支結構
- 3.2.3 多路分支結構
- 3.3 異常處理
- 3.3.1 傳統的錯誤檢測方法
- 3.3.2 傳統錯誤檢測方法的缺點
- 3.3.3 異常處理機制
- 3.4 循環控制結構
- 3.4.1 for 循環
- 3.4.2 while 循環
- 3.4.3 循環的非正常中斷
- 3.4.4 嵌套循環
- 3.5 結構化程序設計
- 3.5.1 程序開發過程
- 3.5.2 結構化程序設計的基本內容
- 3.6 編程案例:如何求 n 個數據的最大值?
- 3.6.1 幾種解題策略
- 3.6.2 經驗總結
- 3.7 Python 布爾表達式用作控制結構*
- 3.8 練習
- 第 4 章 模塊化編程
- 4.1 模塊化編程基本概念
- 4.1.1 模塊化設計概述
- 4.1.2 模塊化編程
- 4.1.3 編程語言對模塊化編程的支持
- 4.2 Python 語言中的函數
- 4.2.1 用函數減少重復代碼 首先看一個簡單的用字符畫一棵樹的程序:
- 4.2.2 用函數改善程序結構
- 4.2.3 用函數增強程序的通用性
- 4.2.4 小結:函數的定義與調用
- 4.2.5 變量的作用域
- 4.2.6 函數的返回值
- 4.3 自頂向下設計
- 4.3.1 頂層設計
- 4.3.2 第二層設計
- 4.3.3 第三層設計
- 4.3.4 第四層設計
- 4.3.5 自底向上實現與單元測試
- 4.3.6 開發過程小結
- 4.4 Python 模塊*
- 4.4.1 模塊的創建和使用
- 4.4.2 Python 程序架構
- 4.4.3 標準庫模塊
- 4.4.4 模塊的有條件執行
- 4.5 練習
- 第 5 章 圖形編程
- 5.1 概述
- 5.1.1 計算可視化
- 5.1.2 圖形是復雜數據
- 5.1.3 用對象表示復雜數據
- 5.2 Tkinter 圖形編程
- 5.2.1 導入模塊及創建根窗口
- 5.2.2 創建畫布
- 5.2.3 在畫布上繪圖
- 5.2.4 圖形的事件處理
- 5.3 編程案例
- 5.3.1 統計圖表
- 5.3.2 計算機動畫
- 5.4 軟件的層次化設計:一個案例
- 5.4.1 層次化體系結構
- 5.4.2 案例:圖形庫 graphics
- 5.4.3 graphics 與面向對象
- 5.5 練習
- 第 6 章 大量數據的表示和處理
- 6.1 概述
- 6.2 有序的數據集合體
- 6.2.1 字符串
- 6.2.2 列表
- 6.2.3 元組
- 6.3 無序的數據集合體
- 6.3.1 集合
- 6.3.2 字典
- 6.4 文件
- 6.4.1 文件的基本概念
- 6.4.2 文件操作
- 6.4.3 編程案例:文本文件分析
- 6.4.4 緩沖
- 6.4.5 二進制文件與隨機存取*
- 6.5 幾種高級數據結構*
- 6.5.1 鏈表
- 6.5.2 堆棧
- 6.5.3 隊列
- 6.6 練習
- 第 7 章 面向對象思想與編程
- 7.1 數據與操作:兩種觀點
- 7.1.1 面向過程觀點
- 7.1.2 面向對象觀點
- 7.1.3 類是類型概念的發展
- 7.2 面向對象編程
- 7.2.1 類的定義
- 7.2.2 對象的創建
- 7.2.3 對象方法的調用
- 7.2.4 編程實例:模擬炮彈飛行
- 7.2.5 類與模塊化
- 7.2.6 對象的集合體
- 7.3 超類與子類*
- 7.3.1 繼承
- 7.3.2 覆寫
- 7.3.3 多態性
- 7.4 面向對象設計*
- 7.5 練習
- 第 8 章 圖形用戶界面
- 8.1 圖形用戶界面概述
- 8.1.1 程序的用戶界面
- 8.1.2 圖形界面的組成
- 8.1.3 事件驅動
- 8.2 GUI 編程
- 8.2.1 UI 編程概述
- 8.2.2 初識 Tkinter
- 8.2.3 常見 GUI 構件的用法
- 8.2.4 布局
- 8.2.5 對話框*
- 8.3 Tkinter 事件驅動編程
- 8.3.1 事件和事件對象
- 8.3.2 事件處理
- 8.4 模型-視圖設計方法
- 8.4.1 將 GUI 應用程序封裝成對象
- 8.4.2 模型與視圖
- 8.4.3 編程案例:匯率換算器
- 8.5 練習
- 第 9 章 模擬與并發
- 9.1 模擬
- 9.1.1 計算機建模
- 9.1.2 隨機問題的建模與模擬
- 9.1.3 編程案例:乒乓球比賽模擬
- 9.2 原型法
- 9.3 并行計算*
- 9.3.1 串行、并發與并行
- 9.3.2 進程與線程
- 9.3.3 多線程編程的應用
- 9.3.4 Python 多線程編程
- 9.3.5 小結
- 9.4 練習
- 第 10 章 算法設計和分析
- 10.1 枚舉法
- 10.2 遞歸
- 10.3 分治法
- 10.4 貪心法
- 10.5 算法分析
- 10.5.1 算法復雜度
- 10.5.2 算法分析實例
- 10.6 不可計算的問題
- 10.7 練習
- 第 11 章 計算+X
- 11.1 計算數學
- 11.2 生物信息學
- 11.3 計算物理學
- 11.4 計算化學
- 11.5 計算經濟學
- 11.6 練習
- 附錄
- 1 Python 異常處理參考
- 2 Tkinter 畫布方法
- 3 Tkinter 編程參考
- 3.1 構件屬性值的設置
- 3.2 構件的標準屬性
- 3.3 各種構件的屬性
- 3.4 對話框
- 3.5 事件
- 參考文獻