# 深度學習課程
> 原文: [https://machinelearningmastery.com/deep-learning-courses/](https://machinelearningmastery.com/deep-learning-courses/)
深入學習可能很難開始。
值得慶幸的是,許多大學免費開設了深度學習的課程,當您希望更好地理解深度學習的基礎時,這可能是一個很好的起點。
在這篇文章中,您將了解關于深度學習的課程,您可以瀏覽和學習,以發展和鞏固您對該領域的理解。
這是一篇很長的文章,可以深入鏈接到很多視頻,你可以收藏,跳轉到整個課程的特定目錄,而不是選擇一門課程并從頭至尾完成。
通過我的新書中的幾行代碼,了解如何為一系列問題的預測建模并開發深度學習模型,總共包括18個分步教程和9個項目。
讓我們現在開始吧。
## 概述
我們將快速瀏覽以下 6 個深度學習課程。
1. 牛津深度學習
2. 谷歌深度學習 Udacity
3. 蒙特利爾深度學習暑期學校
4. 斯坦福大學自然語言處理的深度學習
5. 斯坦福大學視覺識別的卷積神經網絡
6. 舍布魯克大學的神經網絡課程
最后還有一個“其他課程”部分,以收集其他視頻課程,這些課程并不是免費的,而且是零散的課程,并且適合更為細分的領域,并不完全適合本摘要評審。
## 課程提示和文章使用指南
有很多課程和很多很棒的免費材料。
我最好的建議是:
> 不要選擇一門課程并通過從頭至尾的方式學習。
這與大多數人的建議相反。
你“認真”并且挑選“最好的”課程學習并完成所有的課程材料的沖動會幾乎導致你肯定失敗。
材料很難,你需要花時間在每個主題上獲得不同的觀點。
真正進入這一材料的最好方法是逐個主題地學習,并從所有課程中選取相關介紹,直到你真正理解一個主題,然后再進入下一個主題學習。
您無需了解所有主題,也無需使用單一來源來理解單個主題。
將此頁面添加為書簽,然后在您需要時瀏覽案例并深入了解您需要的材料,同時學習如何使用 [Keras](http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/) 等平臺在代碼中實現真正的真實深度學習模型。
## 牛津深度學習
這是一個機器學習課程,側重于 Nando de Freitas 在牛津大學教授的深度學習。
我真的很喜歡這門課程,我花費了雙倍時間觀看了所有視頻并做了筆記,它提供了良好的理論基礎,涵蓋了現代深度學習主題,如 LSTM,代碼示例顯示在 Torch 中。
我注意到教學大綱與實際可用的視頻講座不同,YouTube 播放列表列出了無序的講座,因此以下是 2015 年視頻講座的順序:
* [深度學習講座 1:簡介](https://www.youtube.com/watch?v=PlhFWT7vAEw&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu&index=16)
* [深度學習講座 2:線性模型](https://www.youtube.com/watch?v=DHspIG64CVM&index=5&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
* [深度學習講座 3:最大可能性和信息](https://www.youtube.com/watch?v=kPrHqQzCkg0&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu&index=6)
* [深度學習第 4 講:正則化,模型復雜性和數據復雜性(第 1 部分)](https://www.youtube.com/watch?v=VR0W_PNwLGw&index=7&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
* [深度學習第五講:正則化,模型復雜性和數據復雜性(第 2 部分)](https://www.youtube.com/watch?v=qz9bKfOqd0Y&index=8&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
* [深度學習第六講:優化](https://www.youtube.com/watch?v=0qUAb94CpOw&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu&index=9)
* [深度學習第 7 講:邏輯回歸,Torch實現](https://www.youtube.com/watch?v=FYgsztDxSvE&index=11&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
* [深度學習第 8 講:模塊化反向傳播,邏輯回歸和Torch](https://www.youtube.com/watch?v=-YRB0eFxeQA&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu&index=10)
* [深度學習講座 9:Torch 中的神經網絡和模塊化設計](https://www.youtube.com/watch?v=NUKp0c4xb8w&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu&index=12)
* [深度學習講座 10:卷積神經網絡](https://www.youtube.com/watch?v=bEUX_56Lojc&index=13&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
* [深度學習講座 11:最大邊緣學習,轉移和記憶網絡](https://www.youtube.com/watch?v=jCGplSKrl2Y&index=15&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
* [深度學習講座 12:遞歸神經網絡和 LSTM](https://www.youtube.com/watch?v=56TYLaQN4N8&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu&index=14)
* [深度學習講座 13:Alex Graves 關于 RNNs 的設想](https://www.youtube.com/watch?v=-yX1SYeDHbg&index=4&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
* [深度學習第 14 講:關于變分自動編碼器和圖像生成的 Karol Gregor](https://www.youtube.com/watch?v=P78QYjWh5sM&index=3&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
* [深度學習講座 15:深度強化學習 - 政策檢索](https://www.youtube.com/watch?v=kUiR0RLmGCo&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu&index=2)
* [深度學習第 16 講:強化學習和神經動態規劃](https://www.youtube.com/watch?v=dV80NAlEins&index=1&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
對我來說,最重要的課程是 [Alex Graves](http://www.cs.toronto.edu/~graves/) 關于 RNN 的討論([第 13 講](https://www.youtube.com/watch?v=-yX1SYeDHbg&index=4&list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)),這是一個聰明的人做的偉大的工作,我在觀看這個視頻的時候正在閱讀很多亞歷克斯的論文,所以我可能會有偏見。
### 資源
* [YouTube 播放列表](https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
* [課程總結和材料](http://www.cs.ox.ac.uk/teaching/courses/2014-2015/ml/)
* [Nando de Freitas 主頁](http://www.cs.ubc.ca/~nando/)
## 谷歌深度學習 Udacity
這是來自 Udacity 的 [Arpan Chakraborty](https://www.linkedin.com/in/arpan-chakraborty-17688012) 和 Google 的首席科學家 [Vincent Vanhoucke](https://www.linkedin.com/in/vanhoucke) 之間的一個小型課程合作。
該課程是免費的,托管在 Udacity 上,專注于 TensorFlow。它是 Udacity 上托管的[機器學習工程師 Nanodegree 的一小部分](https://www.udacity.com/course/machine-learning-engineer-nanodegree-by-google--nd009)。
您必須注冊 Udacity,但一旦您登錄,您就可以免費訪問此課程。
所有課程視頻都在 YouTube 上,但(有意)很難找到不良的命名和鏈接,如果有人知道所有視頻的盜版播放列表,請在評論中發布。
該課程分為 4 課:
* 第 1 課:從機器學習到深度學習
* 第 2 課:深度神經網絡
* 第 3 課:卷積神經網絡
* 第 4 課:文本和序列的深層模型
該課程很短,但分為許多短視頻并且 Udacity 的界面友好, Vincent 似乎出現在我看過的所有視頻中(這很棒),視頻也顯示在 YouTube 界面中。
還有一個討論表格,您可以通過流暢的[對話軟件](https://www.discourse.org/)來提問和回答問題。
我傾向于深入了解我感興趣的視頻,而不是完成整個課程或完成任何課程作業。
### 資源
* [Udacity 深度學習課程](https://www.udacity.com/course/deep-learning--ud730)
* [Google 博客上的課程公告](https://research.googleblog.com/2016/01/teach-yourself-deep-learning-with.html)
## 蒙特利爾深度學習暑期學校
2015 年在蒙特利爾大學舉辦了深度學習暑期學校。
根據該網站,暑期學校的目標是研究生和工業工程師以及已經掌握機器學習基礎知識的研究人員。
在從入門材料到最新研究的一系列主題的深度學習領域,至少有著名研究人員的 30 場演講(有 30 個視頻)。

蒙特利爾深度學習暑期學校
這些視頻是真正的寶庫,花點時間仔細挑選您的主題。所有視頻都在 VideoLectures.net 網站上托管,該網站具有足夠好的界面,但不如 YouTube 干凈。
許多(所有?)談話都在視頻下方提供了 PDF 幻燈片的下載鏈接,更多信息可從官方網站的日程頁面獲得。
以下是講座主題的完整列表,其中包含視頻鏈接。我試圖將相關視頻列在一起(例如,第 1 部分,第 2 部分)。
* [機器學習簡介](http://videolectures.net/deeplearning2015_vincent_machine_learning/)
* [深度學習:理論動機](http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/)
* [多層神經網絡](http://videolectures.net/deeplearning2015_bottou_neural_networks/)
* [訓練深度神經網絡](http://videolectures.net/deeplearning2015_larochelle_neural_networks/)
* [多層神經網絡](http://videolectures.net/deeplearning2015_bottou_multilayer_networks/)
* [深度學習分布估計](http://videolectures.net/deeplearning2015_larochelle_deep_learning/)
* [無向圖形模型](http://videolectures.net/deeplearning2015_courville_graphical_models/)
* [受限制的玻爾茲曼機器](http://videolectures.net/deeplearning2015_lee_boltzmann_machines/)
* [在歧管和自動編碼器](http://videolectures.net/deeplearning2015_vincent_autoencoders/)
* [視覺特征:從傅立葉到 Gabor](http://videolectures.net/deeplearning2015_memisevic_fourier_gabor/)
* [視覺特征 II](http://videolectures.net/deeplearning2015_memisevic_visual_features/)
* [卷積網絡](http://videolectures.net/deeplearning2015_lee_convolutional_networks/)
* [學習比較](http://videolectures.net/deeplearning2015_taylor_learning_compare/)
* [NLP 和深度學習 1:人類語言單詞向量](http://videolectures.net/deeplearning2015_manning_language_vectors/)
* [NLP 和深度學習 2:成分深度學習](http://videolectures.net/deeplearning2015_manning_deep_learning/)
* [使用深度學習看人](http://videolectures.net/deeplearning2015_taylor_deep_learning/)
* [深度學習](http://videolectures.net/deeplearning2015_salakhutdinov_deep_learning/)
* [深度學習 2](http://videolectures.net/deeplearning2015_salakhutdinov_deep_learning_2/)
* [語音識別和深度學習](http://videolectures.net/deeplearning2015_coates_speech_recognition/)
* [神經網絡優化問題教程](http://videolectures.net/deeplearning2015_goodfellow_network_optimization/)
* [深度學習(希望更快)](http://videolectures.net/deeplearning2015_coates_deep_learning/)
* [對抗性實例](http://videolectures.net/deeplearning2015_goodfellow_adversarial_examples/)
* [從語言建模到機器翻譯](http://videolectures.net/deeplearning2015_blunsom_machine_translation/)
* [深 NLP 遞歸神經網絡](http://videolectures.net/deeplearning2015_socher_deep_nlp/)
* [Deep NLP 應用程序和動態內存網絡](http://videolectures.net/deeplearning2015_socher_nlp_applications/)
* [記憶,閱讀和理解](http://videolectures.net/deeplearning2015_blunsom_memory_reading/)
* [平滑,有限和凸優化深度學習暑期學校](http://videolectures.net/deeplearning2015_schmidt_smooth_finite/)
* [非平滑,非有限和非凸優化](http://videolectures.net/deeplearning2015_schmidt_nonsmooth_nonfinite/)
* [變分自動編碼器和擴展](http://videolectures.net/deeplearning2015_courville_autoencoder_extension/)
* [深度生成模型](http://videolectures.net/deeplearning2015_bengio_generative_models/)
選擇一個主題并深入學習,效果會非常好!
看起來[會有一個 2016 暑期學校](https://sites.google.com/site/deeplearningsummerschool2016/),希望會有視頻。
### 資源
* [深度學習暑期學校官方網站](https://sites.google.com/site/deeplearningsummerschool/schedule)
* [深度學習暑期學校視頻](http://videolectures.net/deeplearning2015_montreal/)
## 斯坦福大學自然語言處理的深度學習
這是一個深度學習課程,重點是斯坦福大學 [Richard Socher](http://www.socher.org/) 教授的自然語言處理(NLP)。
一個有趣的說明是,您可以訪問 PDF 版本的學生報告,這些工作可能會激發您的靈感或給您提供具有創意的想法。
YouTube 播放列表的文件名稱很差,而且有些缺少講座, 2016 年的視頻尚未全部上傳。以下是 2015 年講座和視頻鏈接的列表。只是選擇進一個特定主題就輕松多了。
* [講座 1:NLP 和深度學習簡介](https://www.youtube.com/watch?v=sU_Yu_USrNc&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=1)
* [第 2 講:簡單的單詞向量表示:word2vec,GloVe](https://www.youtube.com/watch?v=T8tQZChniMk&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=2)
* [第 3 講:高級單詞向量表示:語言模型,softmax,單層網絡](https://www.youtube.com/watch?v=T1j2Q9_FgTM&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=3)
* [第 4 講:詞窗分類和神經網絡](https://www.youtube.com/watch?v=MRH9ABxCUZ0&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=4)
* [第 5 講:項目建議,神經網絡和反支柱(全部詳細信息)](https://www.youtube.com/watch?v=I2TfdXfSOfc&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=5)
* [第 6 講:實用技巧:梯度檢查,過度擬合,正則化,激活功能,細節](https://www.youtube.com/watch?v=DTbI7XisZcQ&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=6)
* [第 7 講:用于語言建模和其他任務的循環神經網絡](https://www.youtube.com/watch?v=rFVYTydGLr4&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=7)
* [第 7 講(8!?):用于機器翻譯的 GRU 和 LSTM](https://www.youtube.com/watch?v=OFCuW8VA7A4&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=8)
* [第 9 講:遞歸神經網絡的解析](https://www.youtube.com/watch?v=DJHvaGU9SW8&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=9)
* [第 10 講:針對不同任務的遞歸神經網絡(例如情緒分析)](https://www.youtube.com/watch?v=sVXp0UwheXw&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=10)
* [第 11 講:期中考試](https://www.youtube.com/watch?v=HYLZCCX4q5o&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=13)
* [第 13 講:用于句子分類的卷積神經網絡](https://www.youtube.com/watch?v=EevTPpQvxiU&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=11)
* [第 15 講:DL 在 NLP方面上 的應用](https://www.youtube.com/watch?v=BVbQRrrsJo0&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=12)
* [與 Andrew Maas 的客座講座:語音識別](https://www.youtube.com/watch?v=6D8_4GkEWUg&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=14)
* [與杰森韋斯頓的客座講座:記憶網絡](https://www.youtube.com/watch?v=Xumy3Yjq4zk&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=15)
* [與 Elliot 英語的客座講座:高效的實現和 GPU](https://www.youtube.com/watch?v=8Uxe8umUDYA&list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q&index=16)
如果您正在深入學習 NLP,這將是一個非常優秀的領域,這也是一個很好的學習材料。
### 資源
* [CS224d:自然語言處理的深度學習主頁](http://cs224d.stanford.edu/)
* [課程大綱](http://cs224d.stanford.edu/syllabus.html)
* [2015 年課程視頻播放列表](https://www.youtube.com/playlist?list=PLmImxx8Char8dxWB9LRqdpCTmewaml96q)
* [2016 年課程視頻播放列表](https://www.youtube.com/playlist?list=PLXqezZ11Vm4pzLnhV3bZflqaNNBm9uFUb)
## 斯坦福大學視覺識別的卷積神經網絡
本課程重點介紹使用卷積神經網絡對計算機視覺應用進行深度學習。
這是斯坦福大學的另一門課程,這次由 Andrej Karpathy 和其他人講授。
不幸的是,課程視頻被刪除了,但是一些聰明的人已經找到了將它們放回其他地方的方法,請參閱下面資源部分中的播放列表。
> 我現在很遺憾的通知,由于法律問題,我們被迫刪除了 CS231n 視頻。僅僅有25萬的社會觀點因此服務而受益。
>
> - Andrej Karpathy(@karpathy) [2016 年 5 月 3 日](https://twitter.com/karpathy/status/727618058471112704)
另一個很棒的課程
以下是 2016 年課程的視頻講座,但我不確定這些鏈接會持續多長時間,如果鏈接失效,請發表評論以便于我及時修復鏈接。
* [第 1 講 引言及歷史背景](https://www.youtube.com/watch?v=F-g0-6_RRUA&index=1&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 2 講 數據驅動方法,kNN,線性分類 1](https://www.youtube.com/watch?v=ZM4umP6F1Jc&index=2&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 3 講 線性分類 2,優化](https://www.youtube.com/watch?v=Q_UWHTY_TEQ&index=4&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 4 講 神經網絡第 1 部分,反向傳播](https://www.youtube.com/watch?v=jhUZ800C650&index=5&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 5 講 神經網絡第 2 部分](https://www.youtube.com/watch?v=jhUZ800C650&index=5&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 6 講 神經網絡第 3 部分,卷積介紹](https://www.youtube.com/watch?v=egPTd9zZzec&index=6&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 7 講 卷積神經網絡](https://www.youtube.com/watch?v=sHyIqu_S5Ks&index=7&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 8 講 定位和檢測](https://www.youtube.com/watch?v=sHyIqu_S5Ks&index=7&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 9 講 可視化,深度夢想,神經風格,對抗性實例](https://www.youtube.com/watch?v=ASdbG_7KMhc&index=9&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [講座 10 回歸神經網絡,圖像字幕,LSTM](https://www.youtube.com/watch?v=R1rXkuJ5w20&index=10&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 11 講 實踐中的講座](https://www.youtube.com/watch?v=G3m6HusAJTg&index=11&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 12 講 深度學習庫](https://www.youtube.com/watch?v=b6RntuTiKQo&index=12&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 13 講 分段,軟注意,空間變換器](https://www.youtube.com/watch?v=yCrkzVFsEX0&index=13&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 14 講 視頻和無監督學習](https://www.youtube.com/watch?v=k645B_f4a6Y&index=14&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [第 15 講 由 Jeff Dean 邀請演講](https://www.youtube.com/watch?v=qtm4JgbxuEc&index=15&list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
### 資源
* [用于視覺識別的卷積神經網絡主頁](http://cs231n.stanford.edu/)
* [課程大綱](http://cs231n.stanford.edu/syllabus.html)(以及 [2015 年教學大綱](http://cs231n.stanford.edu/syllabus_winter2015.html))
* [Archive.org 上的課程視頻](https://archive.org/details/cs231n-CNNs)
* [YouTube 上的課程視頻](https://www.youtube.com/playlist?list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
* [課程示例代碼](https://github.com/cs231n/cs231n.github.io)
## 舍布魯克大學的神經網絡課程
這是由魁北克舍布魯克大學的 Hugo Larochelle 教授的神經網絡課程。
有大量的材料,至少一噸(`^_^`)。
視頻是一對一而不是講座,每個主題都有許多小視頻,而不是大型的一小時視頻信息。
我認為這可能是比傳統講座更好的方式,但我還沒有完全嘗試并比較,困難的是有 92 個視頻(!!!)可供瀏覽,很難找到要觀看的特定視頻。
教材包括 10 個主題:
* 主題 1:前饋神經網絡
* 主題 2:訓練神經網絡
* 主題 3:條件隨機字段
* 主題 4:訓練條件隨機字段
* 主題 5:受限制的玻爾茲曼機器
* 主題 6:自動編碼器
* 主題 7:深度學習
* 主題 8:稀疏編碼
* 主題 9:計算機視覺
* 主題 10:自然語言處理
我的建議是使用主菜單主頁瀏覽主題,然后將這利用這些鏈接學習特定視頻, YouTube 播放列表中有太多視頻無法播放和理解,選擇的悖論會殺死你。
### 資源
* [課程主頁](http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html)
* [YouTube 視頻播放列表](https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH)
## 其他課程
以下是一些非免費,難以訪問或范圍較小的視頻課程。
* [CILVR Lab @ NYU](http://cilvr.cs.nyu.edu/doku.php?id=deeplearning:slides:start) 的深度學習課程(斷開的鏈接?)
* [Udemy](https://www.udemy.com/courses/search/?q=deep+learning&lang=en) 的小型深度學習課程
* [CMU 的深度學習](http://deeplearning.cs.cmu.edu/)
* [用于深度學習的 Nvidia 自學課程](https://developer.nvidia.com/deep-learning-courses)
* [多倫多大學 Coursera 機器學習神經網絡](https://www.coursera.org/learn/neural-networks)(太棒了,但不再免費)
* **更新**:[您可以在這里免費觀看所有視頻](https://www.youtube.com/playlist?list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9)。
* [研究生暑期學校:深度學習,特色學習](http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-deep-learning-feature-learning/?tab=schedule),2012
## 摘要
在這篇文章中,您發現了許多關于深度學習的世界級視頻課程,包括理論,理論,計算機視覺,自然語言處理等。
注意這篇文章頂部的建議。
按主題瀏覽并深入講座學習,而不要嘗試學習整個課程,學習一件事,而不是嘗試學習一切。
你可以花點時間,為此頁面添加書簽,以便您可以方便回來享受學習的樂趣。
你知道我還沒有列出其他深度學習的視頻課程嗎?請在評論中告訴我,我會更新清單。
- Machine Learning Mastery 應用機器學習教程
- 5競爭機器學習的好處
- 過度擬合的簡單直覺,或者為什么測試訓練數據是一個壞主意
- 特征選擇簡介
- 應用機器學習作為一個搜索問題的溫和介紹
- 為什么應用機器學習很難
- 為什么我的結果不如我想的那么好?你可能過度擬合了
- 用ROC曲線評估和比較分類器表現
- BigML評論:發現本機學習即服務平臺的聰明功能
- BigML教程:開發您的第一個決策樹并進行預測
- 構建生產機器學習基礎設施
- 分類準確性不夠:可以使用更多表現測量
- 一種預測模型的巧妙應用
- 機器學習項目中常見的陷阱
- 數據清理:將凌亂的數據轉換為整潔的數據
- 機器學習中的數據泄漏
- 數據,學習和建模
- 數據管理至關重要以及為什么需要認真對待它
- 將預測模型部署到生產中
- 參數和超參數之間有什么區別?
- 測試和驗證數據集之間有什么區別?
- 發現特征工程,如何設計特征以及如何獲得它
- 如何開始使用Kaggle
- 超越預測
- 如何在評估機器學習算法時選擇正確的測試選項
- 如何定義機器學習問題
- 如何評估機器學習算法
- 如何獲得基線結果及其重要性
- 如何充分利用機器學習數據
- 如何識別數據中的異常值
- 如何提高機器學習效果
- 如何在競爭機器學習中踢屁股
- 如何知道您的機器學習模型是否具有良好的表現
- 如何布局和管理您的機器學習項目
- 如何為機器學習準備數據
- 如何減少最終機器學習模型中的方差
- 如何使用機器學習結果
- 如何解決像數據科學家這樣的問題
- 通過數據預處理提高模型精度
- 處理機器學習的大數據文件的7種方法
- 建立機器學習系統的經驗教訓
- 如何使用機器學習清單可靠地獲得準確的預測(即使您是初學者)
- 機器學習模型運行期間要做什么
- 機器學習表現改進備忘單
- 來自世界級從業者的機器學習技巧:Phil Brierley
- 模型預測精度與機器學習中的解釋
- 競爭機器學習的模型選擇技巧
- 機器學習需要多少訓練數據?
- 如何系統地規劃和運行機器學習實驗
- 應用機器學習過程
- 默認情況下可重現的機器學習結果
- 10個實踐應用機器學習的標準數據集
- 簡單的三步法到最佳機器學習算法
- 打擊機器學習數據集中不平衡類的8種策略
- 模型表現不匹配問題(以及如何處理)
- 黑箱機器學習的誘惑陷阱
- 如何培養最終的機器學習模型
- 使用探索性數據分析了解您的問題并獲得更好的結果
- 什么是數據挖掘和KDD
- 為什么One-Hot在機器學習中編碼數據?
- 為什么你應該在你的機器學習問題上進行抽樣檢查算法
- 所以,你正在研究機器學習問題......
- Machine Learning Mastery Keras 深度學習教程
- Keras 中神經網絡模型的 5 步生命周期
- 在 Python 迷你課程中應用深度學習
- Keras 深度學習庫的二元分類教程
- 如何用 Keras 構建多層感知器神經網絡模型
- 如何在 Keras 中檢查深度學習模型
- 10 個用于 Amazon Web Services 深度學習的命令行秘籍
- 機器學習卷積神經網絡的速成課程
- 如何在 Python 中使用 Keras 進行深度學習的度量
- 深度學習書籍
- 深度學習課程
- 你所知道的深度學習是一種謊言
- 如何設置 Amazon AWS EC2 GPU 以訓練 Keras 深度學習模型(分步)
- 神經網絡中批量和迭代之間的區別是什么?
- 在 Keras 展示深度學習模型訓練歷史
- 基于 Keras 的深度學習模型中的dropout正則化
- 評估 Keras 中深度學習模型的表現
- 如何評價深度學習模型的技巧
- 小批量梯度下降的簡要介紹以及如何配置批量大小
- 在 Keras 中獲得深度學習幫助的 9 種方法
- 如何使用 Keras 在 Python 中網格搜索深度學習模型的超參數
- 用 Keras 在 Python 中使用卷積神經網絡進行手寫數字識別
- 如何用 Keras 進行預測
- 用 Keras 進行深度學習的圖像增強
- 8 個深度學習的鼓舞人心的應用
- Python 深度學習庫 Keras 簡介
- Python 深度學習庫 TensorFlow 簡介
- Python 深度學習庫 Theano 簡介
- 如何使用 Keras 函數式 API 進行深度學習
- Keras 深度學習庫的多類分類教程
- 多層感知器神經網絡速成課程
- 基于卷積神經網絡的 Keras 深度學習庫中的目標識別
- 流行的深度學習庫
- 用深度學習預測電影評論的情感
- Python 中的 Keras 深度學習庫的回歸教程
- 如何使用 Keras 獲得可重現的結果
- 如何在 Linux 服務器上運行深度學習實驗
- 保存并加載您的 Keras 深度學習模型
- 用 Keras 逐步開發 Python 中的第一個神經網絡
- 用 Keras 理解 Python 中的有狀態 LSTM 循環神經網絡
- 在 Python 中使用 Keras 深度學習模型和 Scikit-Learn
- 如何使用預訓練的 VGG 模型對照片中的物體進行分類
- 在 Python 和 Keras 中對深度學習模型使用學習率調度
- 如何在 Keras 中可視化深度學習神經網絡模型
- 什么是深度學習?
- 何時使用 MLP,CNN 和 RNN 神經網絡
- 為什么用隨機權重初始化神經網絡?
- Machine Learning Mastery 深度學習 NLP 教程
- 深度學習在自然語言處理中的 7 個應用
- 如何實現自然語言處理的波束搜索解碼器
- 深度學習文檔分類的最佳實踐
- 關于自然語言處理的熱門書籍
- 在 Python 中計算文本 BLEU 分數的溫和介紹
- 使用編碼器 - 解碼器模型的用于字幕生成的注入和合并架構
- 如何用 Python 清理機器學習的文本
- 如何配置神經機器翻譯的編碼器 - 解碼器模型
- 如何開始深度學習自然語言處理(7 天迷你課程)
- 自然語言處理的數據集
- 如何開發一種深度學習的詞袋模型來預測電影評論情感
- 深度學習字幕生成模型的溫和介紹
- 如何在 Keras 中定義神經機器翻譯的編碼器 - 解碼器序列 - 序列模型
- 如何利用小實驗在 Keras 中開發字幕生成模型
- 如何從頭開發深度學習圖片標題生成器
- 如何在 Keras 中開發基于字符的神經語言模型
- 如何開發用于情感分析的 N-gram 多通道卷積神經網絡
- 如何從零開始開發神經機器翻譯系統
- 如何在 Python 中用 Keras 開發基于單詞的神經語言模型
- 如何開發一種預測電影評論情感的詞嵌入模型
- 如何使用 Gensim 在 Python 中開發詞嵌入
- 用于文本摘要的編碼器 - 解碼器深度學習模型
- Keras 中文本摘要的編碼器 - 解碼器模型
- 用于神經機器翻譯的編碼器 - 解碼器循環神經網絡模型
- 淺談詞袋模型
- 文本摘要的溫和介紹
- 編碼器 - 解碼器循環神經網絡中的注意力如何工作
- 如何利用深度學習自動生成照片的文本描述
- 如何開發一個單詞級神經語言模型并用它來生成文本
- 淺談神經機器翻譯
- 什么是自然語言處理?
- 牛津自然語言處理深度學習課程
- 如何為機器翻譯準備法語到英語的數據集
- 如何為情感分析準備電影評論數據
- 如何為文本摘要準備新聞文章
- 如何準備照片標題數據集以訓練深度學習模型
- 如何使用 Keras 為深度學習準備文本數據
- 如何使用 scikit-learn 為機器學習準備文本數據
- 自然語言處理神經網絡模型入門
- 對自然語言處理的深度學習的承諾
- 在 Python 中用 Keras 進行 LSTM 循環神經網絡的序列分類
- 斯坦福自然語言處理深度學習課程評價
- 統計語言建模和神經語言模型的簡要介紹
- 使用 Keras 在 Python 中進行 LSTM 循環神經網絡的文本生成
- 淺談機器學習中的轉換
- 如何使用 Keras 將詞嵌入層用于深度學習
- 什么是用于文本的詞嵌入
- Machine Learning Mastery 深度學習時間序列教程
- 如何開發人類活動識別的一維卷積神經網絡模型
- 人類活動識別的深度學習模型
- 如何評估人類活動識別的機器學習算法
- 時間序列預測的多層感知器網絡探索性配置
- 比較經典和機器學習方法進行時間序列預測的結果
- 如何通過深度學習快速獲得時間序列預測的結果
- 如何利用 Python 處理序列預測問題中的缺失時間步長
- 如何建立預測大氣污染日的概率預測模型
- 如何開發一種熟練的機器學習時間序列預測模型
- 如何構建家庭用電自回歸預測模型
- 如何開發多步空氣污染時間序列預測的自回歸預測模型
- 如何制定多站點多元空氣污染時間序列預測的基線預測
- 如何開發時間序列預測的卷積神經網絡模型
- 如何開發卷積神經網絡用于多步時間序列預測
- 如何開發單變量時間序列預測的深度學習模型
- 如何開發 LSTM 模型用于家庭用電的多步時間序列預測
- 如何開發 LSTM 模型進行時間序列預測
- 如何開發多元多步空氣污染時間序列預測的機器學習模型
- 如何開發多層感知器模型進行時間序列預測
- 如何開發人類活動識別時間序列分類的 RNN 模型
- 如何開始深度學習的時間序列預測(7 天迷你課程)
- 如何網格搜索深度學習模型進行時間序列預測
- 如何對單變量時間序列預測的網格搜索樸素方法
- 如何在 Python 中搜索 SARIMA 模型超參數用于時間序列預測
- 如何在 Python 中進行時間序列預測的網格搜索三次指數平滑
- 一個標準的人類活動識別問題的溫和介紹
- 如何加載和探索家庭用電數據
- 如何加載,可視化和探索復雜的多變量多步時間序列預測數據集
- 如何從智能手機數據模擬人類活動
- 如何根據環境因素預測房間占用率
- 如何使用腦波預測人眼是開放還是閉合
- 如何在 Python 中擴展長短期內存網絡的數據
- 如何使用 TimeseriesGenerator 進行 Keras 中的時間序列預測
- 基于機器學習算法的室內運動時間序列分類
- 用于時間序列預測的狀態 LSTM 在線學習的不穩定性
- 用于罕見事件時間序列預測的 LSTM 模型體系結構
- 用于時間序列預測的 4 種通用機器學習數據變換
- Python 中長短期記憶網絡的多步時間序列預測
- 家庭用電機器學習的多步時間序列預測
- Keras 中 LSTM 的多變量時間序列預測
- 如何開發和評估樸素的家庭用電量預測方法
- 如何為長短期記憶網絡準備單變量時間序列數據
- 循環神經網絡在時間序列預測中的應用
- 如何在 Python 中使用差異變換刪除趨勢和季節性
- 如何在 LSTM 中種子狀態用于 Python 中的時間序列預測
- 使用 Python 進行時間序列預測的有狀態和無狀態 LSTM
- 長短時記憶網絡在時間序列預測中的適用性
- 時間序列預測問題的分類
- Python 中長短期記憶網絡的時間序列預測
- 基于 Keras 的 Python 中 LSTM 循環神經網絡的時間序列預測
- Keras 中深度學習的時間序列預測
- 如何用 Keras 調整 LSTM 超參數進行時間序列預測
- 如何在時間序列預測訓練期間更新 LSTM 網絡
- 如何使用 LSTM 網絡的 Dropout 進行時間序列預測
- 如何使用 LSTM 網絡中的特征進行時間序列預測
- 如何在 LSTM 網絡中使用時間序列進行時間序列預測
- 如何利用 LSTM 網絡進行權重正則化進行時間序列預測
- Machine Learning Mastery 線性代數教程
- 機器學習數學符號的基礎知識
- 用 NumPy 陣列輕松介紹廣播
- 如何從 Python 中的 Scratch 計算主成分分析(PCA)
- 用于編碼器審查的計算線性代數
- 10 機器學習中的線性代數示例
- 線性代數的溫和介紹
- 用 NumPy 輕松介紹 Python 中的 N 維數組
- 機器學習向量的溫和介紹
- 如何在 Python 中為機器學習索引,切片和重塑 NumPy 數組
- 機器學習的矩陣和矩陣算法簡介
- 溫和地介紹機器學習的特征分解,特征值和特征向量
- NumPy 對預期價值,方差和協方差的簡要介紹
- 機器學習矩陣分解的溫和介紹
- 用 NumPy 輕松介紹機器學習的張量
- 用于機器學習的線性代數中的矩陣類型簡介
- 用于機器學習的線性代數備忘單
- 線性代數的深度學習
- 用于機器學習的線性代數(7 天迷你課程)
- 機器學習的線性代數
- 機器學習矩陣運算的溫和介紹
- 線性代數評論沒有廢話指南
- 學習機器學習線性代數的主要資源
- 淺談機器學習的奇異值分解
- 如何用線性代數求解線性回歸
- 用于機器學習的稀疏矩陣的溫和介紹
- 機器學習中向量規范的溫和介紹
- 學習線性代數用于機器學習的 5 個理由
- Machine Learning Mastery LSTM 教程
- Keras中長短期記憶模型的5步生命周期
- 長短時記憶循環神經網絡的注意事項
- CNN長短期記憶網絡
- 逆向神經網絡中的深度學習速成課程
- 可變長度輸入序列的數據準備
- 如何用Keras開發用于Python序列分類的雙向LSTM
- 如何開發Keras序列到序列預測的編碼器 - 解碼器模型
- 如何診斷LSTM模型的過度擬合和欠擬合
- 如何開發一種編碼器 - 解碼器模型,注重Keras中的序列到序列預測
- 編碼器 - 解碼器長短期存儲器網絡
- 神經網絡中爆炸梯度的溫和介紹
- 對時間反向傳播的溫和介紹
- 生成長短期記憶網絡的溫和介紹
- 專家對長短期記憶網絡的簡要介紹
- 在序列預測問題上充分利用LSTM
- 編輯器 - 解碼器循環神經網絡全局注意的溫和介紹
- 如何利用長短時記憶循環神經網絡處理很長的序列
- 如何在Python中對一個熱編碼序列數據
- 如何使用編碼器 - 解碼器LSTM來回顯隨機整數序列
- 具有注意力的編碼器 - 解碼器RNN體系結構的實現模式
- 學習使用編碼器解碼器LSTM循環神經網絡添加數字
- 如何學習長短時記憶循環神經網絡回聲隨機整數
- 具有Keras的長短期記憶循環神經網絡的迷你課程
- LSTM自動編碼器的溫和介紹
- 如何用Keras中的長短期記憶模型進行預測
- 用Python中的長短期內存網絡演示內存
- 基于循環神經網絡的序列預測模型的簡要介紹
- 深度學習的循環神經網絡算法之旅
- 如何重塑Keras中長短期存儲網絡的輸入數據
- 了解Keras中LSTM的返回序列和返回狀態之間的差異
- RNN展開的溫和介紹
- 5學習LSTM循環神經網絡的簡單序列預測問題的例子
- 使用序列進行預測
- 堆疊長短期內存網絡
- 什么是教師強制循環神經網絡?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何準備Keras中截斷反向傳播的序列預測
- 如何在使用LSTM進行訓練和預測時使用不同的批量大小
- Machine Learning Mastery 機器學習算法教程
- 機器學習算法之旅
- 用于機器學習的裝袋和隨機森林集合算法
- 從頭開始實施機器學習算法的好處
- 更好的樸素貝葉斯:從樸素貝葉斯算法中獲取最多的12個技巧
- 機器學習的提升和AdaBoost
- 選擇機器學習算法:Microsoft Azure的經驗教訓
- 機器學習的分類和回歸樹
- 什么是機器學習中的混淆矩陣
- 如何使用Python從頭開始創建算法測試工具
- 通過創建機器學習算法的目標列表來控制
- 從頭開始停止編碼機器學習算法
- 在實現機器學習算法時,不要從開源代碼開始
- 不要使用隨機猜測作為基線分類器
- 淺談機器學習中的概念漂移
- 溫和介紹機器學習中的偏差 - 方差權衡
- 機器學習的梯度下降
- 機器學習算法如何工作(他們學習輸入到輸出的映射)
- 如何建立機器學習算法的直覺
- 如何實現機器學習算法
- 如何研究機器學習算法行為
- 如何學習機器學習算法
- 如何研究機器學習算法
- 如何研究機器學習算法
- 如何在Python中從頭開始實現反向傳播算法
- 如何用Python從頭開始實現Bagging
- 如何用Python從頭開始實現基線機器學習算法
- 如何在Python中從頭開始實現決策樹算法
- 如何用Python從頭開始實現學習向量量化
- 如何利用Python從頭開始隨機梯度下降實現線性回歸
- 如何利用Python從頭開始隨機梯度下降實現Logistic回歸
- 如何用Python從頭開始實現機器學習算法表現指標
- 如何在Python中從頭開始實現感知器算法
- 如何在Python中從零開始實現隨機森林
- 如何在Python中從頭開始實現重采樣方法
- 如何用Python從頭開始實現簡單線性回歸
- 如何用Python從頭開始實現堆棧泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 學習機器學習的向量量化
- 機器學習的線性判別分析
- 機器學習的線性回歸
- 使用梯度下降進行機器學習的線性回歸教程
- 如何在Python中從頭開始加載機器學習數據
- 機器學習的Logistic回歸
- 機器學習的Logistic回歸教程
- 機器學習算法迷你課程
- 如何在Python中從頭開始實現樸素貝葉斯
- 樸素貝葉斯機器學習
- 樸素貝葉斯機器學習教程
- 機器學習算法的過擬合和欠擬合
- 參數化和非參數機器學習算法
- 理解任何機器學習算法的6個問題
- 在機器學習中擁抱隨機性
- 如何使用Python從頭開始擴展機器學習數據
- 機器學習的簡單線性回歸教程
- 有監督和無監督的機器學習算法
- 用于機器學習的支持向量機
- 在沒有數學背景的情況下理解機器學習算法的5種技術
- 最好的機器學習算法
- 教程從頭開始在Python中實現k-Nearest Neighbors
- 通過從零開始實現它們來理解機器學習算法(以及繞過壞代碼的策略)
- 使用隨機森林:在121個數據集上測試179個分類器
- 為什么從零開始實現機器學習算法
- Machine Learning Mastery 機器學習入門教程
- 機器學習入門的四個步驟:初學者入門與實踐的自上而下策略
- 你應該培養的 5 個機器學習領域
- 一種選擇機器學習算法的數據驅動方法
- 機器學習中的分析與數值解
- 應用機器學習是一種精英政治
- 機器學習的基本概念
- 如何成為數據科學家
- 初學者如何在機器學習中弄錯
- 機器學習的最佳編程語言
- 構建機器學習組合
- 機器學習中分類與回歸的區別
- 評估自己作為數據科學家并利用結果建立驚人的數據科學團隊
- 探索 Kaggle 大師的方法論和心態:對 Diogo Ferreira 的采訪
- 擴展機器學習工具并展示掌握
- 通過尋找地標開始機器學習
- 溫和地介紹預測建模
- 通過提供結果在機器學習中獲得夢想的工作
- 如何開始機器學習:自學藍圖
- 開始并在機器學習方面取得進展
- 應用機器學習的 Hello World
- 初學者如何使用小型項目開始機器學習并在 Kaggle 上進行競爭
- 我如何開始機器學習? (簡短版)
- 我是如何開始機器學習的
- 如何在機器學習中取得更好的成績
- 如何從在銀行工作到擔任 Target 的高級數據科學家
- 如何學習任何機器學習工具
- 使用小型目標項目深入了解機器學習工具
- 獲得付費申請機器學習
- 映射機器學習工具的景觀
- 機器學習開發環境
- 機器學習金錢
- 程序員的機器學習
- 機器學習很有意思
- 機器學習是 Kaggle 比賽
- 機器學習現在很受歡迎
- 機器學習掌握方法
- 機器學習很重要
- 機器學習 Q& A:概念漂移,更好的結果和學習更快
- 缺乏自學機器學習的路線圖
- 機器學習很重要
- 快速了解任何機器學習工具(即使您是初學者)
- 機器學習工具
- 找到你的機器學習部落
- 機器學習在一年
- 通過競爭一致的大師 Kaggle
- 5 程序員在機器學習中開始犯錯誤
- 哲學畢業生到機器學習從業者(Brian Thomas 采訪)
- 機器學習入門的實用建議
- 實用機器學習問題
- 使用來自 UCI 機器學習庫的數據集練習機器學習
- 使用秘籍的任何機器學習工具快速啟動
- 程序員可以進入機器學習
- 程序員應該進入機器學習
- 項目焦點:Shashank Singh 的人臉識別
- 項目焦點:使用 Mahout 和 Konstantin Slisenko 進行堆棧交換群集
- 機器學習自學指南
- 4 個自學機器學習項目
- álvaroLemos 如何在數據科學團隊中獲得機器學習實習
- 如何思考機器學習
- 現實世界機器學習問題之旅
- 有關機器學習的有用知識
- 如果我沒有學位怎么辦?
- 如果我不是一個優秀的程序員怎么辦?
- 如果我不擅長數學怎么辦?
- 為什么機器學習算法會處理以前從未見過的數據?
- 是什么阻礙了你的機器學習目標?
- 什么是機器學習?
- 機器學習適合哪里?
- 為什么要進入機器學習?
- 研究對您來說很重要的機器學習問題
- 你這樣做是錯的。為什么機器學習不必如此困難
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的溫和介紹:Python 機器學習庫
- 使用 Python 管道和 scikit-learn 自動化機器學習工作流程
- 如何以及何時使用帶有 scikit-learn 的校準分類模型
- 如何比較 Python 中的機器學習算法與 scikit-learn
- 用于機器學習開發人員的 Python 崩潰課程
- 用 scikit-learn 在 Python 中集成機器學習算法
- 使用重采樣評估 Python 中機器學習算法的表現
- 使用 Scikit-Learn 在 Python 中進行特征選擇
- Python 中機器學習的特征選擇
- 如何使用 scikit-learn 在 Python 中生成測試數據集
- scikit-learn 中的機器學習算法秘籍
- 如何使用 Python 處理丟失的數據
- 如何開始使用 Python 進行機器學習
- 如何使用 Scikit-Learn 在 Python 中加載數據
- Python 中概率評分方法的簡要介紹
- 如何用 Scikit-Learn 調整算法參數
- 如何在 Mac OS X 上安裝 Python 3 環境以進行機器學習和深度學習
- 使用 scikit-learn 進行機器學習簡介
- 從 shell 到一本帶有 Fernando Perez 單一工具的書的 IPython
- 如何使用 Python 3 為機器學習開發創建 Linux 虛擬機
- 如何在 Python 中加載機器學習數據
- 您在 Python 中的第一個機器學習項目循序漸進
- 如何使用 scikit-learn 進行預測
- 用于評估 Python 中機器學習算法的度量標準
- 使用 Pandas 為 Python 中的機器學習準備數據
- 如何使用 Scikit-Learn 為 Python 機器學習準備數據
- 項目焦點:使用 Artem Yankov 在 Python 中進行事件推薦
- 用于機器學習的 Python 生態系統
- Python 是應用機器學習的成長平臺
- Python 機器學習書籍
- Python 機器學習迷你課程
- 使用 Pandas 快速和骯臟的數據分析
- 使用 Scikit-Learn 重新調整 Python 中的機器學習數據
- 如何以及何時使用 ROC 曲線和精確調用曲線進行 Python 分類
- 使用 scikit-learn 在 Python 中保存和加載機器學習模型
- scikit-learn Cookbook 書評
- 如何使用 Anaconda 為機器學習和深度學習設置 Python 環境
- 使用 scikit-learn 在 Python 中進行 Spot-Check 分類機器學習算法
- 如何在 Python 中開發可重復使用的抽樣檢查算法框架
- 使用 scikit-learn 在 Python 中進行 Spot-Check 回歸機器學習算法
- 使用 Python 中的描述性統計來了解您的機器學習數據
- 使用 OpenCV,Python 和模板匹配來播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可視化機器學習數據
- Machine Learning Mastery 統計學教程
- 淺談計算正態匯總統計量
- 非參數統計的溫和介紹
- Python中常態測試的溫和介紹
- 淺談Bootstrap方法
- 淺談機器學習的中心極限定理
- 淺談機器學習中的大數定律
- 機器學習的所有統計數據
- 如何計算Python中機器學習結果的Bootstrap置信區間
- 淺談機器學習的Chi-Squared測試
- 機器學習的置信區間
- 隨機化在機器學習中解決混雜變量的作用
- 機器學習中的受控實驗
- 機器學習統計學速成班
- 統計假設檢驗的關鍵值以及如何在Python中計算它們
- 如何在機器學習中談論數據(統計學和計算機科學術語)
- Python中數據可視化方法的簡要介紹
- Python中效果大小度量的溫和介紹
- 估計隨機機器學習算法的實驗重復次數
- 機器學習評估統計的溫和介紹
- 如何計算Python中的非參數秩相關性
- 如何在Python中計算數據的5位數摘要
- 如何在Python中從頭開始編寫學生t檢驗
- 如何在Python中生成隨機數
- 如何轉換數據以更好地擬合正態分布
- 如何使用相關來理解變量之間的關系
- 如何使用統計信息識別數據中的異常值
- 用于Python機器學習的隨機數生成器簡介
- k-fold交叉驗證的溫和介紹
- 如何計算McNemar的比較兩種機器學習量詞的測試
- Python中非參數統計顯著性測試簡介
- 如何在Python中使用參數統計顯著性測試
- 機器學習的預測間隔
- 應用統計學與機器學習的密切關系
- 如何使用置信區間報告分類器表現
- 統計數據分布的簡要介紹
- 15 Python中的統計假設檢驗(備忘單)
- 統計假設檢驗的溫和介紹
- 10如何在機器學習項目中使用統計方法的示例
- Python中統計功效和功耗分析的簡要介紹
- 統計抽樣和重新抽樣的簡要介紹
- 比較機器學習算法的統計顯著性檢驗
- 機器學習中統計容差區間的溫和介紹
- 機器學習統計書籍
- 評估機器學習模型的統計數據
- 機器學習統計(7天迷你課程)
- 用于機器學習的簡明英語統計
- 如何使用統計顯著性檢驗來解釋機器學習結果
- 什么是統計(為什么它在機器學習中很重要)?
- Machine Learning Mastery 時間序列入門教程
- 如何在 Python 中為時間序列預測創建 ARIMA 模型
- 用 Python 進行時間序列預測的自回歸模型
- 如何回溯機器學習模型的時間序列預測
- Python 中基于時間序列數據的基本特征工程
- R 的時間序列預測熱門書籍
- 10 挑戰機器學習時間序列預測問題
- 如何將時間序列轉換為 Python 中的監督學習問題
- 如何將時間序列數據分解為趨勢和季節性
- 如何用 ARCH 和 GARCH 模擬波動率進行時間序列預測
- 如何將時間序列數據集與 Python 區分開來
- Python 中時間序列預測的指數平滑的溫和介紹
- 用 Python 進行時間序列預測的特征選擇
- 淺談自相關和部分自相關
- 時間序列預測的 Box-Jenkins 方法簡介
- 用 Python 簡要介紹時間序列的時間序列預測
- 如何使用 Python 網格搜索 ARIMA 模型超參數
- 如何在 Python 中加載和探索時間序列數據
- 如何使用 Python 對 ARIMA 模型進行手動預測
- 如何用 Python 進行時間序列預測的預測
- 如何使用 Python 中的 ARIMA 進行樣本外預測
- 如何利用 Python 模擬殘差錯誤來糾正時間序列預測
- 使用 Python 進行數據準備,特征工程和時間序列預測的移動平均平滑
- 多步時間序列預測的 4 種策略
- 如何在 Python 中規范化和標準化時間序列數據
- 如何利用 Python 進行時間序列預測的基線預測
- 如何使用 Python 對時間序列預測數據進行功率變換
- 用于時間序列預測的 Python 環境
- 如何重構時間序列預測問題
- 如何使用 Python 重新采樣和插值您的時間序列數據
- 用 Python 編寫 SARIMA 時間序列預測
- 如何在 Python 中保存 ARIMA 時間序列預測模型
- 使用 Python 進行季節性持久性預測
- 基于 ARIMA 的 Python 歷史規模敏感性預測技巧分析
- 簡單的時間序列預測模型進行測試,這樣你就不會欺騙自己
- 標準多變量,多步驟和多站點時間序列預測問題
- 如何使用 Python 檢查時間序列數據是否是固定的
- 使用 Python 進行時間序列數據可視化
- 7 個機器學習的時間序列數據集
- 時間序列預測案例研究與 Python:波士頓每月武裝搶劫案
- Python 的時間序列預測案例研究:巴爾的摩的年度用水量
- 使用 Python 進行時間序列預測研究:法國香檳的月銷售額
- 使用 Python 的置信區間理解時間序列預測不確定性
- 11 Python 中的經典時間序列預測方法(備忘單)
- 使用 Python 進行時間序列預測表現測量
- 使用 Python 7 天迷你課程進行時間序列預測
- 時間序列預測作為監督學習
- 什么是時間序列預測?
- 如何使用 Python 識別和刪除時間序列數據的季節性
- 如何在 Python 中使用和刪除時間序列數據中的趨勢信息
- 如何在 Python 中調整 ARIMA 參數
- 如何用 Python 可視化時間序列殘差預測錯誤
- 白噪聲時間序列與 Python
- 如何通過時間序列預測項目
- Machine Learning Mastery XGBoost 教程
- 通過在 Python 中使用 XGBoost 提前停止來避免過度擬合
- 如何在 Python 中調優 XGBoost 的多線程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 進行梯度提升的數據準備
- 如何使用 scikit-learn 在 Python 中開發您的第一個 XGBoost 模型
- 如何在 Python 中使用 XGBoost 評估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征選擇
- 淺談機器學習的梯度提升算法
- 應用機器學習的 XGBoost 簡介
- 如何在 macOS 上為 Python 安裝 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 從梯度提升開始,比較 165 個數據集上的 13 種算法
- 在 Python 中使用 XGBoost 和 scikit-learn 進行隨機梯度提升
- 如何使用 Amazon Web Services 在云中訓練 XGBoost 模型
- 在 Python 中使用 XGBoost 調整梯度提升的學習率
- 如何在 Python 中使用 XGBoost 調整決策樹的數量和大小
- 如何在 Python 中使用 XGBoost 可視化梯度提升決策樹
- 在 Python 中開始使用 XGBoost 的 7 步迷你課程