# 如何使用 LSTM 網絡的 Dropout 進行時間序列預測
> 原文: [https://machinelearningmastery.com/use-dropout-lstm-networks-time-series-forecasting/](https://machinelearningmastery.com/use-dropout-lstm-networks-time-series-forecasting/)
長短期記憶(LSTM)模型是一種能夠學習觀察序列的循環神經網絡。
這可能使它們成為一個非常適合時間序列預測的網絡。
LSTM 的一個問題是他們可以輕松地過度訓練訓練數據,降低他們的預測技巧。
Dropout 是一種正規化方法,在訓練網絡時,LSTM 單元的輸入和重復連接在概率上被排除在激活和權重更新之外。這具有減少過度擬合和改善模型表現的效果。
在本教程中,您將了解如何在 LSTM 網絡和設計實驗中使用 dropout 來測試其對時間序列預測的有效性。
完成本教程后,您將了解:
* 如何設計一個強大的測試工具來評估 LSTM 網絡的時間序列預測。
* 如何使用 LSTM 使用輸入權重丟失來設計,執行和解釋結果。
* 如何設計,執行和解釋使用 LSTM 重復丟失重量的結果。
讓我們開始吧。

如何使用 LSTM 網絡的 Dropout 進行時間序列預測
照片來自 Jonas Bengtsson,保留一些權利。
## 教程概述
本教程分為 5 個部分。他們是:
1. 洗發水銷售數據集
2. 實驗測試線束
3. 輸入 dropout
4. 經常性 dropout
5. 審查結果
### 環境
本教程假定您已安裝 Python SciPy 環境。您可以在此示例中使用 Python 2 或 3。
本教程假設您安裝了 TensorFlow 或 Theano 后端的 Keras v2.0 或更高版本。
本教程還假設您安裝了 scikit-learn,Pandas,NumPy 和 Matplotlib。
接下來,讓我們看看標準時間序列預測問題,我們可以將其用作此實驗的上下文。
如果您在設置 Python 環境時需要幫助,請參閱以下帖子:
* [如何使用 Anaconda 設置用于機器學習和深度學習的 Python 環境](http://machinelearningmastery.com/setup-python-environment-machine-learning-deep-learning-anaconda/)
## 洗發水銷售數據集
該數據集描述了 3 年期間每月洗發水的銷售數量。
單位是銷售計數,有 36 個觀察。原始數據集歸功于 Makridakis,Wheelwright 和 Hyndman(1998)。
[您可以在此處下載并了解有關數據集的更多信息](https://datamarket.com/data/set/22r0/sales-of-shampoo-over-a-three-year-period)。
下面的示例加載并創建已加載數據集的圖。
```py
# load and plot dataset
from pandas import read_csv
from pandas import datetime
from matplotlib import pyplot
# load dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# summarize first few rows
print(series.head())
# line plot
series.plot()
pyplot.show()
```
運行該示例將數據集作為 Pandas Series 加載并打印前 5 行。
```py
Month
1901-01-01 266.0
1901-02-01 145.9
1901-03-01 183.1
1901-04-01 119.3
1901-05-01 180.3
Name: Sales, dtype: float64
```
然后創建該系列的線圖,顯示明顯的增加趨勢。

洗發水銷售數據集的線圖
接下來,我們將看一下實驗中使用的模型配置和測試工具。
## 實驗測試線束
本節介紹本教程中使用的測試工具。
### 數據拆分
我們將 Shampoo Sales 數據集分為兩部分:訓練和測試集。
前兩年的數據將用于訓練數據集,剩余的一年數據將用于測試集。
將使用訓練數據集開發模型,并對測試數據集進行預測。
測試數據集的持久性預測(樸素預測)實現了每月洗發水銷售 136.761 的錯誤。這在測試集上提供了較低的可接受表現限制。
#### 模型評估
將使用滾動預測場景,也稱為前進模型驗證。
測試數據集的每個時間步驟將一次一個地走。將使用模型對時間步長進行預測,然后將獲取測試集的實際預期值,并使其可用于下一時間步的預測模型。
這模仿了一個真實世界的場景,每個月都會有新的洗發水銷售觀察結果,并用于下個月的預測。
這將通過訓練和測試數據集的結構進行模擬。
將收集關于測試數據集的所有預測,并計算錯誤分數以總結模型的技能。將使用均方根誤差(RMSE),因為它會對大錯誤進行處罰,并產生與預測數據相同的分數,即每月洗發水銷售額。
### 數據準備
在我們將模型擬合到數據集之前,我們必須轉換數據。
在擬合模型和進行預測之前,對數據集執行以下三個數據變換。
1. **轉換時間序列數據,使其靜止**。具體而言,滯后= 1 差分以消除數據中的增加趨勢。
2. **將時間序列轉換為監督學習問題**。具體而言,將數據組織成輸入和輸出模式,其中前一時間步的觀察被用作預測當前時間步的觀察的輸入
3. **將觀察結果轉換為具有特定比例**。具體而言,將數據重新調整為-1 到 1 之間的值。
這些變換在預測時反轉,在計算和誤差分數之前將它們恢復到原始比例。
### LSTM 模型
我們將使用基礎狀態 LSTM 模型,其中 1 個神經元適合 1000 個時期。
批量大小為 1 是必需的,因為我們將使用前向驗證并對最后 12 個月的測試數據進行一步預測。
批量大小為 1 意味著該模型將使用在線訓練(而不是批量訓練或小批量訓練)。因此,預計模型擬合將具有一些變化。
理想情況下,將使用更多的訓練時期(例如 1500),但這被截斷為 1000 以保持運行時間合理。
使用有效的 ADAM 優化算法和均方誤差損失函數來擬合模型。
### 實驗運行
每個實驗場景將運行 30 次,并且測試集上的 RMSE 得分將從每次運行結束時記錄。
讓我們深入研究實驗。
## 基線 LSTM 模型
讓我們從基線 LSTM 模型開始。
此問題的基線 LSTM 模型具有以下配置:
* 滯后輸入:1
* 時代:1000
* LSTM 隱藏層中的單位:3
* 批量大小:4
* 重復:3
完整的代碼清單如下。
此代碼清單將用作所有后續實驗的基礎,只有后續部分中提供的此代碼清單的更改。
```py
from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from pandas import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
import matplotlib
# be able to save images on server
matplotlib.use('Agg')
from matplotlib import pyplot
import numpy
# date-time parsing function for loading the dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
# frame a sequence as a supervised learning problem
def timeseries_to_supervised(data, lag=1):
df = DataFrame(data)
columns = [df.shift(i) for i in range(1, lag+1)]
columns.append(df)
df = concat(columns, axis=1)
return df
# create a differenced series
def difference(dataset, interval=1):
diff = list()
for i in range(interval, len(dataset)):
value = dataset[i] - dataset[i - interval]
diff.append(value)
return Series(diff)
# invert differenced value
def inverse_difference(history, yhat, interval=1):
return yhat + history[-interval]
# scale train and test data to [-1, 1]
def scale(train, test):
# fit scaler
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler = scaler.fit(train)
# transform train
train = train.reshape(train.shape[0], train.shape[1])
train_scaled = scaler.transform(train)
# transform test
test = test.reshape(test.shape[0], test.shape[1])
test_scaled = scaler.transform(test)
return scaler, train_scaled, test_scaled
# inverse scaling for a forecasted value
def invert_scale(scaler, X, yhat):
new_row = [x for x in X] + [yhat]
array = numpy.array(new_row)
array = array.reshape(1, len(array))
inverted = scaler.inverse_transform(array)
return inverted[0, -1]
# fit an LSTM network to training data
def fit_lstm(train, n_batch, nb_epoch, n_neurons):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
model = Sequential()
model.add(LSTM(n_neurons, batch_input_shape=(n_batch, X.shape[1], X.shape[2]), stateful=True))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=n_batch, verbose=0, shuffle=False)
model.reset_states()
return model
# run a repeated experiment
def experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons):
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# run experiment
error_scores = list()
for r in range(n_repeats):
# fit the model
train_trimmed = train_scaled[2:, :]
lstm_model = fit_lstm(train_trimmed, n_batch, n_epochs, n_neurons)
# forecast test dataset
test_reshaped = test_scaled[:,0:-1]
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, 1)
output = lstm_model.predict(test_reshaped, batch_size=n_batch)
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
X = test_scaled[i, 0:-1]
# invert scaling
yhat = invert_scale(scaler, X, yhat)
# invert differencing
yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('%d) Test RMSE: %.3f' % (r+1, rmse))
error_scores.append(rmse)
return error_scores
# configure the experiment
def run():
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# configure the experiment
n_lag = 1
n_repeats = 30
n_epochs = 1000
n_batch = 4
n_neurons = 3
# run the experiment
results = DataFrame()
results['results'] = experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons)
# summarize results
print(results.describe())
# save boxplot
results.boxplot()
pyplot.savefig('experiment_baseline.png')
# entry point
run()
```
運行實驗將打印所有重復測試 RMSE 的摘要統計信息。
我們可以看到,平均而言,這種模型配置實現了約 92 個月洗發水銷售的測試 RMSE,標準偏差為 5。
```py
results
count 30.000000
mean 92.842537
std 5.748456
min 81.205979
25% 89.514367
50% 92.030003
75% 96.926145
max 105.247117
```
還會根據測試 RMSE 結果的分布創建一個盒子和胡須圖并保存到文件中。
該圖清楚地描述了結果的傳播,突出了中間 50%的值(框)和中位數(綠線)。

洗發水銷售數據集中基線表現的盒子和晶須圖
網絡配置需要考慮的另一個角度是模型適應時的行為方式。
我們可以在每個訓練時期之后評估訓練和測試數據集上的模型,以了解配置是否過度擬合或不適合問題。
我們將在每組實驗的最佳結果上使用此診斷方法。將運行總共 10 次重復的配置,并且在線圖上繪制每個訓練迭代之后的訓練和測試 RMSE 得分。
在這種情況下,我們將在適用于 1000 個時期的 LSTM 上使用此診斷。
完整的診斷代碼清單如下。
與前面的代碼清單一樣,下面的代碼將用作本教程中所有診斷的基礎,并且后續部分中僅提供對此列表的更改。
```py
from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from pandas import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
import matplotlib
# be able to save images on server
matplotlib.use('Agg')
from matplotlib import pyplot
import numpy
# date-time parsing function for loading the dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
# frame a sequence as a supervised learning problem
def timeseries_to_supervised(data, lag=1):
df = DataFrame(data)
columns = [df.shift(i) for i in range(1, lag+1)]
columns.append(df)
df = concat(columns, axis=1)
return df
# create a differenced series
def difference(dataset, interval=1):
diff = list()
for i in range(interval, len(dataset)):
value = dataset[i] - dataset[i - interval]
diff.append(value)
return Series(diff)
# scale train and test data to [-1, 1]
def scale(train, test):
# fit scaler
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler = scaler.fit(train)
# transform train
train = train.reshape(train.shape[0], train.shape[1])
train_scaled = scaler.transform(train)
# transform test
test = test.reshape(test.shape[0], test.shape[1])
test_scaled = scaler.transform(test)
return scaler, train_scaled, test_scaled
# inverse scaling for a forecasted value
def invert_scale(scaler, X, yhat):
new_row = [x for x in X] + [yhat]
array = numpy.array(new_row)
array = array.reshape(1, len(array))
inverted = scaler.inverse_transform(array)
return inverted[0, -1]
# evaluate the model on a dataset, returns RMSE in transformed units
def evaluate(model, raw_data, scaled_dataset, scaler, offset, batch_size):
# separate
X, y = scaled_dataset[:,0:-1], scaled_dataset[:,-1]
# reshape
reshaped = X.reshape(len(X), 1, 1)
# forecast dataset
output = model.predict(reshaped, batch_size=batch_size)
# invert data transforms on forecast
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
# invert scaling
yhat = invert_scale(scaler, X[i], yhat)
# invert differencing
yhat = yhat + raw_data[i]
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_data[1:], predictions))
# reset model state
model.reset_states()
return rmse
# fit an LSTM network to training data
def fit_lstm(train, test, raw, scaler, batch_size, nb_epoch, neurons):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
# prepare model
model = Sequential()
model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# fit model
train_rmse, test_rmse = list(), list()
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
model.reset_states()
# evaluate model on train data
raw_train = raw[-(len(train)+len(test)+1):-len(test)]
train_rmse.append(evaluate(model, raw_train, train, scaler, 0, batch_size))
# evaluate model on test data
raw_test = raw[-(len(test)+1):]
test_rmse.append(evaluate(model, raw_test, test, scaler, 0, batch_size))
history = DataFrame()
history['train'], history['test'] = train_rmse, test_rmse
return history
# run diagnostic experiments
def run():
# config
n_lag = 1
n_repeats = 10
n_epochs = 1000
n_batch = 4
n_neurons = 3
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# fit and evaluate model
train_trimmed = train_scaled[2:, :]
# run diagnostic tests
for i in range(n_repeats):
history = fit_lstm(train_trimmed, test_scaled, raw_values, scaler, n_batch, n_epochs, n_neurons)
pyplot.plot(history['train'], color='blue')
pyplot.plot(history['test'], color='orange')
print('%d) TrainRMSE=%f, TestRMSE=%f' % (i+1, history['train'].iloc[-1], history['test'].iloc[-1]))
pyplot.savefig('diagnostic_baseline.png')
# entry point
run()
```
運行診斷程序打印最終訓練并測試每次運行的 RMSE。更有趣的是創建的最終線圖。
線圖顯示了每個訓練時期之后的訓練 RMSE(藍色)和測試 RMSE(橙色)。
在這種情況下,診斷圖顯示訓練和測試 RMSE 穩定下降到大約 400-500 個時期,此后似乎可能發生一些過度擬合。這表現為訓練 RMSE 的持續下降和測試 RMSE 的增加。

洗發水銷售數據集基線模型的診斷線圖
## 輸入 dropout
Dropout 可以應用于 LSTM 節點內的輸入連接。
輸入的丟失意味著對于給定的概率,每個 LSTM 塊的輸入連接上的數據將從節點激活和權重更新中排除。
在 Keras 中,在創建 LSTM 層時使用 _dropout_ 參數指定。丟失值是 0(無丟失)和 1(無連接)之間的百分比。
在這個實驗中,我們將比較沒有 dropout 率和 20%,40%和 60%的輸入 dropout 率。
下面列出了更新的 _fit_lstm()_,_ 實驗()_ 和 _run()_ 函數,用于將輸入丟失與 LSTM 一起使用。
```py
# fit an LSTM network to training data
def fit_lstm(train, n_batch, nb_epoch, n_neurons, dropout):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
model = Sequential()
model.add(LSTM(n_neurons, batch_input_shape=(n_batch, X.shape[1], X.shape[2]), stateful=True, dropout=dropout))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=n_batch, verbose=0, shuffle=False)
model.reset_states()
return model
# run a repeated experiment
def experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons, dropout):
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# run experiment
error_scores = list()
for r in range(n_repeats):
# fit the model
train_trimmed = train_scaled[2:, :]
lstm_model = fit_lstm(train_trimmed, n_batch, n_epochs, n_neurons, dropout)
# forecast test dataset
test_reshaped = test_scaled[:,0:-1]
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, 1)
output = lstm_model.predict(test_reshaped, batch_size=n_batch)
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
X = test_scaled[i, 0:-1]
# invert scaling
yhat = invert_scale(scaler, X, yhat)
# invert differencing
yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('%d) Test RMSE: %.3f' % (r+1, rmse))
error_scores.append(rmse)
return error_scores
# configure the experiment
def run():
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# configure the experiment
n_lag = 1
n_repeats = 30
n_epochs = 1000
n_batch = 4
n_neurons = 3
n_dropout = [0.0, 0.2, 0.4, 0.6]
# run the experiment
results = DataFrame()
for dropout in n_dropout:
results[str(dropout)] = experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons, dropout)
# summarize results
print(results.describe())
# save boxplot
results.boxplot()
pyplot.savefig('experiment_dropout_input.png')
```
運行此實驗會打印每個已評估配置的描述性統計信息。
結果表明,平均輸入 dropout 率為 40%會帶來更好的表現,但 dropout 率為 20%,40%和 60%的平均結果之間的差異非常小。所有人似乎都勝過 dropout。
```py
0.0 0.2 0.4 0.6
count 30.000000 30.000000 30.000000 30.000000
mean 97.578280 89.448450 88.957421 89.810789
std 7.927639 5.807239 4.070037 3.467317
min 84.749785 81.315336 80.662878 84.300135
25% 92.520968 84.712064 85.885858 87.766818
50% 97.324110 88.109654 88.790068 89.585945
75% 101.258252 93.642621 91.515127 91.109452
max 123.578235 104.528209 96.687333 99.660331
```
還會創建一個框和胡須圖來比較每個配置的結果分布。
該圖顯示結果的擴散隨輸入 dropout 的增加而減少。該圖還表明輸入丟失率為 20%可能略低于中值測試 RMSE。
結果確實鼓勵對所選 LSTM 配置使用一些輸入丟失,可能設置為 40%。

洗發水銷售數據集中輸入 dropout 表現的盒子和晶須圖
我們可以查看 40%的輸入丟失如何影響模型的動態,同時適合訓練數據。
下面的代碼總結了 _fit_lstm()_ 和 _run()_ 函數與診斷腳本基線版本的更新。
```py
# fit an LSTM network to training data
def fit_lstm(train, test, raw, scaler, batch_size, nb_epoch, neurons, dropout):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
# prepare model
model = Sequential()
model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True, dropout=dropout))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# fit model
train_rmse, test_rmse = list(), list()
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
model.reset_states()
# evaluate model on train data
raw_train = raw[-(len(train)+len(test)+1):-len(test)]
train_rmse.append(evaluate(model, raw_train, train, scaler, 0, batch_size))
# evaluate model on test data
raw_test = raw[-(len(test)+1):]
test_rmse.append(evaluate(model, raw_test, test, scaler, 0, batch_size))
history = DataFrame()
history['train'], history['test'] = train_rmse, test_rmse
return history
# run diagnostic experiments
def run():
# config
n_lag = 1
n_repeats = 10
n_epochs = 1000
n_batch = 4
n_neurons = 3
dropout = 0.4
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# fit and evaluate model
train_trimmed = train_scaled[2:, :]
# run diagnostic tests
for i in range(n_repeats):
history = fit_lstm(train_trimmed, test_scaled, raw_values, scaler, n_batch, n_epochs, n_neurons, dropout)
pyplot.plot(history['train'], color='blue')
pyplot.plot(history['test'], color='orange')
print('%d) TrainRMSE=%f, TestRMSE=%f' % (i+1, history['train'].iloc[-1], history['test'].iloc[-1]))
pyplot.savefig('diagnostic_dropout_input.png')
```
運行更新的診斷會在每個訓練時期之后創建訓練圖并測試模型的 RMSE 表現以及輸入丟失。
結果顯示在訓練上明顯增加了凸起并測試了 RMSE 軌跡,這在測試 RMSE 分數上更為明顯。
我們還可以看到過度擬合的癥狀已經通過測試 RMSE 在整個 1000 個時期內持續下降來解決,這可能表明需要額外的訓練時期來利用這種行為。

洗發水銷售數據集中輸入 dropout 表現的診斷線圖
## 經常性 dropout
丟失也可以應用于 LSTM 單元上的循環輸入信號。
在 Keras 中,這是通過在定義 LSTM 層時設置 _recurrent_dropout_ 參數來實現的。
在這個實驗中,我們將比較沒有 dropout 率與 20%,40%和 60%的復發 dropout 率。
下面列出了更新的 _fit_lstm()_,_ 實驗()_ 和 _run()_ 函數,用于將輸入丟失與 LSTM 一起使用。
```py
# fit an LSTM network to training data
def fit_lstm(train, n_batch, nb_epoch, n_neurons, dropout):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
model = Sequential()
model.add(LSTM(n_neurons, batch_input_shape=(n_batch, X.shape[1], X.shape[2]), stateful=True, recurrent_dropout=dropout))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=n_batch, verbose=0, shuffle=False)
model.reset_states()
return model
# run a repeated experiment
def experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons, dropout):
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# run experiment
error_scores = list()
for r in range(n_repeats):
# fit the model
train_trimmed = train_scaled[2:, :]
lstm_model = fit_lstm(train_trimmed, n_batch, n_epochs, n_neurons, dropout)
# forecast test dataset
test_reshaped = test_scaled[:,0:-1]
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, 1)
output = lstm_model.predict(test_reshaped, batch_size=n_batch)
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
X = test_scaled[i, 0:-1]
# invert scaling
yhat = invert_scale(scaler, X, yhat)
# invert differencing
yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('%d) Test RMSE: %.3f' % (r+1, rmse))
error_scores.append(rmse)
return error_scores
# configure the experiment
def run():
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# configure the experiment
n_lag = 1
n_repeats = 30
n_epochs = 1000
n_batch = 4
n_neurons = 3
n_dropout = [0.0, 0.2, 0.4, 0.6]
# run the experiment
results = DataFrame()
for dropout in n_dropout:
results[str(dropout)] = experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons, dropout)
# summarize results
print(results.describe())
# save boxplot
results.boxplot()
pyplot.savefig('experiment_dropout_recurrent.png')
```
運行此實驗會打印每個已評估配置的描述性統計信息。
平均結果表明,平均復發性 dropout 率為 20%或 40%是首選,但總體而言,結果并不比基線好多少。
```py
0.0 0.2 0.4 0.6
count 30.000000 30.000000 30.000000 30.000000
mean 95.743719 93.658016 93.706112 97.354599
std 9.222134 7.318882 5.591550 5.626212
min 80.144342 83.668154 84.585629 87.215540
25% 88.336066 87.071944 89.859503 93.940016
50% 96.703481 92.522428 92.698024 97.119864
75% 101.902782 100.554822 96.252689 100.915336
max 113.400863 106.222955 104.347850 114.160922
```
還會創建一個框和胡須圖來比較每個配置的結果分布。
該圖顯示了更緊密的分布,反復 dropout 率為 40%,相比之下,20%和基線,可能使這種配置更可取。該圖還強調,當使用反復丟失時,分布中的最小(最佳)測試 RMSE 似乎已受到影響,從而提供更差的表現。

洗發水銷售數據集中反復 dropout 表現的盒子和晶須圖
我們可以查看 40%的經常性 dropout 率如何影響模型的動態,同時適合訓練數據。
下面的代碼總結了 _fit_lstm()_ 和 _run()_ 函數與診斷腳本基線版本的更新。
```py
# fit an LSTM network to training data
def fit_lstm(train, test, raw, scaler, batch_size, nb_epoch, neurons, dropout):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
# prepare model
model = Sequential()
model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True, recurrent_dropout=dropout))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# fit model
train_rmse, test_rmse = list(), list()
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
model.reset_states()
# evaluate model on train data
raw_train = raw[-(len(train)+len(test)+1):-len(test)]
train_rmse.append(evaluate(model, raw_train, train, scaler, 0, batch_size))
# evaluate model on test data
raw_test = raw[-(len(test)+1):]
test_rmse.append(evaluate(model, raw_test, test, scaler, 0, batch_size))
history = DataFrame()
history['train'], history['test'] = train_rmse, test_rmse
return history
# run diagnostic experiments
def run():
# config
n_lag = 1
n_repeats = 10
n_epochs = 1000
n_batch = 4
n_neurons = 3
dropout = 0.4
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# fit and evaluate model
train_trimmed = train_scaled[2:, :]
# run diagnostic tests
for i in range(n_repeats):
history = fit_lstm(train_trimmed, test_scaled, raw_values, scaler, n_batch, n_epochs, n_neurons, dropout)
pyplot.plot(history['train'], color='blue')
pyplot.plot(history['test'], color='orange')
print('%d) TrainRMSE=%f, TestRMSE=%f' % (i+1, history['train'].iloc[-1], history['test'].iloc[-1]))
pyplot.savefig('diagnostic_dropout_recurrent.png')
```
運行更新的診斷會在每個訓練時期之后創建訓練圖并測試模型的 RMSE 表現以及輸入丟失。
該圖顯示了測試 RMSE 跡線上增加的凸起,對訓練 RMSE 跡線幾乎沒有影響。該圖還表明,在大約 500 個時期之后,如果不是測試 RMSE 的增加趨勢,則該平臺也是如此。
至少在這個 LSTM 配置和這個問題上,可能反復發生的丟失可能不會增加太多價值。

洗發水銷售數據集中經常性 dropout 表現的診斷線圖
## 擴展
本節列出了在完成本教程后您可能希望考慮進一步實驗的一些想法。
* **輸入層丟失**。可能值得探討在輸入層上使用壓差以及它如何影響 LSTM 的表現和過度擬合。
* **組合輸入和循環**。可能值得探索輸入和重復丟失的組合,以查看是否可以提供任何額外的好處。
* **其他正則化方法**。使用 LSTM 網絡探索其他正則化方法可能是值得的,例如各種輸入,循環和偏置權重正則化函數。
## 進一步閱讀
有關在 Keras 中使用 MLP 模型退出的更多信息,請參閱帖子:
* [具有 Keras 的深度學習模型中的丟失正則化](http://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/)
以下是一些關于 LSTM 網絡 dropout 的論文,您可能會發現這些論文對于進一步閱讀非常有用。
* [循環神經網絡正則化](https://arxiv.org/abs/1409.2329)
* [dropout 在循環神經網絡中的理論基礎應用](https://arxiv.org/abs/1512.05287)
* [Dropout 改進了手寫識別的循環神經網絡](https://arxiv.org/abs/1312.4569)
## 摘要
在本教程中,您了解了如何將 dropout 與 LSTM 一起用于時間序列預測。
具體來說,你學到了:
* 如何設計一個強大的測試工具來評估 LSTM 網絡的時間序列預測。
* 如何在 LSTM 上配置輸入權重丟失以進行時間序列預測。
* 如何在 LSTM 上配置循環重量丟失以進行時間序列預測。
您對使用 LSTM 網絡的丟失有任何疑問嗎?
在下面的評論中提出您的問題,我會盡力回答。
- Machine Learning Mastery 應用機器學習教程
- 5競爭機器學習的好處
- 過度擬合的簡單直覺,或者為什么測試訓練數據是一個壞主意
- 特征選擇簡介
- 應用機器學習作為一個搜索問題的溫和介紹
- 為什么應用機器學習很難
- 為什么我的結果不如我想的那么好?你可能過度擬合了
- 用ROC曲線評估和比較分類器表現
- BigML評論:發現本機學習即服務平臺的聰明功能
- BigML教程:開發您的第一個決策樹并進行預測
- 構建生產機器學習基礎設施
- 分類準確性不夠:可以使用更多表現測量
- 一種預測模型的巧妙應用
- 機器學習項目中常見的陷阱
- 數據清理:將凌亂的數據轉換為整潔的數據
- 機器學習中的數據泄漏
- 數據,學習和建模
- 數據管理至關重要以及為什么需要認真對待它
- 將預測模型部署到生產中
- 參數和超參數之間有什么區別?
- 測試和驗證數據集之間有什么區別?
- 發現特征工程,如何設計特征以及如何獲得它
- 如何開始使用Kaggle
- 超越預測
- 如何在評估機器學習算法時選擇正確的測試選項
- 如何定義機器學習問題
- 如何評估機器學習算法
- 如何獲得基線結果及其重要性
- 如何充分利用機器學習數據
- 如何識別數據中的異常值
- 如何提高機器學習效果
- 如何在競爭機器學習中踢屁股
- 如何知道您的機器學習模型是否具有良好的表現
- 如何布局和管理您的機器學習項目
- 如何為機器學習準備數據
- 如何減少最終機器學習模型中的方差
- 如何使用機器學習結果
- 如何解決像數據科學家這樣的問題
- 通過數據預處理提高模型精度
- 處理機器學習的大數據文件的7種方法
- 建立機器學習系統的經驗教訓
- 如何使用機器學習清單可靠地獲得準確的預測(即使您是初學者)
- 機器學習模型運行期間要做什么
- 機器學習表現改進備忘單
- 來自世界級從業者的機器學習技巧:Phil Brierley
- 模型預測精度與機器學習中的解釋
- 競爭機器學習的模型選擇技巧
- 機器學習需要多少訓練數據?
- 如何系統地規劃和運行機器學習實驗
- 應用機器學習過程
- 默認情況下可重現的機器學習結果
- 10個實踐應用機器學習的標準數據集
- 簡單的三步法到最佳機器學習算法
- 打擊機器學習數據集中不平衡類的8種策略
- 模型表現不匹配問題(以及如何處理)
- 黑箱機器學習的誘惑陷阱
- 如何培養最終的機器學習模型
- 使用探索性數據分析了解您的問題并獲得更好的結果
- 什么是數據挖掘和KDD
- 為什么One-Hot在機器學習中編碼數據?
- 為什么你應該在你的機器學習問題上進行抽樣檢查算法
- 所以,你正在研究機器學習問題......
- Machine Learning Mastery Keras 深度學習教程
- Keras 中神經網絡模型的 5 步生命周期
- 在 Python 迷你課程中應用深度學習
- Keras 深度學習庫的二元分類教程
- 如何用 Keras 構建多層感知器神經網絡模型
- 如何在 Keras 中檢查深度學習模型
- 10 個用于 Amazon Web Services 深度學習的命令行秘籍
- 機器學習卷積神經網絡的速成課程
- 如何在 Python 中使用 Keras 進行深度學習的度量
- 深度學習書籍
- 深度學習課程
- 你所知道的深度學習是一種謊言
- 如何設置 Amazon AWS EC2 GPU 以訓練 Keras 深度學習模型(分步)
- 神經網絡中批量和迭代之間的區別是什么?
- 在 Keras 展示深度學習模型訓練歷史
- 基于 Keras 的深度學習模型中的dropout正則化
- 評估 Keras 中深度學習模型的表現
- 如何評價深度學習模型的技巧
- 小批量梯度下降的簡要介紹以及如何配置批量大小
- 在 Keras 中獲得深度學習幫助的 9 種方法
- 如何使用 Keras 在 Python 中網格搜索深度學習模型的超參數
- 用 Keras 在 Python 中使用卷積神經網絡進行手寫數字識別
- 如何用 Keras 進行預測
- 用 Keras 進行深度學習的圖像增強
- 8 個深度學習的鼓舞人心的應用
- Python 深度學習庫 Keras 簡介
- Python 深度學習庫 TensorFlow 簡介
- Python 深度學習庫 Theano 簡介
- 如何使用 Keras 函數式 API 進行深度學習
- Keras 深度學習庫的多類分類教程
- 多層感知器神經網絡速成課程
- 基于卷積神經網絡的 Keras 深度學習庫中的目標識別
- 流行的深度學習庫
- 用深度學習預測電影評論的情感
- Python 中的 Keras 深度學習庫的回歸教程
- 如何使用 Keras 獲得可重現的結果
- 如何在 Linux 服務器上運行深度學習實驗
- 保存并加載您的 Keras 深度學習模型
- 用 Keras 逐步開發 Python 中的第一個神經網絡
- 用 Keras 理解 Python 中的有狀態 LSTM 循環神經網絡
- 在 Python 中使用 Keras 深度學習模型和 Scikit-Learn
- 如何使用預訓練的 VGG 模型對照片中的物體進行分類
- 在 Python 和 Keras 中對深度學習模型使用學習率調度
- 如何在 Keras 中可視化深度學習神經網絡模型
- 什么是深度學習?
- 何時使用 MLP,CNN 和 RNN 神經網絡
- 為什么用隨機權重初始化神經網絡?
- Machine Learning Mastery 深度學習 NLP 教程
- 深度學習在自然語言處理中的 7 個應用
- 如何實現自然語言處理的波束搜索解碼器
- 深度學習文檔分類的最佳實踐
- 關于自然語言處理的熱門書籍
- 在 Python 中計算文本 BLEU 分數的溫和介紹
- 使用編碼器 - 解碼器模型的用于字幕生成的注入和合并架構
- 如何用 Python 清理機器學習的文本
- 如何配置神經機器翻譯的編碼器 - 解碼器模型
- 如何開始深度學習自然語言處理(7 天迷你課程)
- 自然語言處理的數據集
- 如何開發一種深度學習的詞袋模型來預測電影評論情感
- 深度學習字幕生成模型的溫和介紹
- 如何在 Keras 中定義神經機器翻譯的編碼器 - 解碼器序列 - 序列模型
- 如何利用小實驗在 Keras 中開發字幕生成模型
- 如何從頭開發深度學習圖片標題生成器
- 如何在 Keras 中開發基于字符的神經語言模型
- 如何開發用于情感分析的 N-gram 多通道卷積神經網絡
- 如何從零開始開發神經機器翻譯系統
- 如何在 Python 中用 Keras 開發基于單詞的神經語言模型
- 如何開發一種預測電影評論情感的詞嵌入模型
- 如何使用 Gensim 在 Python 中開發詞嵌入
- 用于文本摘要的編碼器 - 解碼器深度學習模型
- Keras 中文本摘要的編碼器 - 解碼器模型
- 用于神經機器翻譯的編碼器 - 解碼器循環神經網絡模型
- 淺談詞袋模型
- 文本摘要的溫和介紹
- 編碼器 - 解碼器循環神經網絡中的注意力如何工作
- 如何利用深度學習自動生成照片的文本描述
- 如何開發一個單詞級神經語言模型并用它來生成文本
- 淺談神經機器翻譯
- 什么是自然語言處理?
- 牛津自然語言處理深度學習課程
- 如何為機器翻譯準備法語到英語的數據集
- 如何為情感分析準備電影評論數據
- 如何為文本摘要準備新聞文章
- 如何準備照片標題數據集以訓練深度學習模型
- 如何使用 Keras 為深度學習準備文本數據
- 如何使用 scikit-learn 為機器學習準備文本數據
- 自然語言處理神經網絡模型入門
- 對自然語言處理的深度學習的承諾
- 在 Python 中用 Keras 進行 LSTM 循環神經網絡的序列分類
- 斯坦福自然語言處理深度學習課程評價
- 統計語言建模和神經語言模型的簡要介紹
- 使用 Keras 在 Python 中進行 LSTM 循環神經網絡的文本生成
- 淺談機器學習中的轉換
- 如何使用 Keras 將詞嵌入層用于深度學習
- 什么是用于文本的詞嵌入
- Machine Learning Mastery 深度學習時間序列教程
- 如何開發人類活動識別的一維卷積神經網絡模型
- 人類活動識別的深度學習模型
- 如何評估人類活動識別的機器學習算法
- 時間序列預測的多層感知器網絡探索性配置
- 比較經典和機器學習方法進行時間序列預測的結果
- 如何通過深度學習快速獲得時間序列預測的結果
- 如何利用 Python 處理序列預測問題中的缺失時間步長
- 如何建立預測大氣污染日的概率預測模型
- 如何開發一種熟練的機器學習時間序列預測模型
- 如何構建家庭用電自回歸預測模型
- 如何開發多步空氣污染時間序列預測的自回歸預測模型
- 如何制定多站點多元空氣污染時間序列預測的基線預測
- 如何開發時間序列預測的卷積神經網絡模型
- 如何開發卷積神經網絡用于多步時間序列預測
- 如何開發單變量時間序列預測的深度學習模型
- 如何開發 LSTM 模型用于家庭用電的多步時間序列預測
- 如何開發 LSTM 模型進行時間序列預測
- 如何開發多元多步空氣污染時間序列預測的機器學習模型
- 如何開發多層感知器模型進行時間序列預測
- 如何開發人類活動識別時間序列分類的 RNN 模型
- 如何開始深度學習的時間序列預測(7 天迷你課程)
- 如何網格搜索深度學習模型進行時間序列預測
- 如何對單變量時間序列預測的網格搜索樸素方法
- 如何在 Python 中搜索 SARIMA 模型超參數用于時間序列預測
- 如何在 Python 中進行時間序列預測的網格搜索三次指數平滑
- 一個標準的人類活動識別問題的溫和介紹
- 如何加載和探索家庭用電數據
- 如何加載,可視化和探索復雜的多變量多步時間序列預測數據集
- 如何從智能手機數據模擬人類活動
- 如何根據環境因素預測房間占用率
- 如何使用腦波預測人眼是開放還是閉合
- 如何在 Python 中擴展長短期內存網絡的數據
- 如何使用 TimeseriesGenerator 進行 Keras 中的時間序列預測
- 基于機器學習算法的室內運動時間序列分類
- 用于時間序列預測的狀態 LSTM 在線學習的不穩定性
- 用于罕見事件時間序列預測的 LSTM 模型體系結構
- 用于時間序列預測的 4 種通用機器學習數據變換
- Python 中長短期記憶網絡的多步時間序列預測
- 家庭用電機器學習的多步時間序列預測
- Keras 中 LSTM 的多變量時間序列預測
- 如何開發和評估樸素的家庭用電量預測方法
- 如何為長短期記憶網絡準備單變量時間序列數據
- 循環神經網絡在時間序列預測中的應用
- 如何在 Python 中使用差異變換刪除趨勢和季節性
- 如何在 LSTM 中種子狀態用于 Python 中的時間序列預測
- 使用 Python 進行時間序列預測的有狀態和無狀態 LSTM
- 長短時記憶網絡在時間序列預測中的適用性
- 時間序列預測問題的分類
- Python 中長短期記憶網絡的時間序列預測
- 基于 Keras 的 Python 中 LSTM 循環神經網絡的時間序列預測
- Keras 中深度學習的時間序列預測
- 如何用 Keras 調整 LSTM 超參數進行時間序列預測
- 如何在時間序列預測訓練期間更新 LSTM 網絡
- 如何使用 LSTM 網絡的 Dropout 進行時間序列預測
- 如何使用 LSTM 網絡中的特征進行時間序列預測
- 如何在 LSTM 網絡中使用時間序列進行時間序列預測
- 如何利用 LSTM 網絡進行權重正則化進行時間序列預測
- Machine Learning Mastery 線性代數教程
- 機器學習數學符號的基礎知識
- 用 NumPy 陣列輕松介紹廣播
- 如何從 Python 中的 Scratch 計算主成分分析(PCA)
- 用于編碼器審查的計算線性代數
- 10 機器學習中的線性代數示例
- 線性代數的溫和介紹
- 用 NumPy 輕松介紹 Python 中的 N 維數組
- 機器學習向量的溫和介紹
- 如何在 Python 中為機器學習索引,切片和重塑 NumPy 數組
- 機器學習的矩陣和矩陣算法簡介
- 溫和地介紹機器學習的特征分解,特征值和特征向量
- NumPy 對預期價值,方差和協方差的簡要介紹
- 機器學習矩陣分解的溫和介紹
- 用 NumPy 輕松介紹機器學習的張量
- 用于機器學習的線性代數中的矩陣類型簡介
- 用于機器學習的線性代數備忘單
- 線性代數的深度學習
- 用于機器學習的線性代數(7 天迷你課程)
- 機器學習的線性代數
- 機器學習矩陣運算的溫和介紹
- 線性代數評論沒有廢話指南
- 學習機器學習線性代數的主要資源
- 淺談機器學習的奇異值分解
- 如何用線性代數求解線性回歸
- 用于機器學習的稀疏矩陣的溫和介紹
- 機器學習中向量規范的溫和介紹
- 學習線性代數用于機器學習的 5 個理由
- Machine Learning Mastery LSTM 教程
- Keras中長短期記憶模型的5步生命周期
- 長短時記憶循環神經網絡的注意事項
- CNN長短期記憶網絡
- 逆向神經網絡中的深度學習速成課程
- 可變長度輸入序列的數據準備
- 如何用Keras開發用于Python序列分類的雙向LSTM
- 如何開發Keras序列到序列預測的編碼器 - 解碼器模型
- 如何診斷LSTM模型的過度擬合和欠擬合
- 如何開發一種編碼器 - 解碼器模型,注重Keras中的序列到序列預測
- 編碼器 - 解碼器長短期存儲器網絡
- 神經網絡中爆炸梯度的溫和介紹
- 對時間反向傳播的溫和介紹
- 生成長短期記憶網絡的溫和介紹
- 專家對長短期記憶網絡的簡要介紹
- 在序列預測問題上充分利用LSTM
- 編輯器 - 解碼器循環神經網絡全局注意的溫和介紹
- 如何利用長短時記憶循環神經網絡處理很長的序列
- 如何在Python中對一個熱編碼序列數據
- 如何使用編碼器 - 解碼器LSTM來回顯隨機整數序列
- 具有注意力的編碼器 - 解碼器RNN體系結構的實現模式
- 學習使用編碼器解碼器LSTM循環神經網絡添加數字
- 如何學習長短時記憶循環神經網絡回聲隨機整數
- 具有Keras的長短期記憶循環神經網絡的迷你課程
- LSTM自動編碼器的溫和介紹
- 如何用Keras中的長短期記憶模型進行預測
- 用Python中的長短期內存網絡演示內存
- 基于循環神經網絡的序列預測模型的簡要介紹
- 深度學習的循環神經網絡算法之旅
- 如何重塑Keras中長短期存儲網絡的輸入數據
- 了解Keras中LSTM的返回序列和返回狀態之間的差異
- RNN展開的溫和介紹
- 5學習LSTM循環神經網絡的簡單序列預測問題的例子
- 使用序列進行預測
- 堆疊長短期內存網絡
- 什么是教師強制循環神經網絡?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何準備Keras中截斷反向傳播的序列預測
- 如何在使用LSTM進行訓練和預測時使用不同的批量大小
- Machine Learning Mastery 機器學習算法教程
- 機器學習算法之旅
- 用于機器學習的裝袋和隨機森林集合算法
- 從頭開始實施機器學習算法的好處
- 更好的樸素貝葉斯:從樸素貝葉斯算法中獲取最多的12個技巧
- 機器學習的提升和AdaBoost
- 選擇機器學習算法:Microsoft Azure的經驗教訓
- 機器學習的分類和回歸樹
- 什么是機器學習中的混淆矩陣
- 如何使用Python從頭開始創建算法測試工具
- 通過創建機器學習算法的目標列表來控制
- 從頭開始停止編碼機器學習算法
- 在實現機器學習算法時,不要從開源代碼開始
- 不要使用隨機猜測作為基線分類器
- 淺談機器學習中的概念漂移
- 溫和介紹機器學習中的偏差 - 方差權衡
- 機器學習的梯度下降
- 機器學習算法如何工作(他們學習輸入到輸出的映射)
- 如何建立機器學習算法的直覺
- 如何實現機器學習算法
- 如何研究機器學習算法行為
- 如何學習機器學習算法
- 如何研究機器學習算法
- 如何研究機器學習算法
- 如何在Python中從頭開始實現反向傳播算法
- 如何用Python從頭開始實現Bagging
- 如何用Python從頭開始實現基線機器學習算法
- 如何在Python中從頭開始實現決策樹算法
- 如何用Python從頭開始實現學習向量量化
- 如何利用Python從頭開始隨機梯度下降實現線性回歸
- 如何利用Python從頭開始隨機梯度下降實現Logistic回歸
- 如何用Python從頭開始實現機器學習算法表現指標
- 如何在Python中從頭開始實現感知器算法
- 如何在Python中從零開始實現隨機森林
- 如何在Python中從頭開始實現重采樣方法
- 如何用Python從頭開始實現簡單線性回歸
- 如何用Python從頭開始實現堆棧泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 學習機器學習的向量量化
- 機器學習的線性判別分析
- 機器學習的線性回歸
- 使用梯度下降進行機器學習的線性回歸教程
- 如何在Python中從頭開始加載機器學習數據
- 機器學習的Logistic回歸
- 機器學習的Logistic回歸教程
- 機器學習算法迷你課程
- 如何在Python中從頭開始實現樸素貝葉斯
- 樸素貝葉斯機器學習
- 樸素貝葉斯機器學習教程
- 機器學習算法的過擬合和欠擬合
- 參數化和非參數機器學習算法
- 理解任何機器學習算法的6個問題
- 在機器學習中擁抱隨機性
- 如何使用Python從頭開始擴展機器學習數據
- 機器學習的簡單線性回歸教程
- 有監督和無監督的機器學習算法
- 用于機器學習的支持向量機
- 在沒有數學背景的情況下理解機器學習算法的5種技術
- 最好的機器學習算法
- 教程從頭開始在Python中實現k-Nearest Neighbors
- 通過從零開始實現它們來理解機器學習算法(以及繞過壞代碼的策略)
- 使用隨機森林:在121個數據集上測試179個分類器
- 為什么從零開始實現機器學習算法
- Machine Learning Mastery 機器學習入門教程
- 機器學習入門的四個步驟:初學者入門與實踐的自上而下策略
- 你應該培養的 5 個機器學習領域
- 一種選擇機器學習算法的數據驅動方法
- 機器學習中的分析與數值解
- 應用機器學習是一種精英政治
- 機器學習的基本概念
- 如何成為數據科學家
- 初學者如何在機器學習中弄錯
- 機器學習的最佳編程語言
- 構建機器學習組合
- 機器學習中分類與回歸的區別
- 評估自己作為數據科學家并利用結果建立驚人的數據科學團隊
- 探索 Kaggle 大師的方法論和心態:對 Diogo Ferreira 的采訪
- 擴展機器學習工具并展示掌握
- 通過尋找地標開始機器學習
- 溫和地介紹預測建模
- 通過提供結果在機器學習中獲得夢想的工作
- 如何開始機器學習:自學藍圖
- 開始并在機器學習方面取得進展
- 應用機器學習的 Hello World
- 初學者如何使用小型項目開始機器學習并在 Kaggle 上進行競爭
- 我如何開始機器學習? (簡短版)
- 我是如何開始機器學習的
- 如何在機器學習中取得更好的成績
- 如何從在銀行工作到擔任 Target 的高級數據科學家
- 如何學習任何機器學習工具
- 使用小型目標項目深入了解機器學習工具
- 獲得付費申請機器學習
- 映射機器學習工具的景觀
- 機器學習開發環境
- 機器學習金錢
- 程序員的機器學習
- 機器學習很有意思
- 機器學習是 Kaggle 比賽
- 機器學習現在很受歡迎
- 機器學習掌握方法
- 機器學習很重要
- 機器學習 Q& A:概念漂移,更好的結果和學習更快
- 缺乏自學機器學習的路線圖
- 機器學習很重要
- 快速了解任何機器學習工具(即使您是初學者)
- 機器學習工具
- 找到你的機器學習部落
- 機器學習在一年
- 通過競爭一致的大師 Kaggle
- 5 程序員在機器學習中開始犯錯誤
- 哲學畢業生到機器學習從業者(Brian Thomas 采訪)
- 機器學習入門的實用建議
- 實用機器學習問題
- 使用來自 UCI 機器學習庫的數據集練習機器學習
- 使用秘籍的任何機器學習工具快速啟動
- 程序員可以進入機器學習
- 程序員應該進入機器學習
- 項目焦點:Shashank Singh 的人臉識別
- 項目焦點:使用 Mahout 和 Konstantin Slisenko 進行堆棧交換群集
- 機器學習自學指南
- 4 個自學機器學習項目
- álvaroLemos 如何在數據科學團隊中獲得機器學習實習
- 如何思考機器學習
- 現實世界機器學習問題之旅
- 有關機器學習的有用知識
- 如果我沒有學位怎么辦?
- 如果我不是一個優秀的程序員怎么辦?
- 如果我不擅長數學怎么辦?
- 為什么機器學習算法會處理以前從未見過的數據?
- 是什么阻礙了你的機器學習目標?
- 什么是機器學習?
- 機器學習適合哪里?
- 為什么要進入機器學習?
- 研究對您來說很重要的機器學習問題
- 你這樣做是錯的。為什么機器學習不必如此困難
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的溫和介紹:Python 機器學習庫
- 使用 Python 管道和 scikit-learn 自動化機器學習工作流程
- 如何以及何時使用帶有 scikit-learn 的校準分類模型
- 如何比較 Python 中的機器學習算法與 scikit-learn
- 用于機器學習開發人員的 Python 崩潰課程
- 用 scikit-learn 在 Python 中集成機器學習算法
- 使用重采樣評估 Python 中機器學習算法的表現
- 使用 Scikit-Learn 在 Python 中進行特征選擇
- Python 中機器學習的特征選擇
- 如何使用 scikit-learn 在 Python 中生成測試數據集
- scikit-learn 中的機器學習算法秘籍
- 如何使用 Python 處理丟失的數據
- 如何開始使用 Python 進行機器學習
- 如何使用 Scikit-Learn 在 Python 中加載數據
- Python 中概率評分方法的簡要介紹
- 如何用 Scikit-Learn 調整算法參數
- 如何在 Mac OS X 上安裝 Python 3 環境以進行機器學習和深度學習
- 使用 scikit-learn 進行機器學習簡介
- 從 shell 到一本帶有 Fernando Perez 單一工具的書的 IPython
- 如何使用 Python 3 為機器學習開發創建 Linux 虛擬機
- 如何在 Python 中加載機器學習數據
- 您在 Python 中的第一個機器學習項目循序漸進
- 如何使用 scikit-learn 進行預測
- 用于評估 Python 中機器學習算法的度量標準
- 使用 Pandas 為 Python 中的機器學習準備數據
- 如何使用 Scikit-Learn 為 Python 機器學習準備數據
- 項目焦點:使用 Artem Yankov 在 Python 中進行事件推薦
- 用于機器學習的 Python 生態系統
- Python 是應用機器學習的成長平臺
- Python 機器學習書籍
- Python 機器學習迷你課程
- 使用 Pandas 快速和骯臟的數據分析
- 使用 Scikit-Learn 重新調整 Python 中的機器學習數據
- 如何以及何時使用 ROC 曲線和精確調用曲線進行 Python 分類
- 使用 scikit-learn 在 Python 中保存和加載機器學習模型
- scikit-learn Cookbook 書評
- 如何使用 Anaconda 為機器學習和深度學習設置 Python 環境
- 使用 scikit-learn 在 Python 中進行 Spot-Check 分類機器學習算法
- 如何在 Python 中開發可重復使用的抽樣檢查算法框架
- 使用 scikit-learn 在 Python 中進行 Spot-Check 回歸機器學習算法
- 使用 Python 中的描述性統計來了解您的機器學習數據
- 使用 OpenCV,Python 和模板匹配來播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可視化機器學習數據
- Machine Learning Mastery 統計學教程
- 淺談計算正態匯總統計量
- 非參數統計的溫和介紹
- Python中常態測試的溫和介紹
- 淺談Bootstrap方法
- 淺談機器學習的中心極限定理
- 淺談機器學習中的大數定律
- 機器學習的所有統計數據
- 如何計算Python中機器學習結果的Bootstrap置信區間
- 淺談機器學習的Chi-Squared測試
- 機器學習的置信區間
- 隨機化在機器學習中解決混雜變量的作用
- 機器學習中的受控實驗
- 機器學習統計學速成班
- 統計假設檢驗的關鍵值以及如何在Python中計算它們
- 如何在機器學習中談論數據(統計學和計算機科學術語)
- Python中數據可視化方法的簡要介紹
- Python中效果大小度量的溫和介紹
- 估計隨機機器學習算法的實驗重復次數
- 機器學習評估統計的溫和介紹
- 如何計算Python中的非參數秩相關性
- 如何在Python中計算數據的5位數摘要
- 如何在Python中從頭開始編寫學生t檢驗
- 如何在Python中生成隨機數
- 如何轉換數據以更好地擬合正態分布
- 如何使用相關來理解變量之間的關系
- 如何使用統計信息識別數據中的異常值
- 用于Python機器學習的隨機數生成器簡介
- k-fold交叉驗證的溫和介紹
- 如何計算McNemar的比較兩種機器學習量詞的測試
- Python中非參數統計顯著性測試簡介
- 如何在Python中使用參數統計顯著性測試
- 機器學習的預測間隔
- 應用統計學與機器學習的密切關系
- 如何使用置信區間報告分類器表現
- 統計數據分布的簡要介紹
- 15 Python中的統計假設檢驗(備忘單)
- 統計假設檢驗的溫和介紹
- 10如何在機器學習項目中使用統計方法的示例
- Python中統計功效和功耗分析的簡要介紹
- 統計抽樣和重新抽樣的簡要介紹
- 比較機器學習算法的統計顯著性檢驗
- 機器學習中統計容差區間的溫和介紹
- 機器學習統計書籍
- 評估機器學習模型的統計數據
- 機器學習統計(7天迷你課程)
- 用于機器學習的簡明英語統計
- 如何使用統計顯著性檢驗來解釋機器學習結果
- 什么是統計(為什么它在機器學習中很重要)?
- Machine Learning Mastery 時間序列入門教程
- 如何在 Python 中為時間序列預測創建 ARIMA 模型
- 用 Python 進行時間序列預測的自回歸模型
- 如何回溯機器學習模型的時間序列預測
- Python 中基于時間序列數據的基本特征工程
- R 的時間序列預測熱門書籍
- 10 挑戰機器學習時間序列預測問題
- 如何將時間序列轉換為 Python 中的監督學習問題
- 如何將時間序列數據分解為趨勢和季節性
- 如何用 ARCH 和 GARCH 模擬波動率進行時間序列預測
- 如何將時間序列數據集與 Python 區分開來
- Python 中時間序列預測的指數平滑的溫和介紹
- 用 Python 進行時間序列預測的特征選擇
- 淺談自相關和部分自相關
- 時間序列預測的 Box-Jenkins 方法簡介
- 用 Python 簡要介紹時間序列的時間序列預測
- 如何使用 Python 網格搜索 ARIMA 模型超參數
- 如何在 Python 中加載和探索時間序列數據
- 如何使用 Python 對 ARIMA 模型進行手動預測
- 如何用 Python 進行時間序列預測的預測
- 如何使用 Python 中的 ARIMA 進行樣本外預測
- 如何利用 Python 模擬殘差錯誤來糾正時間序列預測
- 使用 Python 進行數據準備,特征工程和時間序列預測的移動平均平滑
- 多步時間序列預測的 4 種策略
- 如何在 Python 中規范化和標準化時間序列數據
- 如何利用 Python 進行時間序列預測的基線預測
- 如何使用 Python 對時間序列預測數據進行功率變換
- 用于時間序列預測的 Python 環境
- 如何重構時間序列預測問題
- 如何使用 Python 重新采樣和插值您的時間序列數據
- 用 Python 編寫 SARIMA 時間序列預測
- 如何在 Python 中保存 ARIMA 時間序列預測模型
- 使用 Python 進行季節性持久性預測
- 基于 ARIMA 的 Python 歷史規模敏感性預測技巧分析
- 簡單的時間序列預測模型進行測試,這樣你就不會欺騙自己
- 標準多變量,多步驟和多站點時間序列預測問題
- 如何使用 Python 檢查時間序列數據是否是固定的
- 使用 Python 進行時間序列數據可視化
- 7 個機器學習的時間序列數據集
- 時間序列預測案例研究與 Python:波士頓每月武裝搶劫案
- Python 的時間序列預測案例研究:巴爾的摩的年度用水量
- 使用 Python 進行時間序列預測研究:法國香檳的月銷售額
- 使用 Python 的置信區間理解時間序列預測不確定性
- 11 Python 中的經典時間序列預測方法(備忘單)
- 使用 Python 進行時間序列預測表現測量
- 使用 Python 7 天迷你課程進行時間序列預測
- 時間序列預測作為監督學習
- 什么是時間序列預測?
- 如何使用 Python 識別和刪除時間序列數據的季節性
- 如何在 Python 中使用和刪除時間序列數據中的趨勢信息
- 如何在 Python 中調整 ARIMA 參數
- 如何用 Python 可視化時間序列殘差預測錯誤
- 白噪聲時間序列與 Python
- 如何通過時間序列預測項目
- Machine Learning Mastery XGBoost 教程
- 通過在 Python 中使用 XGBoost 提前停止來避免過度擬合
- 如何在 Python 中調優 XGBoost 的多線程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 進行梯度提升的數據準備
- 如何使用 scikit-learn 在 Python 中開發您的第一個 XGBoost 模型
- 如何在 Python 中使用 XGBoost 評估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征選擇
- 淺談機器學習的梯度提升算法
- 應用機器學習的 XGBoost 簡介
- 如何在 macOS 上為 Python 安裝 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 從梯度提升開始,比較 165 個數據集上的 13 種算法
- 在 Python 中使用 XGBoost 和 scikit-learn 進行隨機梯度提升
- 如何使用 Amazon Web Services 在云中訓練 XGBoost 模型
- 在 Python 中使用 XGBoost 調整梯度提升的學習率
- 如何在 Python 中使用 XGBoost 調整決策樹的數量和大小
- 如何在 Python 中使用 XGBoost 可視化梯度提升決策樹
- 在 Python 中開始使用 XGBoost 的 7 步迷你課程