# 機器學習統計(7天迷你課程)
> 原文: [https://machinelearningmastery.com/statistics-for-machine-learning-mini-course/](https://machinelearningmastery.com/statistics-for-machine-learning-mini-course/)
### 機器學習速成課程統計。
#### _獲取7天機器學習中使用的統計數據。_
統計學是一門數學領域,普遍認為這是更深入理解機器學習的先決條件。
雖然統計數據是一個具有許多深奧理論和發現的大型領域,但機器學習從業者需要從該領域獲取的螺母和螺栓工具和符號。憑借統計數據的堅實基礎,可以專注于好的或相關的部分。
在本速成課程中,您將了解如何在七天內開始并自信地閱讀和實現使用Python進行機器學習的統計方法。
這是一個重要且重要的帖子。您可能想要將其加入書簽。
讓我們開始吧。

機器學習統計(7天迷你課程)
攝影: [Graham Cook](https://www.flickr.com/photos/grazza123/14076525468/) ,保留一些權利。
## 誰是這個崩潰課程?
在我們開始之前,讓我們確保您在正確的位置。
本課程適用于可能了解某些應用機器學習的開發人員。也許你知道如何使用流行的工具來完成預測性建模問題的端到端,或者至少是大多數主要步驟。
本課程的課程會假設您的一些事情,例如:
* 你知道你的基本Python編程方式。
* 你可能知道一些基本的NumPy用于數組操作。
* 您希望學習統計數據,以加深您對機器學習的理解和應用。
你不需要知道:
* 你不需要成為一個數學家!
* 您不需要成為機器學習專家!
這個速成課程將帶您從了解機器學習的開發人員到可以瀏覽統計方法基礎知識的開發人員。
注意:此速成課程假設您有一個至少安裝了NumPy的Python3 SciPy環境。如果您需要有關環境的幫助,可以按照此處的分步教程進行操作:
* [如何使用Anaconda設置用于機器學習和深度學習的Python環境](https://machinelearningmastery.com/setup-python-environment-machine-learning-deep-learning-anaconda/)
## 速成課程概述
這個速成課程分為七個課程。
您可以每天完成一節課(推薦)或在一天內完成所有課程(硬核)。這取決于你有空的時間和你的熱情程度。
下面列出了七個課程,這些課程將幫助您開始并提高Python中機器學習的統計數據:
* **第01課**:統計和機器學習
* **第02課**:統計學概論
* **第03課**:高斯分布和描述性統計
* **第04課**:變量之間的相關性
* **第05課**:統計假設檢驗
* **第06課**:估算統計
* **第07課**:非參數統計
每節課可能需要60秒或30分鐘。花點時間,按照自己的進度完成課程。在下面的評論中提出問題甚至發布結果。
課程期望你去學習如何做事。我會給你提示,但每節課的部分內容是強迫你學習去哪里尋求幫助以及統計方法和NumPy API以及Python中最好的工具(提示:我直接在這個博客上得到了所有的答案;使用搜索框)。
在評論中發布您的結果;我會為你加油!
掛在那里;不要放棄。
注意:這只是一個速成課程。有關更多詳細信息和充實的教程,請參閱我的書,題為“[機器學習統計方法](https://machinelearningmastery.com/statistics_for_machine_learning/)”。
## 第01課:統計和機器學習
在本課程中,您將了解機器學習從業者應該加深對統計學的理解的五個原因。
### 1.數據準備統計
在為您的機器學習模型準備訓練和測試數據時需要統計方法。
這包括以下技術:
* 異常值檢測。
* 缺少價值歸責。
* 數據采樣。
* 數據擴展。
* 變量編碼。
以及更多。
需要對數據分布,描述性統計和數據可視化有基本的了解,以幫助您確定執行這些任務時要選擇的方法。
### 2.模型評估統計
在評估機器學習模型對訓練期間未見的數據的技能時,需要統計方法。
This includes techniques for:
* 數據采樣。
* 數據重采樣。
* 實驗設計。
機器學習從業者通常很好地理解諸如k折交叉驗證之類的重采樣技術,但是為什么需要這種方法的理由卻不是。
### 3.模型選擇中的統計
在選擇用于預測建模問題的最終模型或模型配置時,需要統計方法。
這些包括以下技術:
* 檢查結果之間的顯著差異。
* 量化結果之間差異的大小。
這可能包括使用統計假設檢驗。
### 4.模型演示中的統計
在向利益相關者介紹最終模型的技能時,需要統計方法。
This includes techniques for:
* 總結模型的預期技能平均值。
* 在實踐中量化模型技能的預期變化。
這可能包括估計統計數據,如置信區間。
### 5.預測統計
在使用新數據的最終模型進行預測時,需要統計方法。
This includes techniques for:
* 量化預測的預期可變性。
這可能包括估計統計數據,如預測間隔。
### 你的任務
在本課程中,您必須列出您個人想要學習統計信息的三個原因。
在下面的評論中發表您的答案。我很樂意看到你想出了什么。
在下一課中,您將發現統計數據的簡明定義。
## 第02課:統計學概論
在本課程中,您將發現統計信息的簡明定義。
統計數據是大多數應用機器學習書籍和課程的必備先決條件。但究竟什么是統計數據?
統計學是數學的一個子領域。它指的是一組處理數據和使用數據來回答問題的方法。
這是因為該領域包含一系列用于處理數據的方法,對于初學者而言,這些方法看起來很大且無定形。很難看到屬于統計的方法和屬于其他研究領域的方法之間的界限。
當談到我們在實踐中使用的統計工具時,將統計領域劃分為兩大類方法可能會有所幫助:用于匯總數據的描述性統計數據和用于從數據樣本中得出結論的推論統計數據。
* **描述性統計**:描述性統計是指將原始觀察匯總為我們可以理解和分享的信息的方法。
* **推論統計**:推論統計是一種奇特的名稱,有助于從一小組獲得的觀察結果(稱為樣本)中量化域或種群的屬性。
### Your Task
在本課程中,您必須列出可用于每個描述性和推理統計信息的三種方法。
在下面的評論中發表您的答案。我很樂意看到你發現了什么。
在下一課中,您將發現高斯分布以及如何計算摘要統計。
## 第03課:高斯分布和描述性統計
在本課程中,您將發現數據的高斯分布以及如何計算簡單的描述性統計數據。
數據樣本是來自更廣泛群體的快照,可以從域中獲取或由流程生成。
有趣的是,許多觀察結果符合稱為正態分布的常見模式或分布,或者更正式地說,符合高斯分布。這是您可能熟悉的鐘形分布。
關于高斯分布的知識很多,因此,存在可以與高斯數據一起使用的統計和統計方法的整個子場。
任何高斯分布,以及從高斯分布中提取的任何數據樣本,都可以用兩個參數進行匯總:
* **平均值**。分布中的中心趨勢或最可能的價值(鐘的頂部)。
* **方差**。觀察值與分布中的平均值(差值)之間的平均差異。
均值的單位與分布的單位相同,盡管方差的單位是平方的,因此難以解釋。方差參數的一個流行替代方案是**標準差**,它只是方差的平方根,返回的單位與分布的單位相同。
可以直接在NumPy中的數據樣本上計算均值,方差和標準差。
下面的示例生成從高斯分布繪制的100個隨機數的樣本,其已知均值為50,標準差為5,并計算匯總統計量。
```py
# calculate summary stats
from numpy.random import seed
from numpy.random import randn
from numpy import mean
from numpy import var
from numpy import std
# seed the random number generator
seed(1)
# generate univariate observations
data = 5 * randn(10000) + 50
# calculate statistics
print('Mean: %.3f' % mean(data))
print('Variance: %.3f' % var(data))
print('Standard Deviation: %.3f' % std(data))
```
運行該示例并將估計的平均值和標準偏差與預期值進行比較。
### Your Task
在本課程中,您必須在Python中從頭開始計算一個描述性統計信息,例如計算樣本均值。
Post your answer in the comments below. I would love to see what you discover.
在下一課中,您將了解如何量化兩個變量之間的關系。
## 課04:變量之間的相關性
在本課程中,您將了解如何計算相關系數以量化兩個變量之間的關系。
數據集中的變量可能由于許多原因而相關。
它可用于數據分析和建模,以更好地理解變量之間的關系。兩個變量之間的統計關系稱為它們的相關性。
相關性可能是正的,意味著兩個變量在相同的方向上移動,或者是負的,這意味著當一個變量的值增加時,其他變量的值會減少。
* **正相關**:兩個變量在同一方向上變化。
* **中性相關**:變量變化沒有關系。
* **負相關**:變量方向相反。
如果兩個或多個變量緊密相關,某些算法的表現可能會惡化,稱為多重共線性。一個例子是線性回歸,其中應刪除一個違規的相關變量,以提高模型的技能。
我們可以使用稱為Pearson相關系數的統計方法量化兩個變量樣本之間的關系,該方法以該方法的開發者Karl Pearson命名。
_pearsonr()_ NumPy函數可用于計算兩個變量樣本的Pearson相關系數。
下面列出了完整的示例,顯示了一個變量依賴于第二個變量的計算。
```py
# calculate correlation coefficient
from numpy.random import seed
from numpy.random import randn
from scipy.stats import pearsonr
# seed random number generator
seed(1)
# prepare data
data1 = 20 * randn(1000) + 100
data2 = data1 + (10 * randn(1000) + 50)
# calculate Pearson's correlation
corr, p = pearsonr(data1, data2)
# display the correlation
print('Pearsons correlation: %.3f' % corr)
```
運行示例并查看計算的相關系數。
### Your Task
在本課程中,您必須加載標準機器學習數據集并計算每對數值變量之間的相關性。
Post your answer in the comments below. I would love to see what you discover.
在下一課中,您將發現統計假設檢驗。
## 第05課:統計假設檢驗
在本課程中,您將發現統計假設檢驗以及如何比較兩個樣本。
必須解釋數據以增加含義。我們可以通過假設特定結構來解釋數據,并使用統計方法來確認或拒絕假設。
該假設稱為假設,用于此目的的統計檢驗稱為統計假設檢驗。
統計檢驗的假設稱為零假設,或假設為零(簡稱H0)。它通常被稱為默認假設,或者假設沒有任何變化。違反測試假設通常被稱為第一個假設,假設為1,或簡稱為H1。
* **假設0(H0)**:測試的假設成立并且未被拒絕。
* **假設1(H1)**:測試的假設不成立并且在某種程度上被拒絕。
我們可以使用p值來解釋統計假設檢驗的結果。
在零假設為真的情況下,p值是觀察數據的概率。
概率很大意味著可能存在H0或默認假設。一個較小的值,例如低于5%(o.05)表明它不太可能并且我們可以拒絕H0而支持H1,或者某些東西可能不同(例如顯著結果)。
廣泛使用的統計假設檢驗是Student's t檢驗,用于比較兩個獨立樣本的平均值。
默認假設是樣本之間沒有差異,而拒絕此假設表明存在一些顯著差異。測試假設兩個樣本均來自高斯分布并具有相同的方差。
Student's t-test可以通過 _ttest_ind()_ SciPy函數在Python中實現。
下面是計算和解釋已知不同的兩個數據樣本的學生t檢驗的示例。
```py
# student's t-test
from numpy.random import seed
from numpy.random import randn
from scipy.stats import ttest_ind
# seed the random number generator
seed(1)
# generate two independent samples
data1 = 5 * randn(100) + 50
data2 = 5 * randn(100) + 51
# compare samples
stat, p = ttest_ind(data1, data2)
print('Statistics=%.3f, p=%.3f' % (stat, p))
# interpret
alpha = 0.05
if p > alpha:
print('Same distributions (fail to reject H0)')
else:
print('Different distributions (reject H0)')
```
運行代碼并查看計算的統計值和p值的解釋。
### Your Task
在本課程中,您必須列出三個其他統計假設檢驗,可用于檢查樣本之間的差異。
Post your answer in the comments below. I would love to see what you discover.
在下一課中,您將發現估計統計數據作為統計假設檢驗的替代方法。
## 第06課:估算統計
在本課程中,您將發現可用作統計假設檢驗替代方法的估算統計數據。
統計假設檢驗可用于指示兩個樣本之間的差異是否是由于隨機機會,但不能評論差異的大小。
被稱為“_新統計_”的一組方法正在增加使用而不是p值或者除了p值之外,以便量化效應的大小和估計值的不確定性的量。這組統計方法稱為估計統計。
估算統計是描述三種主要方法類別的術語。三種主要
類方法包括:
* **效果大小**。用于量化治療或干預的效果大小的方法。
* **區間估計**。量化值的不確定性的方法。
* **Meta分析**。在多個類似研究中量化結果的方法。
在這三種中,應用機器學習中最有用的方法可能是區間估計。
間隔有三種主要類型。他們是:
* **容差區間**:具有特定置信水平的分布的一定比例的界限或覆蓋范圍。
* **置信區間**:總體參數估計的界限。
* **預測區間**:單次觀察的界限。
計算分類算法的置信區間的簡單方法是計算二項式比例置信區間,其可以提供圍繞模型的估計精度或誤差的區間。
這可以使用 _confint()_ Statsmodels函數在Python中實現。
該函數將成功(或失敗)計數,試驗總數和顯著性水平作為參數,并返回置信區間的下限和上限。
下面的例子在一個假設的案例中證明了這個函數,其中模型從具有100個實例的數據集中做出了88個正確的預測,并且我們對95%置信區間感興趣(作為0.05的顯著性提供給函數)。
```py
# calculate the confidence interval
from statsmodels.stats.proportion import proportion_confint
# calculate the interval
lower, upper = proportion_confint(88, 100, 0.05)
print('lower=%.3f, upper=%.3f' % (lower, upper))
```
運行示例并查看估計準確度的置信區間。
### Your Task
在本課程中,您必須列出兩種方法,用于計算應用機器學習中的效果大小以及它們何時有用。
作為提示,考慮一個用于變量之間的關系,一個用于樣本之間的差異。
Post your answer in the comments below. I would love to see what you discover.
在下一課中,您將發現非參數統計方法。
## 第07課:非參數統計
在本課程中,您將發現當數據不是來自高斯分布時可能使用的統計方法。
統計和統計方法領域的很大一部分專用于已知分布的數據。
分布未知或不易識別的數據稱為非參數。
在使用非參數數據的情況下,可以使用專門的非參數統計方法來丟棄有關分布的所有信息。因此,這些方法通常被稱為無分秘籍法。
在可以應用非參數統計方法之前,必須將數據轉換為等級格式。因此,期望排名格式的數據的統計方法有時被稱為排名統計,例如排名相關和排名統計假設檢驗。排名數據正如其名稱所示。
程序如下:
* 按升序對樣本中的所有數據進行排序。
* 為數據樣本中的每個唯一值分配1到N的整數等級。
用于檢查兩個獨立樣本之間差異的廣泛使用的非參數統計假設檢驗是Mann-Whitney U檢驗,以Henry Mann和Donald Whitney命名。
它是學生t檢驗的非參數等價物,但不假設數據是從高斯分布中提取的。
該測試可以通過 _mannwhitneyu()_ SciPy函數在Python中實現。
下面的例子演示了從已知不同的均勻分布中抽取的兩個數據樣本的測試。
```py
# example of the mann-whitney u test
from numpy.random import seed
from numpy.random import rand
from scipy.stats import mannwhitneyu
# seed the random number generator
seed(1)
# generate two independent samples
data1 = 50 + (rand(100) * 10)
data2 = 51 + (rand(100) * 10)
# compare samples
stat, p = mannwhitneyu(data1, data2)
print('Statistics=%.3f, p=%.3f' % (stat, p))
# interpret
alpha = 0.05
if p > alpha:
print('Same distribution (fail to reject H0)')
else:
print('Different distribution (reject H0)')
```
運行該示例并查看計算的統計數據和p值的解釋。
### Your Task
在本課程中,您必須列出另外三種非參數統計方法。
Post your answer in the comments below. I would love to see what you discover.
這是迷你課程的最后一課。
## 結束!
(看你有多遠)
你做到了。做得好!
花點時間回顧一下你到底有多遠。
你發現:
* 統計學在應用機器學習中的重要性。
* 統計的簡明定義和方法劃分為兩種主要類型。
* 高斯分布以及如何使用統計信息來描述具有此分布的數據。
* 如何量化兩個變量的樣本之間的關系。
* 如何使用統計假設檢驗檢查兩個樣本之間的差異。
* 統計假設檢驗的替代方法稱為估計統計。
* 不從高斯分布中提取數據時可以使用的非參數方法。
這只是您的機器學習統計數據的開始。繼續練習和發展你的技能。
下一步,查看我的書[機器學習統計方法](https://machinelearningmastery.com/statistics_for_machine_learning/)。
## 摘要
你是怎么做迷你課程的?
你喜歡這個速成班嗎?
你有任何問題嗎?有沒有任何問題?
讓我知道。在下面發表評論。
- Machine Learning Mastery 應用機器學習教程
- 5競爭機器學習的好處
- 過度擬合的簡單直覺,或者為什么測試訓練數據是一個壞主意
- 特征選擇簡介
- 應用機器學習作為一個搜索問題的溫和介紹
- 為什么應用機器學習很難
- 為什么我的結果不如我想的那么好?你可能過度擬合了
- 用ROC曲線評估和比較分類器表現
- BigML評論:發現本機學習即服務平臺的聰明功能
- BigML教程:開發您的第一個決策樹并進行預測
- 構建生產機器學習基礎設施
- 分類準確性不夠:可以使用更多表現測量
- 一種預測模型的巧妙應用
- 機器學習項目中常見的陷阱
- 數據清理:將凌亂的數據轉換為整潔的數據
- 機器學習中的數據泄漏
- 數據,學習和建模
- 數據管理至關重要以及為什么需要認真對待它
- 將預測模型部署到生產中
- 參數和超參數之間有什么區別?
- 測試和驗證數據集之間有什么區別?
- 發現特征工程,如何設計特征以及如何獲得它
- 如何開始使用Kaggle
- 超越預測
- 如何在評估機器學習算法時選擇正確的測試選項
- 如何定義機器學習問題
- 如何評估機器學習算法
- 如何獲得基線結果及其重要性
- 如何充分利用機器學習數據
- 如何識別數據中的異常值
- 如何提高機器學習效果
- 如何在競爭機器學習中踢屁股
- 如何知道您的機器學習模型是否具有良好的表現
- 如何布局和管理您的機器學習項目
- 如何為機器學習準備數據
- 如何減少最終機器學習模型中的方差
- 如何使用機器學習結果
- 如何解決像數據科學家這樣的問題
- 通過數據預處理提高模型精度
- 處理機器學習的大數據文件的7種方法
- 建立機器學習系統的經驗教訓
- 如何使用機器學習清單可靠地獲得準確的預測(即使您是初學者)
- 機器學習模型運行期間要做什么
- 機器學習表現改進備忘單
- 來自世界級從業者的機器學習技巧:Phil Brierley
- 模型預測精度與機器學習中的解釋
- 競爭機器學習的模型選擇技巧
- 機器學習需要多少訓練數據?
- 如何系統地規劃和運行機器學習實驗
- 應用機器學習過程
- 默認情況下可重現的機器學習結果
- 10個實踐應用機器學習的標準數據集
- 簡單的三步法到最佳機器學習算法
- 打擊機器學習數據集中不平衡類的8種策略
- 模型表現不匹配問題(以及如何處理)
- 黑箱機器學習的誘惑陷阱
- 如何培養最終的機器學習模型
- 使用探索性數據分析了解您的問題并獲得更好的結果
- 什么是數據挖掘和KDD
- 為什么One-Hot在機器學習中編碼數據?
- 為什么你應該在你的機器學習問題上進行抽樣檢查算法
- 所以,你正在研究機器學習問題......
- Machine Learning Mastery Keras 深度學習教程
- Keras 中神經網絡模型的 5 步生命周期
- 在 Python 迷你課程中應用深度學習
- Keras 深度學習庫的二元分類教程
- 如何用 Keras 構建多層感知器神經網絡模型
- 如何在 Keras 中檢查深度學習模型
- 10 個用于 Amazon Web Services 深度學習的命令行秘籍
- 機器學習卷積神經網絡的速成課程
- 如何在 Python 中使用 Keras 進行深度學習的度量
- 深度學習書籍
- 深度學習課程
- 你所知道的深度學習是一種謊言
- 如何設置 Amazon AWS EC2 GPU 以訓練 Keras 深度學習模型(分步)
- 神經網絡中批量和迭代之間的區別是什么?
- 在 Keras 展示深度學習模型訓練歷史
- 基于 Keras 的深度學習模型中的dropout正則化
- 評估 Keras 中深度學習模型的表現
- 如何評價深度學習模型的技巧
- 小批量梯度下降的簡要介紹以及如何配置批量大小
- 在 Keras 中獲得深度學習幫助的 9 種方法
- 如何使用 Keras 在 Python 中網格搜索深度學習模型的超參數
- 用 Keras 在 Python 中使用卷積神經網絡進行手寫數字識別
- 如何用 Keras 進行預測
- 用 Keras 進行深度學習的圖像增強
- 8 個深度學習的鼓舞人心的應用
- Python 深度學習庫 Keras 簡介
- Python 深度學習庫 TensorFlow 簡介
- Python 深度學習庫 Theano 簡介
- 如何使用 Keras 函數式 API 進行深度學習
- Keras 深度學習庫的多類分類教程
- 多層感知器神經網絡速成課程
- 基于卷積神經網絡的 Keras 深度學習庫中的目標識別
- 流行的深度學習庫
- 用深度學習預測電影評論的情感
- Python 中的 Keras 深度學習庫的回歸教程
- 如何使用 Keras 獲得可重現的結果
- 如何在 Linux 服務器上運行深度學習實驗
- 保存并加載您的 Keras 深度學習模型
- 用 Keras 逐步開發 Python 中的第一個神經網絡
- 用 Keras 理解 Python 中的有狀態 LSTM 循環神經網絡
- 在 Python 中使用 Keras 深度學習模型和 Scikit-Learn
- 如何使用預訓練的 VGG 模型對照片中的物體進行分類
- 在 Python 和 Keras 中對深度學習模型使用學習率調度
- 如何在 Keras 中可視化深度學習神經網絡模型
- 什么是深度學習?
- 何時使用 MLP,CNN 和 RNN 神經網絡
- 為什么用隨機權重初始化神經網絡?
- Machine Learning Mastery 深度學習 NLP 教程
- 深度學習在自然語言處理中的 7 個應用
- 如何實現自然語言處理的波束搜索解碼器
- 深度學習文檔分類的最佳實踐
- 關于自然語言處理的熱門書籍
- 在 Python 中計算文本 BLEU 分數的溫和介紹
- 使用編碼器 - 解碼器模型的用于字幕生成的注入和合并架構
- 如何用 Python 清理機器學習的文本
- 如何配置神經機器翻譯的編碼器 - 解碼器模型
- 如何開始深度學習自然語言處理(7 天迷你課程)
- 自然語言處理的數據集
- 如何開發一種深度學習的詞袋模型來預測電影評論情感
- 深度學習字幕生成模型的溫和介紹
- 如何在 Keras 中定義神經機器翻譯的編碼器 - 解碼器序列 - 序列模型
- 如何利用小實驗在 Keras 中開發字幕生成模型
- 如何從頭開發深度學習圖片標題生成器
- 如何在 Keras 中開發基于字符的神經語言模型
- 如何開發用于情感分析的 N-gram 多通道卷積神經網絡
- 如何從零開始開發神經機器翻譯系統
- 如何在 Python 中用 Keras 開發基于單詞的神經語言模型
- 如何開發一種預測電影評論情感的詞嵌入模型
- 如何使用 Gensim 在 Python 中開發詞嵌入
- 用于文本摘要的編碼器 - 解碼器深度學習模型
- Keras 中文本摘要的編碼器 - 解碼器模型
- 用于神經機器翻譯的編碼器 - 解碼器循環神經網絡模型
- 淺談詞袋模型
- 文本摘要的溫和介紹
- 編碼器 - 解碼器循環神經網絡中的注意力如何工作
- 如何利用深度學習自動生成照片的文本描述
- 如何開發一個單詞級神經語言模型并用它來生成文本
- 淺談神經機器翻譯
- 什么是自然語言處理?
- 牛津自然語言處理深度學習課程
- 如何為機器翻譯準備法語到英語的數據集
- 如何為情感分析準備電影評論數據
- 如何為文本摘要準備新聞文章
- 如何準備照片標題數據集以訓練深度學習模型
- 如何使用 Keras 為深度學習準備文本數據
- 如何使用 scikit-learn 為機器學習準備文本數據
- 自然語言處理神經網絡模型入門
- 對自然語言處理的深度學習的承諾
- 在 Python 中用 Keras 進行 LSTM 循環神經網絡的序列分類
- 斯坦福自然語言處理深度學習課程評價
- 統計語言建模和神經語言模型的簡要介紹
- 使用 Keras 在 Python 中進行 LSTM 循環神經網絡的文本生成
- 淺談機器學習中的轉換
- 如何使用 Keras 將詞嵌入層用于深度學習
- 什么是用于文本的詞嵌入
- Machine Learning Mastery 深度學習時間序列教程
- 如何開發人類活動識別的一維卷積神經網絡模型
- 人類活動識別的深度學習模型
- 如何評估人類活動識別的機器學習算法
- 時間序列預測的多層感知器網絡探索性配置
- 比較經典和機器學習方法進行時間序列預測的結果
- 如何通過深度學習快速獲得時間序列預測的結果
- 如何利用 Python 處理序列預測問題中的缺失時間步長
- 如何建立預測大氣污染日的概率預測模型
- 如何開發一種熟練的機器學習時間序列預測模型
- 如何構建家庭用電自回歸預測模型
- 如何開發多步空氣污染時間序列預測的自回歸預測模型
- 如何制定多站點多元空氣污染時間序列預測的基線預測
- 如何開發時間序列預測的卷積神經網絡模型
- 如何開發卷積神經網絡用于多步時間序列預測
- 如何開發單變量時間序列預測的深度學習模型
- 如何開發 LSTM 模型用于家庭用電的多步時間序列預測
- 如何開發 LSTM 模型進行時間序列預測
- 如何開發多元多步空氣污染時間序列預測的機器學習模型
- 如何開發多層感知器模型進行時間序列預測
- 如何開發人類活動識別時間序列分類的 RNN 模型
- 如何開始深度學習的時間序列預測(7 天迷你課程)
- 如何網格搜索深度學習模型進行時間序列預測
- 如何對單變量時間序列預測的網格搜索樸素方法
- 如何在 Python 中搜索 SARIMA 模型超參數用于時間序列預測
- 如何在 Python 中進行時間序列預測的網格搜索三次指數平滑
- 一個標準的人類活動識別問題的溫和介紹
- 如何加載和探索家庭用電數據
- 如何加載,可視化和探索復雜的多變量多步時間序列預測數據集
- 如何從智能手機數據模擬人類活動
- 如何根據環境因素預測房間占用率
- 如何使用腦波預測人眼是開放還是閉合
- 如何在 Python 中擴展長短期內存網絡的數據
- 如何使用 TimeseriesGenerator 進行 Keras 中的時間序列預測
- 基于機器學習算法的室內運動時間序列分類
- 用于時間序列預測的狀態 LSTM 在線學習的不穩定性
- 用于罕見事件時間序列預測的 LSTM 模型體系結構
- 用于時間序列預測的 4 種通用機器學習數據變換
- Python 中長短期記憶網絡的多步時間序列預測
- 家庭用電機器學習的多步時間序列預測
- Keras 中 LSTM 的多變量時間序列預測
- 如何開發和評估樸素的家庭用電量預測方法
- 如何為長短期記憶網絡準備單變量時間序列數據
- 循環神經網絡在時間序列預測中的應用
- 如何在 Python 中使用差異變換刪除趨勢和季節性
- 如何在 LSTM 中種子狀態用于 Python 中的時間序列預測
- 使用 Python 進行時間序列預測的有狀態和無狀態 LSTM
- 長短時記憶網絡在時間序列預測中的適用性
- 時間序列預測問題的分類
- Python 中長短期記憶網絡的時間序列預測
- 基于 Keras 的 Python 中 LSTM 循環神經網絡的時間序列預測
- Keras 中深度學習的時間序列預測
- 如何用 Keras 調整 LSTM 超參數進行時間序列預測
- 如何在時間序列預測訓練期間更新 LSTM 網絡
- 如何使用 LSTM 網絡的 Dropout 進行時間序列預測
- 如何使用 LSTM 網絡中的特征進行時間序列預測
- 如何在 LSTM 網絡中使用時間序列進行時間序列預測
- 如何利用 LSTM 網絡進行權重正則化進行時間序列預測
- Machine Learning Mastery 線性代數教程
- 機器學習數學符號的基礎知識
- 用 NumPy 陣列輕松介紹廣播
- 如何從 Python 中的 Scratch 計算主成分分析(PCA)
- 用于編碼器審查的計算線性代數
- 10 機器學習中的線性代數示例
- 線性代數的溫和介紹
- 用 NumPy 輕松介紹 Python 中的 N 維數組
- 機器學習向量的溫和介紹
- 如何在 Python 中為機器學習索引,切片和重塑 NumPy 數組
- 機器學習的矩陣和矩陣算法簡介
- 溫和地介紹機器學習的特征分解,特征值和特征向量
- NumPy 對預期價值,方差和協方差的簡要介紹
- 機器學習矩陣分解的溫和介紹
- 用 NumPy 輕松介紹機器學習的張量
- 用于機器學習的線性代數中的矩陣類型簡介
- 用于機器學習的線性代數備忘單
- 線性代數的深度學習
- 用于機器學習的線性代數(7 天迷你課程)
- 機器學習的線性代數
- 機器學習矩陣運算的溫和介紹
- 線性代數評論沒有廢話指南
- 學習機器學習線性代數的主要資源
- 淺談機器學習的奇異值分解
- 如何用線性代數求解線性回歸
- 用于機器學習的稀疏矩陣的溫和介紹
- 機器學習中向量規范的溫和介紹
- 學習線性代數用于機器學習的 5 個理由
- Machine Learning Mastery LSTM 教程
- Keras中長短期記憶模型的5步生命周期
- 長短時記憶循環神經網絡的注意事項
- CNN長短期記憶網絡
- 逆向神經網絡中的深度學習速成課程
- 可變長度輸入序列的數據準備
- 如何用Keras開發用于Python序列分類的雙向LSTM
- 如何開發Keras序列到序列預測的編碼器 - 解碼器模型
- 如何診斷LSTM模型的過度擬合和欠擬合
- 如何開發一種編碼器 - 解碼器模型,注重Keras中的序列到序列預測
- 編碼器 - 解碼器長短期存儲器網絡
- 神經網絡中爆炸梯度的溫和介紹
- 對時間反向傳播的溫和介紹
- 生成長短期記憶網絡的溫和介紹
- 專家對長短期記憶網絡的簡要介紹
- 在序列預測問題上充分利用LSTM
- 編輯器 - 解碼器循環神經網絡全局注意的溫和介紹
- 如何利用長短時記憶循環神經網絡處理很長的序列
- 如何在Python中對一個熱編碼序列數據
- 如何使用編碼器 - 解碼器LSTM來回顯隨機整數序列
- 具有注意力的編碼器 - 解碼器RNN體系結構的實現模式
- 學習使用編碼器解碼器LSTM循環神經網絡添加數字
- 如何學習長短時記憶循環神經網絡回聲隨機整數
- 具有Keras的長短期記憶循環神經網絡的迷你課程
- LSTM自動編碼器的溫和介紹
- 如何用Keras中的長短期記憶模型進行預測
- 用Python中的長短期內存網絡演示內存
- 基于循環神經網絡的序列預測模型的簡要介紹
- 深度學習的循環神經網絡算法之旅
- 如何重塑Keras中長短期存儲網絡的輸入數據
- 了解Keras中LSTM的返回序列和返回狀態之間的差異
- RNN展開的溫和介紹
- 5學習LSTM循環神經網絡的簡單序列預測問題的例子
- 使用序列進行預測
- 堆疊長短期內存網絡
- 什么是教師強制循環神經網絡?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何準備Keras中截斷反向傳播的序列預測
- 如何在使用LSTM進行訓練和預測時使用不同的批量大小
- Machine Learning Mastery 機器學習算法教程
- 機器學習算法之旅
- 用于機器學習的裝袋和隨機森林集合算法
- 從頭開始實施機器學習算法的好處
- 更好的樸素貝葉斯:從樸素貝葉斯算法中獲取最多的12個技巧
- 機器學習的提升和AdaBoost
- 選擇機器學習算法:Microsoft Azure的經驗教訓
- 機器學習的分類和回歸樹
- 什么是機器學習中的混淆矩陣
- 如何使用Python從頭開始創建算法測試工具
- 通過創建機器學習算法的目標列表來控制
- 從頭開始停止編碼機器學習算法
- 在實現機器學習算法時,不要從開源代碼開始
- 不要使用隨機猜測作為基線分類器
- 淺談機器學習中的概念漂移
- 溫和介紹機器學習中的偏差 - 方差權衡
- 機器學習的梯度下降
- 機器學習算法如何工作(他們學習輸入到輸出的映射)
- 如何建立機器學習算法的直覺
- 如何實現機器學習算法
- 如何研究機器學習算法行為
- 如何學習機器學習算法
- 如何研究機器學習算法
- 如何研究機器學習算法
- 如何在Python中從頭開始實現反向傳播算法
- 如何用Python從頭開始實現Bagging
- 如何用Python從頭開始實現基線機器學習算法
- 如何在Python中從頭開始實現決策樹算法
- 如何用Python從頭開始實現學習向量量化
- 如何利用Python從頭開始隨機梯度下降實現線性回歸
- 如何利用Python從頭開始隨機梯度下降實現Logistic回歸
- 如何用Python從頭開始實現機器學習算法表現指標
- 如何在Python中從頭開始實現感知器算法
- 如何在Python中從零開始實現隨機森林
- 如何在Python中從頭開始實現重采樣方法
- 如何用Python從頭開始實現簡單線性回歸
- 如何用Python從頭開始實現堆棧泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 學習機器學習的向量量化
- 機器學習的線性判別分析
- 機器學習的線性回歸
- 使用梯度下降進行機器學習的線性回歸教程
- 如何在Python中從頭開始加載機器學習數據
- 機器學習的Logistic回歸
- 機器學習的Logistic回歸教程
- 機器學習算法迷你課程
- 如何在Python中從頭開始實現樸素貝葉斯
- 樸素貝葉斯機器學習
- 樸素貝葉斯機器學習教程
- 機器學習算法的過擬合和欠擬合
- 參數化和非參數機器學習算法
- 理解任何機器學習算法的6個問題
- 在機器學習中擁抱隨機性
- 如何使用Python從頭開始擴展機器學習數據
- 機器學習的簡單線性回歸教程
- 有監督和無監督的機器學習算法
- 用于機器學習的支持向量機
- 在沒有數學背景的情況下理解機器學習算法的5種技術
- 最好的機器學習算法
- 教程從頭開始在Python中實現k-Nearest Neighbors
- 通過從零開始實現它們來理解機器學習算法(以及繞過壞代碼的策略)
- 使用隨機森林:在121個數據集上測試179個分類器
- 為什么從零開始實現機器學習算法
- Machine Learning Mastery 機器學習入門教程
- 機器學習入門的四個步驟:初學者入門與實踐的自上而下策略
- 你應該培養的 5 個機器學習領域
- 一種選擇機器學習算法的數據驅動方法
- 機器學習中的分析與數值解
- 應用機器學習是一種精英政治
- 機器學習的基本概念
- 如何成為數據科學家
- 初學者如何在機器學習中弄錯
- 機器學習的最佳編程語言
- 構建機器學習組合
- 機器學習中分類與回歸的區別
- 評估自己作為數據科學家并利用結果建立驚人的數據科學團隊
- 探索 Kaggle 大師的方法論和心態:對 Diogo Ferreira 的采訪
- 擴展機器學習工具并展示掌握
- 通過尋找地標開始機器學習
- 溫和地介紹預測建模
- 通過提供結果在機器學習中獲得夢想的工作
- 如何開始機器學習:自學藍圖
- 開始并在機器學習方面取得進展
- 應用機器學習的 Hello World
- 初學者如何使用小型項目開始機器學習并在 Kaggle 上進行競爭
- 我如何開始機器學習? (簡短版)
- 我是如何開始機器學習的
- 如何在機器學習中取得更好的成績
- 如何從在銀行工作到擔任 Target 的高級數據科學家
- 如何學習任何機器學習工具
- 使用小型目標項目深入了解機器學習工具
- 獲得付費申請機器學習
- 映射機器學習工具的景觀
- 機器學習開發環境
- 機器學習金錢
- 程序員的機器學習
- 機器學習很有意思
- 機器學習是 Kaggle 比賽
- 機器學習現在很受歡迎
- 機器學習掌握方法
- 機器學習很重要
- 機器學習 Q& A:概念漂移,更好的結果和學習更快
- 缺乏自學機器學習的路線圖
- 機器學習很重要
- 快速了解任何機器學習工具(即使您是初學者)
- 機器學習工具
- 找到你的機器學習部落
- 機器學習在一年
- 通過競爭一致的大師 Kaggle
- 5 程序員在機器學習中開始犯錯誤
- 哲學畢業生到機器學習從業者(Brian Thomas 采訪)
- 機器學習入門的實用建議
- 實用機器學習問題
- 使用來自 UCI 機器學習庫的數據集練習機器學習
- 使用秘籍的任何機器學習工具快速啟動
- 程序員可以進入機器學習
- 程序員應該進入機器學習
- 項目焦點:Shashank Singh 的人臉識別
- 項目焦點:使用 Mahout 和 Konstantin Slisenko 進行堆棧交換群集
- 機器學習自學指南
- 4 個自學機器學習項目
- álvaroLemos 如何在數據科學團隊中獲得機器學習實習
- 如何思考機器學習
- 現實世界機器學習問題之旅
- 有關機器學習的有用知識
- 如果我沒有學位怎么辦?
- 如果我不是一個優秀的程序員怎么辦?
- 如果我不擅長數學怎么辦?
- 為什么機器學習算法會處理以前從未見過的數據?
- 是什么阻礙了你的機器學習目標?
- 什么是機器學習?
- 機器學習適合哪里?
- 為什么要進入機器學習?
- 研究對您來說很重要的機器學習問題
- 你這樣做是錯的。為什么機器學習不必如此困難
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的溫和介紹:Python 機器學習庫
- 使用 Python 管道和 scikit-learn 自動化機器學習工作流程
- 如何以及何時使用帶有 scikit-learn 的校準分類模型
- 如何比較 Python 中的機器學習算法與 scikit-learn
- 用于機器學習開發人員的 Python 崩潰課程
- 用 scikit-learn 在 Python 中集成機器學習算法
- 使用重采樣評估 Python 中機器學習算法的表現
- 使用 Scikit-Learn 在 Python 中進行特征選擇
- Python 中機器學習的特征選擇
- 如何使用 scikit-learn 在 Python 中生成測試數據集
- scikit-learn 中的機器學習算法秘籍
- 如何使用 Python 處理丟失的數據
- 如何開始使用 Python 進行機器學習
- 如何使用 Scikit-Learn 在 Python 中加載數據
- Python 中概率評分方法的簡要介紹
- 如何用 Scikit-Learn 調整算法參數
- 如何在 Mac OS X 上安裝 Python 3 環境以進行機器學習和深度學習
- 使用 scikit-learn 進行機器學習簡介
- 從 shell 到一本帶有 Fernando Perez 單一工具的書的 IPython
- 如何使用 Python 3 為機器學習開發創建 Linux 虛擬機
- 如何在 Python 中加載機器學習數據
- 您在 Python 中的第一個機器學習項目循序漸進
- 如何使用 scikit-learn 進行預測
- 用于評估 Python 中機器學習算法的度量標準
- 使用 Pandas 為 Python 中的機器學習準備數據
- 如何使用 Scikit-Learn 為 Python 機器學習準備數據
- 項目焦點:使用 Artem Yankov 在 Python 中進行事件推薦
- 用于機器學習的 Python 生態系統
- Python 是應用機器學習的成長平臺
- Python 機器學習書籍
- Python 機器學習迷你課程
- 使用 Pandas 快速和骯臟的數據分析
- 使用 Scikit-Learn 重新調整 Python 中的機器學習數據
- 如何以及何時使用 ROC 曲線和精確調用曲線進行 Python 分類
- 使用 scikit-learn 在 Python 中保存和加載機器學習模型
- scikit-learn Cookbook 書評
- 如何使用 Anaconda 為機器學習和深度學習設置 Python 環境
- 使用 scikit-learn 在 Python 中進行 Spot-Check 分類機器學習算法
- 如何在 Python 中開發可重復使用的抽樣檢查算法框架
- 使用 scikit-learn 在 Python 中進行 Spot-Check 回歸機器學習算法
- 使用 Python 中的描述性統計來了解您的機器學習數據
- 使用 OpenCV,Python 和模板匹配來播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可視化機器學習數據
- Machine Learning Mastery 統計學教程
- 淺談計算正態匯總統計量
- 非參數統計的溫和介紹
- Python中常態測試的溫和介紹
- 淺談Bootstrap方法
- 淺談機器學習的中心極限定理
- 淺談機器學習中的大數定律
- 機器學習的所有統計數據
- 如何計算Python中機器學習結果的Bootstrap置信區間
- 淺談機器學習的Chi-Squared測試
- 機器學習的置信區間
- 隨機化在機器學習中解決混雜變量的作用
- 機器學習中的受控實驗
- 機器學習統計學速成班
- 統計假設檢驗的關鍵值以及如何在Python中計算它們
- 如何在機器學習中談論數據(統計學和計算機科學術語)
- Python中數據可視化方法的簡要介紹
- Python中效果大小度量的溫和介紹
- 估計隨機機器學習算法的實驗重復次數
- 機器學習評估統計的溫和介紹
- 如何計算Python中的非參數秩相關性
- 如何在Python中計算數據的5位數摘要
- 如何在Python中從頭開始編寫學生t檢驗
- 如何在Python中生成隨機數
- 如何轉換數據以更好地擬合正態分布
- 如何使用相關來理解變量之間的關系
- 如何使用統計信息識別數據中的異常值
- 用于Python機器學習的隨機數生成器簡介
- k-fold交叉驗證的溫和介紹
- 如何計算McNemar的比較兩種機器學習量詞的測試
- Python中非參數統計顯著性測試簡介
- 如何在Python中使用參數統計顯著性測試
- 機器學習的預測間隔
- 應用統計學與機器學習的密切關系
- 如何使用置信區間報告分類器表現
- 統計數據分布的簡要介紹
- 15 Python中的統計假設檢驗(備忘單)
- 統計假設檢驗的溫和介紹
- 10如何在機器學習項目中使用統計方法的示例
- Python中統計功效和功耗分析的簡要介紹
- 統計抽樣和重新抽樣的簡要介紹
- 比較機器學習算法的統計顯著性檢驗
- 機器學習中統計容差區間的溫和介紹
- 機器學習統計書籍
- 評估機器學習模型的統計數據
- 機器學習統計(7天迷你課程)
- 用于機器學習的簡明英語統計
- 如何使用統計顯著性檢驗來解釋機器學習結果
- 什么是統計(為什么它在機器學習中很重要)?
- Machine Learning Mastery 時間序列入門教程
- 如何在 Python 中為時間序列預測創建 ARIMA 模型
- 用 Python 進行時間序列預測的自回歸模型
- 如何回溯機器學習模型的時間序列預測
- Python 中基于時間序列數據的基本特征工程
- R 的時間序列預測熱門書籍
- 10 挑戰機器學習時間序列預測問題
- 如何將時間序列轉換為 Python 中的監督學習問題
- 如何將時間序列數據分解為趨勢和季節性
- 如何用 ARCH 和 GARCH 模擬波動率進行時間序列預測
- 如何將時間序列數據集與 Python 區分開來
- Python 中時間序列預測的指數平滑的溫和介紹
- 用 Python 進行時間序列預測的特征選擇
- 淺談自相關和部分自相關
- 時間序列預測的 Box-Jenkins 方法簡介
- 用 Python 簡要介紹時間序列的時間序列預測
- 如何使用 Python 網格搜索 ARIMA 模型超參數
- 如何在 Python 中加載和探索時間序列數據
- 如何使用 Python 對 ARIMA 模型進行手動預測
- 如何用 Python 進行時間序列預測的預測
- 如何使用 Python 中的 ARIMA 進行樣本外預測
- 如何利用 Python 模擬殘差錯誤來糾正時間序列預測
- 使用 Python 進行數據準備,特征工程和時間序列預測的移動平均平滑
- 多步時間序列預測的 4 種策略
- 如何在 Python 中規范化和標準化時間序列數據
- 如何利用 Python 進行時間序列預測的基線預測
- 如何使用 Python 對時間序列預測數據進行功率變換
- 用于時間序列預測的 Python 環境
- 如何重構時間序列預測問題
- 如何使用 Python 重新采樣和插值您的時間序列數據
- 用 Python 編寫 SARIMA 時間序列預測
- 如何在 Python 中保存 ARIMA 時間序列預測模型
- 使用 Python 進行季節性持久性預測
- 基于 ARIMA 的 Python 歷史規模敏感性預測技巧分析
- 簡單的時間序列預測模型進行測試,這樣你就不會欺騙自己
- 標準多變量,多步驟和多站點時間序列預測問題
- 如何使用 Python 檢查時間序列數據是否是固定的
- 使用 Python 進行時間序列數據可視化
- 7 個機器學習的時間序列數據集
- 時間序列預測案例研究與 Python:波士頓每月武裝搶劫案
- Python 的時間序列預測案例研究:巴爾的摩的年度用水量
- 使用 Python 進行時間序列預測研究:法國香檳的月銷售額
- 使用 Python 的置信區間理解時間序列預測不確定性
- 11 Python 中的經典時間序列預測方法(備忘單)
- 使用 Python 進行時間序列預測表現測量
- 使用 Python 7 天迷你課程進行時間序列預測
- 時間序列預測作為監督學習
- 什么是時間序列預測?
- 如何使用 Python 識別和刪除時間序列數據的季節性
- 如何在 Python 中使用和刪除時間序列數據中的趨勢信息
- 如何在 Python 中調整 ARIMA 參數
- 如何用 Python 可視化時間序列殘差預測錯誤
- 白噪聲時間序列與 Python
- 如何通過時間序列預測項目
- Machine Learning Mastery XGBoost 教程
- 通過在 Python 中使用 XGBoost 提前停止來避免過度擬合
- 如何在 Python 中調優 XGBoost 的多線程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 進行梯度提升的數據準備
- 如何使用 scikit-learn 在 Python 中開發您的第一個 XGBoost 模型
- 如何在 Python 中使用 XGBoost 評估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征選擇
- 淺談機器學習的梯度提升算法
- 應用機器學習的 XGBoost 簡介
- 如何在 macOS 上為 Python 安裝 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 從梯度提升開始,比較 165 個數據集上的 13 種算法
- 在 Python 中使用 XGBoost 和 scikit-learn 進行隨機梯度提升
- 如何使用 Amazon Web Services 在云中訓練 XGBoost 模型
- 在 Python 中使用 XGBoost 調整梯度提升的學習率
- 如何在 Python 中使用 XGBoost 調整決策樹的數量和大小
- 如何在 Python 中使用 XGBoost 可視化梯度提升決策樹
- 在 Python 中開始使用 XGBoost 的 7 步迷你課程