# 淺談機器學習的奇異值分解
> 原文: [https://machinelearningmastery.com/singular-value-decomposition-for-machine-learning/](https://machinelearningmastery.com/singular-value-decomposition-for-machine-learning/)
矩陣分解,也稱為矩陣分解,涉及使用其組成元素描述給定矩陣。
也許最著名和最廣泛使用的矩陣分解方法是奇異值分解或 SVD。所有矩陣都有一個 SVD,這使得它比其他方法更穩定,例如特征分解。因此,它經常用于各種應用,包括壓縮,去噪和數據縮減。
在本教程中,您將發現用于將矩陣分解為其組成元素的奇異值分解方法。
完成本教程后,您將了解:
* 奇異值分解是什么以及涉及什么。
* 如何計算 SVD 并從 SVD 元素重建矩形和方形矩陣。
* 如何使用 SVD 計算偽逆并執行降維
讓我們開始吧。
* **更新 Mar / 2018** :修復了重建中的拼寫錯誤。為清晰起見,將代碼中的 V 更改為 VT。修正了偽逆方程中的拼寫錯誤。

奇異值分解
照片由 [Chris Heald](https://www.flickr.com/photos/husker_alum/8628799410/) 拍攝,保留一些權利。
## 教程概述
本教程分為 5 個部分;他們是:
1. 奇異值分解
2. 計算奇異值分解
3. 從 SVD 重構矩陣
4. 偽逆的 SVD
5. 用于降維的 SVD
## 奇異值分解
奇異值分解(簡稱 SVD)是一種矩陣分解方法,用于將矩陣減少到其組成部分,以使某些后續矩陣計算更簡單。
為簡單起見,我們將重點關注實值矩陣的 SVD,并忽略復數的情況。
```
A = U . Sigma . V^T
```
其中 A 是我們希望分解的真實 mxn 矩陣,U 是 mxm 矩陣,Sigma(通常由大寫希臘字母 Sigma 表示)是 mxn 對角矩陣,V ^ T 是 nxn 矩陣的轉置,其中 T 是一個上標。
> 奇異值分解是線性代數的一個亮點。
- 第 371 頁,[線性代數導論](http://amzn.to/2AZ7R8j),第五版,2016 年。
Sigma 矩陣中的對角線值稱為原始矩陣 A 的奇異值.U 矩陣的列稱為 A 的左奇異向量,V 列稱為 A 的右奇異向量。
通過迭代數值方法計算 SVD。我們不會詳細介紹這些方法。每個矩形矩陣都具有奇異值分解,盡管得到的矩陣可能包含復數,浮點運算的局限性可能會導致某些矩陣無法整齊地分解。
> 奇異值分解(SVD)提供了另一種將矩陣分解為奇異向量和奇異值的方法。 SVD 允許我們發現一些與特征分解相同的信息。但是,SVD 更普遍適用。
- 第 44-45 頁,[深度學習](http://amzn.to/2B3MsuU),2016 年。
SVD 廣泛用于計算其他矩陣運算,例如矩陣逆運算,但也作為機器學習中的數據簡化方法。 SVD 還可用于最小二乘線性回歸,圖像壓縮和去噪數據。
> 奇異值分解(SVD)在統計學,機器學習和計算機科學中有許多應用。將 SVD 應用于矩陣就像在 X 射線視覺中查看它...
- 第 297 頁,[無線性代數廢話指南](http://amzn.to/2k76D4C),2017 年
## 計算奇異值分解
可以通過調用 svd()函數來計算 SVD。
該函數采用矩陣并返回 U,Sigma 和 V ^ T 元素。 Sigma 對角矩陣作為奇異值的向量返回。 V 矩陣以轉置的形式返回,例如, V.T.
下面的示例定義了 3×2 矩陣并計算奇異值分解。
```
# Singular-value decomposition
from numpy import array
from scipy.linalg import svd
# define a matrix
A = array([[1, 2], [3, 4], [5, 6]])
print(A)
# SVD
U, s, VT = svd(A)
print(U)
print(s)
print(VT)
```
首先運行該示例打印定義的 3×2 矩陣,然后打印 3×3U 矩陣,2 元素 Sigma 向量和從分解計算的 2×2V ^ T 矩陣元素。
```
[[1 2]
[3 4]
[5 6]]
[[-0.2298477 0.88346102 0.40824829]
[-0.52474482 0.24078249 -0.81649658]
[-0.81964194 -0.40189603 0.40824829]]
[ 9.52551809 0.51430058]
[[-0.61962948 -0.78489445]
[-0.78489445 0.61962948]]
```
## 從 SVD 重構矩陣
可以從 U,Sigma 和 V ^ T 元素重建原始矩陣。
從 svd()返回的 U,s 和 V 元素不能直接相乘。
必須使用 diag()函數將 s 向量轉換為對角矩陣。默認情況下,此函數將創建一個相對于原始矩陣 m x m 的方陣。這導致問題,因為矩陣的大小不符合矩陣乘法的規則,其中矩陣中的列數必須與后續矩陣中的行數匹配。
在創建方形 Sigma 對角矩陣之后,矩陣的大小相對于我們正在分解的原始 m x n 矩陣,如下所示:
```
U (m x m) . Sigma (m x m) . V^T (n x n)
```
事實上,我們要求:
```
U (m x m) . Sigma (m x n) . V^T (n x n)
```
我們可以通過創建所有零值 m x n(例如更多行)的新 Sigma 格式來實現這一點,并用通過 diag()計算的方形對角矩陣填充矩陣的前 n x n 部分。
```
# Reconstruct SVD
from numpy import array
from numpy import diag
from numpy import dot
from numpy import zeros
from scipy.linalg import svd
# define a matrix
A = array([[1, 2], [3, 4], [5, 6]])
print(A)
# Singular-value decomposition
U, s, VT = svd(A)
# create m x n Sigma matrix
Sigma = zeros((A.shape[0], A.shape[1]))
# populate Sigma with n x n diagonal matrix
Sigma[:A.shape[1], :A.shape[1]] = diag(s)
# reconstruct matrix
B = U.dot(Sigma.dot(VT))
print(B)
```
首先運行該示例打印原始矩陣,然后打印從 SVD 元素重建的矩陣。
```
[[1 2]
[3 4]
[5 6]]
[[ 1\. 2.]
[ 3\. 4.]
[ 5\. 6.]]
```
上述與 Sigma 對角線的復雜性僅存在于 m 和 n 不相等的情況下。當重建方形矩陣時,可以直接使用對角矩陣,如下所述。
```
# Reconstruct SVD
from numpy import array
from numpy import diag
from numpy import dot
from scipy.linalg import svd
# define a matrix
A = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(A)
# Singular-value decomposition
U, s, VT = svd(A)
# create n x n Sigma matrix
Sigma = diag(s)
# reconstruct matrix
B = U.dot(Sigma.dot(VT))
print(B)
```
運行該示例打印原始 3×3 矩陣和直接從 SVD 元素重建的版本。
```
[[1 2 3]
[4 5 6]
[7 8 9]]
[[ 1\. 2\. 3.]
[ 4\. 5\. 6.]
[ 7\. 8\. 9.]]
```
## 偽逆的 SVD
偽逆是矩形矩陣到矩形矩陣的矩陣逆的推廣,其中行和列的數量不相等。
在該方法的兩個獨立發現者或廣義逆之后,它也被稱為 Moore-Penrose 逆。
> 沒有為非正方形的矩陣定義矩陣求逆。 [...]當 A 的列數多于行數時,使用 pseudoinverse 求解線性方程式提供了許多可能的解決方案之一。
- 第 46 頁,[深度學習](http://amzn.to/2B3MsuU),2016 年。
偽逆表示為 A ^ +,其中 A 是被反轉的矩陣,+是上標。
使用 A 的奇異值分解計算偽逆:
```
A^+ = V . D^+ . U^T
```
或者,沒有點符號:
```
A^+ = VD^+U^T
```
其中 A ^ +是偽逆,D ^ +是對角矩陣 Sigma 的偽逆,U ^ T 是 U 的轉置。
我們可以通過 SVD 操作獲得 U 和 V.
```
A = U . Sigma . V^T
```
可以通過從 Sigma 創建對角矩陣來計算 D ^ +,計算 Sigma 中每個非零元素的倒數,并且如果原始矩陣是矩形則采用轉置。
```
s11, 0, 0
Sigma = ( 0, s22, 0)
0, 0, s33
```
```
1/s11, 0, 0
D^+ = ( 0, 1/s22, 0)
0, 0, 1/s33
```
偽逆提供了一種求解線性回歸方程的方法,特別是當行數多于列時,通常就是這種情況。
NumPy 提供函數 pinv()來計算矩形矩陣的偽逆。
下面的示例定義了一個 4×2 矩陣并計算偽逆。
```
# Pseudoinverse
from numpy import array
from numpy.linalg import pinv
# define matrix
A = array([
[0.1, 0.2],
[0.3, 0.4],
[0.5, 0.6],
[0.7, 0.8]])
print(A)
# calculate pseudoinverse
B = pinv(A)
print(B)
```
首先運行示例打印定義的矩陣,然后打印計算的偽逆。
```
[[ 0.1 0.2]
[ 0.3 0.4]
[ 0.5 0.6]
[ 0.7 0.8]]
[[ -1.00000000e+01 -5.00000000e+00 9.04289323e-15 5.00000000e+00]
[ 8.50000000e+00 4.50000000e+00 5.00000000e-01 -3.50000000e+00]]
```
我們可以通過 SVD 手動計算偽逆,并將結果與??pinv()函數進行比較。
首先,我們必須計算 SVD。接下來,我們必須計算 s 數組中每個值的倒數。然后可以將 s 數組轉換為具有添加的零行的對角矩陣,以使其成為矩形。最后,我們可以從元素中計算出偽逆。
具體實施是:
```
A^+ = V . D^+ . U^V
```
下面列出了完整的示例。
```
# Pseudoinverse via SVD
from numpy import array
from numpy.linalg import svd
from numpy import zeros
from numpy import diag
# define matrix
A = array([
[0.1, 0.2],
[0.3, 0.4],
[0.5, 0.6],
[0.7, 0.8]])
print(A)
# calculate svd
U, s, VT = svd(A)
# reciprocals of s
d = 1.0 / s
# create m x n D matrix
D = zeros(A.shape)
# populate D with n x n diagonal matrix
D[:A.shape[1], :A.shape[1]] = diag(d)
# calculate pseudoinverse
B = VT.T.dot(D.T).dot(U.T)
print(B)
```
首先運行示例打印定義的矩形矩陣和與 pinv()函數匹配上述結果的偽逆。
```
[[ 0.1 0.2]
[ 0.3 0.4]
[ 0.5 0.6]
[ 0.7 0.8]]
[[ -1.00000000e+01 -5.00000000e+00 9.04831765e-15 5.00000000e+00]
[ 8.50000000e+00 4.50000000e+00 5.00000000e-01 -3.50000000e+00]]
```
## 用于降維的 SVD
SVD 的一種流行應用是降低尺寸。
具有大量特征的數據(例如,比觀察(行)更多的特征(列))可以減少到與預測問題最相關的較小特征子集。
結果是具有較低等級的矩陣,據說接近原始矩陣。
為此,我們可以對原始數據執行 SVD 操作,并在 Sigma 中選擇前 k 個最大奇異值。這些列可以從 Sigma 和從 V ^ T 中選擇的行中選擇。
然后可以重建原始向量 A 的近似 B.
```
B = U . Sigmak . V^Tk
```
在自然語言處理中,該方法可以用于文檔中的單詞出現或單詞頻率的矩陣,并且被稱為潛在語義分析或潛在語義索引。
在實踐中,我們可以保留并使用名為 T 的數據的描述子集。這是矩陣或投影的密集摘要。
```
T = U . Sigmak
```
此外,可以計算該變換并將其應用于原始矩陣 A 以及其他類似的矩陣。
```
T = V^Tk . A
```
下面的示例演示了使用 SVD 減少數據。
首先定義 3×10 矩陣,列數多于行數。計算 SVD 并僅選擇前兩個特征。重新組合元素以給出原始矩陣的準確再現。最后,變換以兩種不同的方式計算。
```
from numpy import array
from numpy import diag
from numpy import zeros
from scipy.linalg import svd
# define a matrix
A = array([
[1,2,3,4,5,6,7,8,9,10],
[11,12,13,14,15,16,17,18,19,20],
[21,22,23,24,25,26,27,28,29,30]])
print(A)
# Singular-value decomposition
U, s, VT = svd(A)
# create m x n Sigma matrix
Sigma = zeros((A.shape[0], A.shape[1]))
# populate Sigma with n x n diagonal matrix
Sigma[:A.shape[0], :A.shape[0]] = diag(s)
# select
n_elements = 2
Sigma = Sigma[:, :n_elements]
VT = VT[:n_elements, :]
# reconstruct
B = U.dot(Sigma.dot(VT))
print(B)
# transform
T = U.dot(Sigma)
print(T)
T = A.dot(VT.T)
print(T)
```
首先運行該示例打印定義的矩陣然后重建近似,然后是原始矩陣的兩個等效變換。
```
[[ 1 2 3 4 5 6 7 8 9 10]
[11 12 13 14 15 16 17 18 19 20]
[21 22 23 24 25 26 27 28 29 30]]
[[ 1\. 2\. 3\. 4\. 5\. 6\. 7\. 8\. 9\. 10.]
[ 11\. 12\. 13\. 14\. 15\. 16\. 17\. 18\. 19\. 20.]
[ 21\. 22\. 23\. 24\. 25\. 26\. 27\. 28\. 29\. 30.]]
[[-18.52157747 6.47697214]
[-49.81310011 1.91182038]
[-81.10462276 -2.65333138]]
[[-18.52157747 6.47697214]
[-49.81310011 1.91182038]
[-81.10462276 -2.65333138]]
```
scikit-learn 提供了一個直接實現此功能的 TruncatedSVD 類。
可以創建 TruncatedSVD 類,您必須在其中指定要選擇的所需要素或組件的數量,例如, 2.一旦創建,您可以通過調用 fit()函數來擬合變換(例如,計算 V ^ Tk),然后通過調用 transform()函數將其應用于原始矩陣。結果是上面稱為 T 的 A 的變換。
下面的示例演示了 TruncatedSVD 類。
```
from numpy import array
from sklearn.decomposition import TruncatedSVD
# define array
A = array([
[1,2,3,4,5,6,7,8,9,10],
[11,12,13,14,15,16,17,18,19,20],
[21,22,23,24,25,26,27,28,29,30]])
print(A)
# svd
svd = TruncatedSVD(n_components=2)
svd.fit(A)
result = svd.transform(A)
print(result)
```
首先運行示例打印定義的矩陣,然后打印矩陣的轉換版本。
我們可以看到值與上面手動計算的值匹配,除了某些值上的符號。考慮到所涉及的計算的性質以及所使用的底層庫和方法的差異,我們可以預期在符號方面存在一些不穩定性。只要對變換進行了重復訓練,這種符號的不穩定性在實踐中就不應成為問題。
```
[[ 1 2 3 4 5 6 7 8 9 10]
[11 12 13 14 15 16 17 18 19 20]
[21 22 23 24 25 26 27 28 29 30]]
[[ 18.52157747 6.47697214]
[ 49.81310011 1.91182038]
[ 81.10462276 -2.65333138]]
```
## 擴展
本節列出了一些擴展您可能希望探索的教程的想法。
* 在您自己的數據上試驗 SVD 方法。
* 研究并列出了 SVD 在機器學習中的 10 個應用。
* 將 SVD 作為數據縮減技術應用于表格數據集。
如果你探索任何這些擴展,我很想知道。
## 進一步閱讀
如果您希望深入了解,本節將提供有關該主題的更多資源。
### 圖書
* 第 12 章,奇異值和 Jordan 分解,[線性代數和矩陣分析統計](http://amzn.to/2A9ceNv),2014。
* 第 4 章,奇異值分解和第 5 章,關于 SVD 的更多內容,[數值線性代數](http://amzn.to/2kjEF4S),1997。
* 第 2.4 節奇異值分解,[矩陣計算](http://amzn.to/2B9xnLD),2012。
* 第 7 章奇異值分解(SVD),[線性代數導論](http://amzn.to/2AZ7R8j),第 5 版,2016 年。
* 第 2.8 節奇異值分解,[深度學習](http://amzn.to/2B3MsuU),2016 年。
* 第 7.D 節極性分解和奇異值分解,[線性代數完成權](http://amzn.to/2BGuEqI),第三版,2015 年。
* 第 3 講奇異值分解,[數值線性代數](http://amzn.to/2BI9kRH),1997。
* 第 2.6 節奇異值分解,[數字秘籍:科學計算的藝術](http://amzn.to/2BezVEE),第三版,2007。
* 第 2.9 節 Moore-Penrose 偽逆,[深度學習](http://amzn.to/2B3MsuU),2016。
### API
* [numpy.linalg.svd()API](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.html)
* [numpy.matrix.H API](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matrix.H.html)
* [numpy.diag()API](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.diag.html)
* [numpy.linalg.pinv()API](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.pinv.html) 。
* [sklearn.decomposition.TruncatedSVD API](http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html)
### 用品
* 維基百科上的[矩陣分解](https://en.wikipedia.org/wiki/Matrix_decomposition)
* [維基百科上的奇異值分解](https://en.wikipedia.org/wiki/Singular-value_decomposition)
* [維基百科上的奇異值](https://en.wikipedia.org/wiki/Singular_value)
* [維基百科上的 Moore-Penrose 逆](https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse)
* [維基百科上的潛在語義分析](https://en.wikipedia.org/wiki/Latent_semantic_analysis)
## 摘要
在本教程中,您發現了奇異值分解方法,用于將矩陣分解為其組成元素。
具體來說,你學到了:
* 奇異值分解是什么以及涉及什么。
* 如何計算 SVD 并從 SVD 元素重建矩形和方形矩陣。
* 如何使用 SVD 計算偽逆并執行降維。
你有任何問題嗎?
在下面的評論中提出您的問題,我會盡力回答。
- Machine Learning Mastery 應用機器學習教程
- 5競爭機器學習的好處
- 過度擬合的簡單直覺,或者為什么測試訓練數據是一個壞主意
- 特征選擇簡介
- 應用機器學習作為一個搜索問題的溫和介紹
- 為什么應用機器學習很難
- 為什么我的結果不如我想的那么好?你可能過度擬合了
- 用ROC曲線評估和比較分類器表現
- BigML評論:發現本機學習即服務平臺的聰明功能
- BigML教程:開發您的第一個決策樹并進行預測
- 構建生產機器學習基礎設施
- 分類準確性不夠:可以使用更多表現測量
- 一種預測模型的巧妙應用
- 機器學習項目中常見的陷阱
- 數據清理:將凌亂的數據轉換為整潔的數據
- 機器學習中的數據泄漏
- 數據,學習和建模
- 數據管理至關重要以及為什么需要認真對待它
- 將預測模型部署到生產中
- 參數和超參數之間有什么區別?
- 測試和驗證數據集之間有什么區別?
- 發現特征工程,如何設計特征以及如何獲得它
- 如何開始使用Kaggle
- 超越預測
- 如何在評估機器學習算法時選擇正確的測試選項
- 如何定義機器學習問題
- 如何評估機器學習算法
- 如何獲得基線結果及其重要性
- 如何充分利用機器學習數據
- 如何識別數據中的異常值
- 如何提高機器學習效果
- 如何在競爭機器學習中踢屁股
- 如何知道您的機器學習模型是否具有良好的表現
- 如何布局和管理您的機器學習項目
- 如何為機器學習準備數據
- 如何減少最終機器學習模型中的方差
- 如何使用機器學習結果
- 如何解決像數據科學家這樣的問題
- 通過數據預處理提高模型精度
- 處理機器學習的大數據文件的7種方法
- 建立機器學習系統的經驗教訓
- 如何使用機器學習清單可靠地獲得準確的預測(即使您是初學者)
- 機器學習模型運行期間要做什么
- 機器學習表現改進備忘單
- 來自世界級從業者的機器學習技巧:Phil Brierley
- 模型預測精度與機器學習中的解釋
- 競爭機器學習的模型選擇技巧
- 機器學習需要多少訓練數據?
- 如何系統地規劃和運行機器學習實驗
- 應用機器學習過程
- 默認情況下可重現的機器學習結果
- 10個實踐應用機器學習的標準數據集
- 簡單的三步法到最佳機器學習算法
- 打擊機器學習數據集中不平衡類的8種策略
- 模型表現不匹配問題(以及如何處理)
- 黑箱機器學習的誘惑陷阱
- 如何培養最終的機器學習模型
- 使用探索性數據分析了解您的問題并獲得更好的結果
- 什么是數據挖掘和KDD
- 為什么One-Hot在機器學習中編碼數據?
- 為什么你應該在你的機器學習問題上進行抽樣檢查算法
- 所以,你正在研究機器學習問題......
- Machine Learning Mastery Keras 深度學習教程
- Keras 中神經網絡模型的 5 步生命周期
- 在 Python 迷你課程中應用深度學習
- Keras 深度學習庫的二元分類教程
- 如何用 Keras 構建多層感知器神經網絡模型
- 如何在 Keras 中檢查深度學習模型
- 10 個用于 Amazon Web Services 深度學習的命令行秘籍
- 機器學習卷積神經網絡的速成課程
- 如何在 Python 中使用 Keras 進行深度學習的度量
- 深度學習書籍
- 深度學習課程
- 你所知道的深度學習是一種謊言
- 如何設置 Amazon AWS EC2 GPU 以訓練 Keras 深度學習模型(分步)
- 神經網絡中批量和迭代之間的區別是什么?
- 在 Keras 展示深度學習模型訓練歷史
- 基于 Keras 的深度學習模型中的dropout正則化
- 評估 Keras 中深度學習模型的表現
- 如何評價深度學習模型的技巧
- 小批量梯度下降的簡要介紹以及如何配置批量大小
- 在 Keras 中獲得深度學習幫助的 9 種方法
- 如何使用 Keras 在 Python 中網格搜索深度學習模型的超參數
- 用 Keras 在 Python 中使用卷積神經網絡進行手寫數字識別
- 如何用 Keras 進行預測
- 用 Keras 進行深度學習的圖像增強
- 8 個深度學習的鼓舞人心的應用
- Python 深度學習庫 Keras 簡介
- Python 深度學習庫 TensorFlow 簡介
- Python 深度學習庫 Theano 簡介
- 如何使用 Keras 函數式 API 進行深度學習
- Keras 深度學習庫的多類分類教程
- 多層感知器神經網絡速成課程
- 基于卷積神經網絡的 Keras 深度學習庫中的目標識別
- 流行的深度學習庫
- 用深度學習預測電影評論的情感
- Python 中的 Keras 深度學習庫的回歸教程
- 如何使用 Keras 獲得可重現的結果
- 如何在 Linux 服務器上運行深度學習實驗
- 保存并加載您的 Keras 深度學習模型
- 用 Keras 逐步開發 Python 中的第一個神經網絡
- 用 Keras 理解 Python 中的有狀態 LSTM 循環神經網絡
- 在 Python 中使用 Keras 深度學習模型和 Scikit-Learn
- 如何使用預訓練的 VGG 模型對照片中的物體進行分類
- 在 Python 和 Keras 中對深度學習模型使用學習率調度
- 如何在 Keras 中可視化深度學習神經網絡模型
- 什么是深度學習?
- 何時使用 MLP,CNN 和 RNN 神經網絡
- 為什么用隨機權重初始化神經網絡?
- Machine Learning Mastery 深度學習 NLP 教程
- 深度學習在自然語言處理中的 7 個應用
- 如何實現自然語言處理的波束搜索解碼器
- 深度學習文檔分類的最佳實踐
- 關于自然語言處理的熱門書籍
- 在 Python 中計算文本 BLEU 分數的溫和介紹
- 使用編碼器 - 解碼器模型的用于字幕生成的注入和合并架構
- 如何用 Python 清理機器學習的文本
- 如何配置神經機器翻譯的編碼器 - 解碼器模型
- 如何開始深度學習自然語言處理(7 天迷你課程)
- 自然語言處理的數據集
- 如何開發一種深度學習的詞袋模型來預測電影評論情感
- 深度學習字幕生成模型的溫和介紹
- 如何在 Keras 中定義神經機器翻譯的編碼器 - 解碼器序列 - 序列模型
- 如何利用小實驗在 Keras 中開發字幕生成模型
- 如何從頭開發深度學習圖片標題生成器
- 如何在 Keras 中開發基于字符的神經語言模型
- 如何開發用于情感分析的 N-gram 多通道卷積神經網絡
- 如何從零開始開發神經機器翻譯系統
- 如何在 Python 中用 Keras 開發基于單詞的神經語言模型
- 如何開發一種預測電影評論情感的詞嵌入模型
- 如何使用 Gensim 在 Python 中開發詞嵌入
- 用于文本摘要的編碼器 - 解碼器深度學習模型
- Keras 中文本摘要的編碼器 - 解碼器模型
- 用于神經機器翻譯的編碼器 - 解碼器循環神經網絡模型
- 淺談詞袋模型
- 文本摘要的溫和介紹
- 編碼器 - 解碼器循環神經網絡中的注意力如何工作
- 如何利用深度學習自動生成照片的文本描述
- 如何開發一個單詞級神經語言模型并用它來生成文本
- 淺談神經機器翻譯
- 什么是自然語言處理?
- 牛津自然語言處理深度學習課程
- 如何為機器翻譯準備法語到英語的數據集
- 如何為情感分析準備電影評論數據
- 如何為文本摘要準備新聞文章
- 如何準備照片標題數據集以訓練深度學習模型
- 如何使用 Keras 為深度學習準備文本數據
- 如何使用 scikit-learn 為機器學習準備文本數據
- 自然語言處理神經網絡模型入門
- 對自然語言處理的深度學習的承諾
- 在 Python 中用 Keras 進行 LSTM 循環神經網絡的序列分類
- 斯坦福自然語言處理深度學習課程評價
- 統計語言建模和神經語言模型的簡要介紹
- 使用 Keras 在 Python 中進行 LSTM 循環神經網絡的文本生成
- 淺談機器學習中的轉換
- 如何使用 Keras 將詞嵌入層用于深度學習
- 什么是用于文本的詞嵌入
- Machine Learning Mastery 深度學習時間序列教程
- 如何開發人類活動識別的一維卷積神經網絡模型
- 人類活動識別的深度學習模型
- 如何評估人類活動識別的機器學習算法
- 時間序列預測的多層感知器網絡探索性配置
- 比較經典和機器學習方法進行時間序列預測的結果
- 如何通過深度學習快速獲得時間序列預測的結果
- 如何利用 Python 處理序列預測問題中的缺失時間步長
- 如何建立預測大氣污染日的概率預測模型
- 如何開發一種熟練的機器學習時間序列預測模型
- 如何構建家庭用電自回歸預測模型
- 如何開發多步空氣污染時間序列預測的自回歸預測模型
- 如何制定多站點多元空氣污染時間序列預測的基線預測
- 如何開發時間序列預測的卷積神經網絡模型
- 如何開發卷積神經網絡用于多步時間序列預測
- 如何開發單變量時間序列預測的深度學習模型
- 如何開發 LSTM 模型用于家庭用電的多步時間序列預測
- 如何開發 LSTM 模型進行時間序列預測
- 如何開發多元多步空氣污染時間序列預測的機器學習模型
- 如何開發多層感知器模型進行時間序列預測
- 如何開發人類活動識別時間序列分類的 RNN 模型
- 如何開始深度學習的時間序列預測(7 天迷你課程)
- 如何網格搜索深度學習模型進行時間序列預測
- 如何對單變量時間序列預測的網格搜索樸素方法
- 如何在 Python 中搜索 SARIMA 模型超參數用于時間序列預測
- 如何在 Python 中進行時間序列預測的網格搜索三次指數平滑
- 一個標準的人類活動識別問題的溫和介紹
- 如何加載和探索家庭用電數據
- 如何加載,可視化和探索復雜的多變量多步時間序列預測數據集
- 如何從智能手機數據模擬人類活動
- 如何根據環境因素預測房間占用率
- 如何使用腦波預測人眼是開放還是閉合
- 如何在 Python 中擴展長短期內存網絡的數據
- 如何使用 TimeseriesGenerator 進行 Keras 中的時間序列預測
- 基于機器學習算法的室內運動時間序列分類
- 用于時間序列預測的狀態 LSTM 在線學習的不穩定性
- 用于罕見事件時間序列預測的 LSTM 模型體系結構
- 用于時間序列預測的 4 種通用機器學習數據變換
- Python 中長短期記憶網絡的多步時間序列預測
- 家庭用電機器學習的多步時間序列預測
- Keras 中 LSTM 的多變量時間序列預測
- 如何開發和評估樸素的家庭用電量預測方法
- 如何為長短期記憶網絡準備單變量時間序列數據
- 循環神經網絡在時間序列預測中的應用
- 如何在 Python 中使用差異變換刪除趨勢和季節性
- 如何在 LSTM 中種子狀態用于 Python 中的時間序列預測
- 使用 Python 進行時間序列預測的有狀態和無狀態 LSTM
- 長短時記憶網絡在時間序列預測中的適用性
- 時間序列預測問題的分類
- Python 中長短期記憶網絡的時間序列預測
- 基于 Keras 的 Python 中 LSTM 循環神經網絡的時間序列預測
- Keras 中深度學習的時間序列預測
- 如何用 Keras 調整 LSTM 超參數進行時間序列預測
- 如何在時間序列預測訓練期間更新 LSTM 網絡
- 如何使用 LSTM 網絡的 Dropout 進行時間序列預測
- 如何使用 LSTM 網絡中的特征進行時間序列預測
- 如何在 LSTM 網絡中使用時間序列進行時間序列預測
- 如何利用 LSTM 網絡進行權重正則化進行時間序列預測
- Machine Learning Mastery 線性代數教程
- 機器學習數學符號的基礎知識
- 用 NumPy 陣列輕松介紹廣播
- 如何從 Python 中的 Scratch 計算主成分分析(PCA)
- 用于編碼器審查的計算線性代數
- 10 機器學習中的線性代數示例
- 線性代數的溫和介紹
- 用 NumPy 輕松介紹 Python 中的 N 維數組
- 機器學習向量的溫和介紹
- 如何在 Python 中為機器學習索引,切片和重塑 NumPy 數組
- 機器學習的矩陣和矩陣算法簡介
- 溫和地介紹機器學習的特征分解,特征值和特征向量
- NumPy 對預期價值,方差和協方差的簡要介紹
- 機器學習矩陣分解的溫和介紹
- 用 NumPy 輕松介紹機器學習的張量
- 用于機器學習的線性代數中的矩陣類型簡介
- 用于機器學習的線性代數備忘單
- 線性代數的深度學習
- 用于機器學習的線性代數(7 天迷你課程)
- 機器學習的線性代數
- 機器學習矩陣運算的溫和介紹
- 線性代數評論沒有廢話指南
- 學習機器學習線性代數的主要資源
- 淺談機器學習的奇異值分解
- 如何用線性代數求解線性回歸
- 用于機器學習的稀疏矩陣的溫和介紹
- 機器學習中向量規范的溫和介紹
- 學習線性代數用于機器學習的 5 個理由
- Machine Learning Mastery LSTM 教程
- Keras中長短期記憶模型的5步生命周期
- 長短時記憶循環神經網絡的注意事項
- CNN長短期記憶網絡
- 逆向神經網絡中的深度學習速成課程
- 可變長度輸入序列的數據準備
- 如何用Keras開發用于Python序列分類的雙向LSTM
- 如何開發Keras序列到序列預測的編碼器 - 解碼器模型
- 如何診斷LSTM模型的過度擬合和欠擬合
- 如何開發一種編碼器 - 解碼器模型,注重Keras中的序列到序列預測
- 編碼器 - 解碼器長短期存儲器網絡
- 神經網絡中爆炸梯度的溫和介紹
- 對時間反向傳播的溫和介紹
- 生成長短期記憶網絡的溫和介紹
- 專家對長短期記憶網絡的簡要介紹
- 在序列預測問題上充分利用LSTM
- 編輯器 - 解碼器循環神經網絡全局注意的溫和介紹
- 如何利用長短時記憶循環神經網絡處理很長的序列
- 如何在Python中對一個熱編碼序列數據
- 如何使用編碼器 - 解碼器LSTM來回顯隨機整數序列
- 具有注意力的編碼器 - 解碼器RNN體系結構的實現模式
- 學習使用編碼器解碼器LSTM循環神經網絡添加數字
- 如何學習長短時記憶循環神經網絡回聲隨機整數
- 具有Keras的長短期記憶循環神經網絡的迷你課程
- LSTM自動編碼器的溫和介紹
- 如何用Keras中的長短期記憶模型進行預測
- 用Python中的長短期內存網絡演示內存
- 基于循環神經網絡的序列預測模型的簡要介紹
- 深度學習的循環神經網絡算法之旅
- 如何重塑Keras中長短期存儲網絡的輸入數據
- 了解Keras中LSTM的返回序列和返回狀態之間的差異
- RNN展開的溫和介紹
- 5學習LSTM循環神經網絡的簡單序列預測問題的例子
- 使用序列進行預測
- 堆疊長短期內存網絡
- 什么是教師強制循環神經網絡?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何準備Keras中截斷反向傳播的序列預測
- 如何在使用LSTM進行訓練和預測時使用不同的批量大小
- Machine Learning Mastery 機器學習算法教程
- 機器學習算法之旅
- 用于機器學習的裝袋和隨機森林集合算法
- 從頭開始實施機器學習算法的好處
- 更好的樸素貝葉斯:從樸素貝葉斯算法中獲取最多的12個技巧
- 機器學習的提升和AdaBoost
- 選擇機器學習算法:Microsoft Azure的經驗教訓
- 機器學習的分類和回歸樹
- 什么是機器學習中的混淆矩陣
- 如何使用Python從頭開始創建算法測試工具
- 通過創建機器學習算法的目標列表來控制
- 從頭開始停止編碼機器學習算法
- 在實現機器學習算法時,不要從開源代碼開始
- 不要使用隨機猜測作為基線分類器
- 淺談機器學習中的概念漂移
- 溫和介紹機器學習中的偏差 - 方差權衡
- 機器學習的梯度下降
- 機器學習算法如何工作(他們學習輸入到輸出的映射)
- 如何建立機器學習算法的直覺
- 如何實現機器學習算法
- 如何研究機器學習算法行為
- 如何學習機器學習算法
- 如何研究機器學習算法
- 如何研究機器學習算法
- 如何在Python中從頭開始實現反向傳播算法
- 如何用Python從頭開始實現Bagging
- 如何用Python從頭開始實現基線機器學習算法
- 如何在Python中從頭開始實現決策樹算法
- 如何用Python從頭開始實現學習向量量化
- 如何利用Python從頭開始隨機梯度下降實現線性回歸
- 如何利用Python從頭開始隨機梯度下降實現Logistic回歸
- 如何用Python從頭開始實現機器學習算法表現指標
- 如何在Python中從頭開始實現感知器算法
- 如何在Python中從零開始實現隨機森林
- 如何在Python中從頭開始實現重采樣方法
- 如何用Python從頭開始實現簡單線性回歸
- 如何用Python從頭開始實現堆棧泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 學習機器學習的向量量化
- 機器學習的線性判別分析
- 機器學習的線性回歸
- 使用梯度下降進行機器學習的線性回歸教程
- 如何在Python中從頭開始加載機器學習數據
- 機器學習的Logistic回歸
- 機器學習的Logistic回歸教程
- 機器學習算法迷你課程
- 如何在Python中從頭開始實現樸素貝葉斯
- 樸素貝葉斯機器學習
- 樸素貝葉斯機器學習教程
- 機器學習算法的過擬合和欠擬合
- 參數化和非參數機器學習算法
- 理解任何機器學習算法的6個問題
- 在機器學習中擁抱隨機性
- 如何使用Python從頭開始擴展機器學習數據
- 機器學習的簡單線性回歸教程
- 有監督和無監督的機器學習算法
- 用于機器學習的支持向量機
- 在沒有數學背景的情況下理解機器學習算法的5種技術
- 最好的機器學習算法
- 教程從頭開始在Python中實現k-Nearest Neighbors
- 通過從零開始實現它們來理解機器學習算法(以及繞過壞代碼的策略)
- 使用隨機森林:在121個數據集上測試179個分類器
- 為什么從零開始實現機器學習算法
- Machine Learning Mastery 機器學習入門教程
- 機器學習入門的四個步驟:初學者入門與實踐的自上而下策略
- 你應該培養的 5 個機器學習領域
- 一種選擇機器學習算法的數據驅動方法
- 機器學習中的分析與數值解
- 應用機器學習是一種精英政治
- 機器學習的基本概念
- 如何成為數據科學家
- 初學者如何在機器學習中弄錯
- 機器學習的最佳編程語言
- 構建機器學習組合
- 機器學習中分類與回歸的區別
- 評估自己作為數據科學家并利用結果建立驚人的數據科學團隊
- 探索 Kaggle 大師的方法論和心態:對 Diogo Ferreira 的采訪
- 擴展機器學習工具并展示掌握
- 通過尋找地標開始機器學習
- 溫和地介紹預測建模
- 通過提供結果在機器學習中獲得夢想的工作
- 如何開始機器學習:自學藍圖
- 開始并在機器學習方面取得進展
- 應用機器學習的 Hello World
- 初學者如何使用小型項目開始機器學習并在 Kaggle 上進行競爭
- 我如何開始機器學習? (簡短版)
- 我是如何開始機器學習的
- 如何在機器學習中取得更好的成績
- 如何從在銀行工作到擔任 Target 的高級數據科學家
- 如何學習任何機器學習工具
- 使用小型目標項目深入了解機器學習工具
- 獲得付費申請機器學習
- 映射機器學習工具的景觀
- 機器學習開發環境
- 機器學習金錢
- 程序員的機器學習
- 機器學習很有意思
- 機器學習是 Kaggle 比賽
- 機器學習現在很受歡迎
- 機器學習掌握方法
- 機器學習很重要
- 機器學習 Q& A:概念漂移,更好的結果和學習更快
- 缺乏自學機器學習的路線圖
- 機器學習很重要
- 快速了解任何機器學習工具(即使您是初學者)
- 機器學習工具
- 找到你的機器學習部落
- 機器學習在一年
- 通過競爭一致的大師 Kaggle
- 5 程序員在機器學習中開始犯錯誤
- 哲學畢業生到機器學習從業者(Brian Thomas 采訪)
- 機器學習入門的實用建議
- 實用機器學習問題
- 使用來自 UCI 機器學習庫的數據集練習機器學習
- 使用秘籍的任何機器學習工具快速啟動
- 程序員可以進入機器學習
- 程序員應該進入機器學習
- 項目焦點:Shashank Singh 的人臉識別
- 項目焦點:使用 Mahout 和 Konstantin Slisenko 進行堆棧交換群集
- 機器學習自學指南
- 4 個自學機器學習項目
- álvaroLemos 如何在數據科學團隊中獲得機器學習實習
- 如何思考機器學習
- 現實世界機器學習問題之旅
- 有關機器學習的有用知識
- 如果我沒有學位怎么辦?
- 如果我不是一個優秀的程序員怎么辦?
- 如果我不擅長數學怎么辦?
- 為什么機器學習算法會處理以前從未見過的數據?
- 是什么阻礙了你的機器學習目標?
- 什么是機器學習?
- 機器學習適合哪里?
- 為什么要進入機器學習?
- 研究對您來說很重要的機器學習問題
- 你這樣做是錯的。為什么機器學習不必如此困難
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的溫和介紹:Python 機器學習庫
- 使用 Python 管道和 scikit-learn 自動化機器學習工作流程
- 如何以及何時使用帶有 scikit-learn 的校準分類模型
- 如何比較 Python 中的機器學習算法與 scikit-learn
- 用于機器學習開發人員的 Python 崩潰課程
- 用 scikit-learn 在 Python 中集成機器學習算法
- 使用重采樣評估 Python 中機器學習算法的表現
- 使用 Scikit-Learn 在 Python 中進行特征選擇
- Python 中機器學習的特征選擇
- 如何使用 scikit-learn 在 Python 中生成測試數據集
- scikit-learn 中的機器學習算法秘籍
- 如何使用 Python 處理丟失的數據
- 如何開始使用 Python 進行機器學習
- 如何使用 Scikit-Learn 在 Python 中加載數據
- Python 中概率評分方法的簡要介紹
- 如何用 Scikit-Learn 調整算法參數
- 如何在 Mac OS X 上安裝 Python 3 環境以進行機器學習和深度學習
- 使用 scikit-learn 進行機器學習簡介
- 從 shell 到一本帶有 Fernando Perez 單一工具的書的 IPython
- 如何使用 Python 3 為機器學習開發創建 Linux 虛擬機
- 如何在 Python 中加載機器學習數據
- 您在 Python 中的第一個機器學習項目循序漸進
- 如何使用 scikit-learn 進行預測
- 用于評估 Python 中機器學習算法的度量標準
- 使用 Pandas 為 Python 中的機器學習準備數據
- 如何使用 Scikit-Learn 為 Python 機器學習準備數據
- 項目焦點:使用 Artem Yankov 在 Python 中進行事件推薦
- 用于機器學習的 Python 生態系統
- Python 是應用機器學習的成長平臺
- Python 機器學習書籍
- Python 機器學習迷你課程
- 使用 Pandas 快速和骯臟的數據分析
- 使用 Scikit-Learn 重新調整 Python 中的機器學習數據
- 如何以及何時使用 ROC 曲線和精確調用曲線進行 Python 分類
- 使用 scikit-learn 在 Python 中保存和加載機器學習模型
- scikit-learn Cookbook 書評
- 如何使用 Anaconda 為機器學習和深度學習設置 Python 環境
- 使用 scikit-learn 在 Python 中進行 Spot-Check 分類機器學習算法
- 如何在 Python 中開發可重復使用的抽樣檢查算法框架
- 使用 scikit-learn 在 Python 中進行 Spot-Check 回歸機器學習算法
- 使用 Python 中的描述性統計來了解您的機器學習數據
- 使用 OpenCV,Python 和模板匹配來播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可視化機器學習數據
- Machine Learning Mastery 統計學教程
- 淺談計算正態匯總統計量
- 非參數統計的溫和介紹
- Python中常態測試的溫和介紹
- 淺談Bootstrap方法
- 淺談機器學習的中心極限定理
- 淺談機器學習中的大數定律
- 機器學習的所有統計數據
- 如何計算Python中機器學習結果的Bootstrap置信區間
- 淺談機器學習的Chi-Squared測試
- 機器學習的置信區間
- 隨機化在機器學習中解決混雜變量的作用
- 機器學習中的受控實驗
- 機器學習統計學速成班
- 統計假設檢驗的關鍵值以及如何在Python中計算它們
- 如何在機器學習中談論數據(統計學和計算機科學術語)
- Python中數據可視化方法的簡要介紹
- Python中效果大小度量的溫和介紹
- 估計隨機機器學習算法的實驗重復次數
- 機器學習評估統計的溫和介紹
- 如何計算Python中的非參數秩相關性
- 如何在Python中計算數據的5位數摘要
- 如何在Python中從頭開始編寫學生t檢驗
- 如何在Python中生成隨機數
- 如何轉換數據以更好地擬合正態分布
- 如何使用相關來理解變量之間的關系
- 如何使用統計信息識別數據中的異常值
- 用于Python機器學習的隨機數生成器簡介
- k-fold交叉驗證的溫和介紹
- 如何計算McNemar的比較兩種機器學習量詞的測試
- Python中非參數統計顯著性測試簡介
- 如何在Python中使用參數統計顯著性測試
- 機器學習的預測間隔
- 應用統計學與機器學習的密切關系
- 如何使用置信區間報告分類器表現
- 統計數據分布的簡要介紹
- 15 Python中的統計假設檢驗(備忘單)
- 統計假設檢驗的溫和介紹
- 10如何在機器學習項目中使用統計方法的示例
- Python中統計功效和功耗分析的簡要介紹
- 統計抽樣和重新抽樣的簡要介紹
- 比較機器學習算法的統計顯著性檢驗
- 機器學習中統計容差區間的溫和介紹
- 機器學習統計書籍
- 評估機器學習模型的統計數據
- 機器學習統計(7天迷你課程)
- 用于機器學習的簡明英語統計
- 如何使用統計顯著性檢驗來解釋機器學習結果
- 什么是統計(為什么它在機器學習中很重要)?
- Machine Learning Mastery 時間序列入門教程
- 如何在 Python 中為時間序列預測創建 ARIMA 模型
- 用 Python 進行時間序列預測的自回歸模型
- 如何回溯機器學習模型的時間序列預測
- Python 中基于時間序列數據的基本特征工程
- R 的時間序列預測熱門書籍
- 10 挑戰機器學習時間序列預測問題
- 如何將時間序列轉換為 Python 中的監督學習問題
- 如何將時間序列數據分解為趨勢和季節性
- 如何用 ARCH 和 GARCH 模擬波動率進行時間序列預測
- 如何將時間序列數據集與 Python 區分開來
- Python 中時間序列預測的指數平滑的溫和介紹
- 用 Python 進行時間序列預測的特征選擇
- 淺談自相關和部分自相關
- 時間序列預測的 Box-Jenkins 方法簡介
- 用 Python 簡要介紹時間序列的時間序列預測
- 如何使用 Python 網格搜索 ARIMA 模型超參數
- 如何在 Python 中加載和探索時間序列數據
- 如何使用 Python 對 ARIMA 模型進行手動預測
- 如何用 Python 進行時間序列預測的預測
- 如何使用 Python 中的 ARIMA 進行樣本外預測
- 如何利用 Python 模擬殘差錯誤來糾正時間序列預測
- 使用 Python 進行數據準備,特征工程和時間序列預測的移動平均平滑
- 多步時間序列預測的 4 種策略
- 如何在 Python 中規范化和標準化時間序列數據
- 如何利用 Python 進行時間序列預測的基線預測
- 如何使用 Python 對時間序列預測數據進行功率變換
- 用于時間序列預測的 Python 環境
- 如何重構時間序列預測問題
- 如何使用 Python 重新采樣和插值您的時間序列數據
- 用 Python 編寫 SARIMA 時間序列預測
- 如何在 Python 中保存 ARIMA 時間序列預測模型
- 使用 Python 進行季節性持久性預測
- 基于 ARIMA 的 Python 歷史規模敏感性預測技巧分析
- 簡單的時間序列預測模型進行測試,這樣你就不會欺騙自己
- 標準多變量,多步驟和多站點時間序列預測問題
- 如何使用 Python 檢查時間序列數據是否是固定的
- 使用 Python 進行時間序列數據可視化
- 7 個機器學習的時間序列數據集
- 時間序列預測案例研究與 Python:波士頓每月武裝搶劫案
- Python 的時間序列預測案例研究:巴爾的摩的年度用水量
- 使用 Python 進行時間序列預測研究:法國香檳的月銷售額
- 使用 Python 的置信區間理解時間序列預測不確定性
- 11 Python 中的經典時間序列預測方法(備忘單)
- 使用 Python 進行時間序列預測表現測量
- 使用 Python 7 天迷你課程進行時間序列預測
- 時間序列預測作為監督學習
- 什么是時間序列預測?
- 如何使用 Python 識別和刪除時間序列數據的季節性
- 如何在 Python 中使用和刪除時間序列數據中的趨勢信息
- 如何在 Python 中調整 ARIMA 參數
- 如何用 Python 可視化時間序列殘差預測錯誤
- 白噪聲時間序列與 Python
- 如何通過時間序列預測項目
- Machine Learning Mastery XGBoost 教程
- 通過在 Python 中使用 XGBoost 提前停止來避免過度擬合
- 如何在 Python 中調優 XGBoost 的多線程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 進行梯度提升的數據準備
- 如何使用 scikit-learn 在 Python 中開發您的第一個 XGBoost 模型
- 如何在 Python 中使用 XGBoost 評估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征選擇
- 淺談機器學習的梯度提升算法
- 應用機器學習的 XGBoost 簡介
- 如何在 macOS 上為 Python 安裝 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 從梯度提升開始,比較 165 個數據集上的 13 種算法
- 在 Python 中使用 XGBoost 和 scikit-learn 進行隨機梯度提升
- 如何使用 Amazon Web Services 在云中訓練 XGBoost 模型
- 在 Python 中使用 XGBoost 調整梯度提升的學習率
- 如何在 Python 中使用 XGBoost 調整決策樹的數量和大小
- 如何在 Python 中使用 XGBoost 可視化梯度提升決策樹
- 在 Python 中開始使用 XGBoost 的 7 步迷你課程