# 如何在 Python 中用 Keras 開發基于單詞的神經語言模型
> 原文: [https://machinelearningmastery.com/develop-word-based-neural-language-models-python-keras/](https://machinelearningmastery.com/develop-word-based-neural-language-models-python-keras/)
語言建模涉及在已經存在的單詞序列的情況下預測序列中的下一個單詞。
語言模型是許多自然語言處理模型中的關鍵元素,例如機器翻譯和語音識別。語言模型的框架選擇必須與語言模型的使用方式相匹配。
在本教程中,您將了解在從童謠中生成短序列時,語言模型的框架如何影響模型的技能。
完成本教程后,您將了解:
* 為給定的應用程序開發基于單詞的語言模型的良好框架的挑戰。
* 如何為基于單詞的語言模型開發單字,雙字和基于行的框架。
* 如何使用擬合語言模型生成序列。
讓我們開始吧。

如何使用 Keras 在 Python 中開發基于 Word 的神經語言模型
照片由 [Stephanie Chapman](https://www.flickr.com/photos/imcountingufoz/5602273537/) 保留,保留一些權利。
## 教程概述
本教程分為 5 個部分;他們是:
1. 框架語言建模
2. 杰克和吉爾童謠
3. 模型 1:單字輸入,單字輸出序列
4. 模型 2:逐行序列
5. 模型 3:雙字輸入,單字輸出序列
## 框架語言建模
從原始文本中學習統計語言模型,并且在給定已經存在于序列中的單詞的情況下預測序列中下一個單詞的概率。
語言模型是大型模型中的關鍵組件,用于挑戰自然語言處理問題,如機器翻譯和語音識別。它們也可以作為獨立模型開發,并用于生成與源文本具有相同統計屬性的新序列。
語言模型一次學習和預測一個單詞。網絡的訓練涉及提供單詞序列作為輸入,每次處理一個單詞,其中可以為每個輸入序列進行預測和學習。
類似地,在進行預測時,可以用一個或幾個單詞播種該過程,然后可以收集預測的單詞并將其作為后續預測的輸入呈現,以便建立生成的輸出序列
因此,每個模型將涉及將源文本分成輸入和輸出序列,使得模型可以學習預測單詞。
有許多方法可以從源文本中構建序列以進行語言建模。
在本教程中,我們將探討在 Keras 深度學習庫中開發基于單詞的語言模型的 3 種不同方法。
沒有單一的最佳方法,只是可能適合不同應用的不同框架。
## 杰克和吉爾童謠
杰克和吉爾是一個簡單的童謠。
它由 4 行組成,如下所示:
> 杰克和吉爾上山
> 去取一桶水
> 杰克摔倒了,打破了他的王冠
> 吉爾跌倒了之后
我們將使用它作為我們的源文本來探索基于單詞的語言模型的不同框架。
我們可以在 Python 中定義這個文本如下:
```py
# source text
data = """ Jack and Jill went up the hill\n
To fetch a pail of water\n
Jack fell down and broke his crown\n
And Jill came tumbling after\n """
```
## 模型 1:單字輸入,單字輸出序列
我們可以從一個非常簡單的模型開始。
給定一個單詞作為輸入,模型將學習預測序列中的下一個單詞。
例如:
```py
X, y
Jack, and
and, Jill
Jill, went
...
```
第一步是將文本編碼為整數。
源文本中的每個小寫字都被賦予一個唯一的整數,我們可以將單詞序列轉換為整數序列。
Keras 提供了 [Tokenizer](https://keras.io/preprocessing/text/#tokenizer) 類,可用于執行此編碼。首先,Tokenizer 適合源文本,以開發從單詞到唯一整數的映射。然后通過調用 _texts_to_sequences()_ 函數將文本序列轉換為整數序列。
```py
# integer encode text
tokenizer = Tokenizer()
tokenizer.fit_on_texts([data])
encoded = tokenizer.texts_to_sequences([data])[0]
```
我們稍后需要知道詞匯表的大小,以便在模型中定義單詞嵌入層,以及使用一個熱編碼對輸出單詞進行編碼。
通過訪問 _word_index_ 屬性,可以從訓練好的 Tokenizer 中檢索詞匯表的大小。
```py
# determine the vocabulary size
vocab_size = len(tokenizer.word_index) + 1
print('Vocabulary Size: %d' % vocab_size)
```
運行這個例子,我們可以看到詞匯量的大小是 21 個單詞。
我們添加一個,因為我們需要將最大編碼字的整數指定為數組索引,例如單詞編碼 1 到 21,數組指示 0 到 21 或 22 個位置。
接下來,我們需要創建單詞序列以適合模型,其中一個單詞作為輸入,一個單詞作為輸出。
```py
# create word -> word sequences
sequences = list()
for i in range(1, len(encoded)):
sequence = encoded[i-1:i+1]
sequences.append(sequence)
print('Total Sequences: %d' % len(sequences))
```
運行這一部分表明我們總共有 24 個輸入輸出對來訓練網絡。
```py
Total Sequences: 24
```
然后我們可以將序列分成輸入( _X_ )和輸出元素( _y_ )。這很簡單,因為我們在數據中只有兩列。
```py
# split into X and y elements
sequences = array(sequences)
X, y = sequences[:,0],sequences[:,1]
```
我們將使用我們的模型來預測詞匯表中所有單詞的概率分布。這意味著我們需要將輸出元素從單個整數轉換為一個熱編碼,對于詞匯表中的每個單詞都為 0,對于值的實際單詞為 1。這為網絡提供了一個基本事實,我們可以從中計算錯誤并更新模型。
Keras 提供 _to_categorical()_ 函數,我們可以使用它將整數轉換為一個熱編碼,同時指定類的數量作為詞匯表大小。
```py
# one hot encode outputs
y = to_categorical(y, num_classes=vocab_size)
```
我們現在準備定義神經網絡模型。
該模型使用嵌入在輸入層中的學習單詞。這對于詞匯表中的每個單詞具有一個實值向量,其中每個單詞向量具有指定的長度。在這種情況下,我們將使用 10 維投影。輸入序列包含單個字,因此 _input_length = 1_ 。
該模型具有單個隱藏的 LSTM 層,具有 50 個單元。這遠遠超過了需要。輸出層由詞匯表中每個單詞的一個神經元組成,并使用 softmax 激活函數來確保輸出被標準化為看起來像概率。
```py
# define model
model = Sequential()
model.add(Embedding(vocab_size, 10, input_length=1))
model.add(LSTM(50))
model.add(Dense(vocab_size, activation='softmax'))
print(model.summary())
```
網絡結構可歸納如下:
```py
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 1, 10) 220
_________________________________________________________________
lstm_1 (LSTM) (None, 50) 12200
_________________________________________________________________
dense_1 (Dense) (None, 22) 1122
=================================================================
Total params: 13,542
Trainable params: 13,542
Non-trainable params: 0
_________________________________________________________________
```
對于本教程中的每個示例,我們將使用相同的通用網絡結構,對學習的嵌入層進行微小更改。
接下來,我們可以在編碼的文本數據上編譯和擬合網絡。從技術上講,我們正在建模一個多類分類問題(預測詞匯表中的單詞),因此使用分類交叉熵損失函數。我們在每個時代結束時使用有效的 Adam 實現梯度下降和跟蹤精度。該模型適用于 500 個訓練時期,也許比需要更多。
網絡配置沒有針對此和后續實驗進行調整;選擇了一個過度規定的配置,以確保我們可以專注于語言模型的框架。
```py
# compile network
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit network
model.fit(X, y, epochs=500, verbose=2)
```
在模型擬合之后,我們通過從詞匯表中傳遞給定的單詞并讓模型預測下一個單詞來測試它。在這里我們通過編碼傳遞' _Jack_ '并調用 _model.predict_classes()_ 來獲得預測單詞的整數輸出。然后在詞匯表映射中查找,以提供相關的單詞。
```py
# evaluate
in_text = 'Jack'
print(in_text)
encoded = tokenizer.texts_to_sequences([in_text])[0]
encoded = array(encoded)
yhat = model.predict_classes(encoded, verbose=0)
for word, index in tokenizer.word_index.items():
if index == yhat:
print(word)
```
然后可以重復該過程幾次以建立生成的單詞序列。
為了使這更容易,我們將函數包含在一個函數中,我們可以通過傳入模型和種子字來調用它。
```py
# generate a sequence from the model
def generate_seq(model, tokenizer, seed_text, n_words):
in_text, result = seed_text, seed_text
# generate a fixed number of words
for _ in range(n_words):
# encode the text as integer
encoded = tokenizer.texts_to_sequences([in_text])[0]
encoded = array(encoded)
# predict a word in the vocabulary
yhat = model.predict_classes(encoded, verbose=0)
# map predicted word index to word
out_word = ''
for word, index in tokenizer.word_index.items():
if index == yhat:
out_word = word
break
# append to input
in_text, result = out_word, result + ' ' + out_word
return result
```
我們可以把所有這些放在一起。完整的代碼清單如下。
```py
from numpy import array
from keras.preprocessing.text import Tokenizer
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Embedding
# generate a sequence from the model
def generate_seq(model, tokenizer, seed_text, n_words):
in_text, result = seed_text, seed_text
# generate a fixed number of words
for _ in range(n_words):
# encode the text as integer
encoded = tokenizer.texts_to_sequences([in_text])[0]
encoded = array(encoded)
# predict a word in the vocabulary
yhat = model.predict_classes(encoded, verbose=0)
# map predicted word index to word
out_word = ''
for word, index in tokenizer.word_index.items():
if index == yhat:
out_word = word
break
# append to input
in_text, result = out_word, result + ' ' + out_word
return result
# source text
data = """ Jack and Jill went up the hill\n
To fetch a pail of water\n
Jack fell down and broke his crown\n
And Jill came tumbling after\n """
# integer encode text
tokenizer = Tokenizer()
tokenizer.fit_on_texts([data])
encoded = tokenizer.texts_to_sequences([data])[0]
# determine the vocabulary size
vocab_size = len(tokenizer.word_index) + 1
print('Vocabulary Size: %d' % vocab_size)
# create word -> word sequences
sequences = list()
for i in range(1, len(encoded)):
sequence = encoded[i-1:i+1]
sequences.append(sequence)
print('Total Sequences: %d' % len(sequences))
# split into X and y elements
sequences = array(sequences)
X, y = sequences[:,0],sequences[:,1]
# one hot encode outputs
y = to_categorical(y, num_classes=vocab_size)
# define model
model = Sequential()
model.add(Embedding(vocab_size, 10, input_length=1))
model.add(LSTM(50))
model.add(Dense(vocab_size, activation='softmax'))
print(model.summary())
# compile network
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit network
model.fit(X, y, epochs=500, verbose=2)
# evaluate
print(generate_seq(model, tokenizer, 'Jack', 6))
```
運行該示例打印每個訓練時期的損失和準確性。
```py
...
Epoch 496/500
0s - loss: 0.2358 - acc: 0.8750
Epoch 497/500
0s - loss: 0.2355 - acc: 0.8750
Epoch 498/500
0s - loss: 0.2352 - acc: 0.8750
Epoch 499/500
0s - loss: 0.2349 - acc: 0.8750
Epoch 500/500
0s - loss: 0.2346 - acc: 0.8750
```
我們可以看到模型沒有記住源序列,可能是因為輸入序列中存在一些模糊性,例如:
```py
jack => and
jack => fell
```
等等。
在運行結束時,傳入' _Jack_ '并生成預測或新序列。
我們得到一個合理的序列作為輸出,它有一些源的元素。
```py
Jack and jill came tumbling after down
```
這是一個很好的第一個切割語言模型,但沒有充分利用 LSTM 處理輸入序列的能力,并通過使用更廣泛的上下文消除一些模糊的成對序列的歧義。
## 模型 2:逐行序列
另一種方法是逐行分割源文本,然后將每一行分解為一系列構建的單詞。
例如:
```py
X, y
_, _, _, _, _, Jack, and
_, _, _, _, Jack, and Jill
_, _, _, Jack, and, Jill, went
_, _, Jack, and, Jill, went, up
_, Jack, and, Jill, went, up, the
Jack, and, Jill, went, up, the, hill
```
這種方法可以允許模型在一個簡單的單字輸入和輸出模型產生歧義的情況下使用每一行的上下文來幫助模型。
在這種情況下,這是以跨行預測單詞為代價的,如果我們只對建模和生成文本行感興趣,那么現在可能沒問題。
請注意,在此表示中,我們將需要填充序列以確保它們滿足固定長度輸入。這是使用 Keras 時的要求。
首先,我們可以使用已經適合源文本的 Tokenizer 逐行創建整數序列。
```py
# create line-based sequences
sequences = list()
for line in data.split('\n'):
encoded = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(encoded)):
sequence = encoded[:i+1]
sequences.append(sequence)
print('Total Sequences: %d' % len(sequences))
```
接下來,我們可以填充準備好的序列。我們可以使用 Keras 中提供的 [pad_sequences()](https://keras.io/preprocessing/sequence/#pad_sequences)函數來完成此操作。這首先涉及找到最長的序列,然后使用它作為填充所有其他序列的長度。
```py
# pad input sequences
max_length = max([len(seq) for seq in sequences])
sequences = pad_sequences(sequences, maxlen=max_length, padding='pre')
print('Max Sequence Length: %d' % max_length)
```
接下來,我們可以將序列拆分為輸入和輸出元素,就像之前一樣。
```py
# split into input and output elements
sequences = array(sequences)
X, y = sequences[:,:-1],sequences[:,-1]
y = to_categorical(y, num_classes=vocab_size)
```
然后可以像之前一樣定義模型,除了輸入序列現在比單個字長。具體來說,它們的長度為 _max_length-1_ ,-1 因為當我們計算序列的最大長度時,它們包括輸入和輸出元素。
```py
# define model
model = Sequential()
model.add(Embedding(vocab_size, 10, input_length=max_length-1))
model.add(LSTM(50))
model.add(Dense(vocab_size, activation='softmax'))
print(model.summary())
# compile network
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit network
model.fit(X, y, epochs=500, verbose=2)
```
我們可以像以前一樣使用該模型生成新序列。通過在每次迭代中將預測添加到輸入詞列表中,可以更新 _generate_seq()_ 函數以建立輸入序列。
```py
# generate a sequence from a language model
def generate_seq(model, tokenizer, max_length, seed_text, n_words):
in_text = seed_text
# generate a fixed number of words
for _ in range(n_words):
# encode the text as integer
encoded = tokenizer.texts_to_sequences([in_text])[0]
# pre-pad sequences to a fixed length
encoded = pad_sequences([encoded], maxlen=max_length, padding='pre')
# predict probabilities for each word
yhat = model.predict_classes(encoded, verbose=0)
# map predicted word index to word
out_word = ''
for word, index in tokenizer.word_index.items():
if index == yhat:
out_word = word
break
# append to input
in_text += ' ' + out_word
return in_text
```
將所有這些結合在一起,下面提供了完整的代碼示例。
```py
from numpy import array
from keras.preprocessing.text import Tokenizer
from keras.utils import to_categorical
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Embedding
# generate a sequence from a language model
def generate_seq(model, tokenizer, max_length, seed_text, n_words):
in_text = seed_text
# generate a fixed number of words
for _ in range(n_words):
# encode the text as integer
encoded = tokenizer.texts_to_sequences([in_text])[0]
# pre-pad sequences to a fixed length
encoded = pad_sequences([encoded], maxlen=max_length, padding='pre')
# predict probabilities for each word
yhat = model.predict_classes(encoded, verbose=0)
# map predicted word index to word
out_word = ''
for word, index in tokenizer.word_index.items():
if index == yhat:
out_word = word
break
# append to input
in_text += ' ' + out_word
return in_text
# source text
data = """ Jack and Jill went up the hill\n
To fetch a pail of water\n
Jack fell down and broke his crown\n
And Jill came tumbling after\n """
# prepare the tokenizer on the source text
tokenizer = Tokenizer()
tokenizer.fit_on_texts([data])
# determine the vocabulary size
vocab_size = len(tokenizer.word_index) + 1
print('Vocabulary Size: %d' % vocab_size)
# create line-based sequences
sequences = list()
for line in data.split('\n'):
encoded = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(encoded)):
sequence = encoded[:i+1]
sequences.append(sequence)
print('Total Sequences: %d' % len(sequences))
# pad input sequences
max_length = max([len(seq) for seq in sequences])
sequences = pad_sequences(sequences, maxlen=max_length, padding='pre')
print('Max Sequence Length: %d' % max_length)
# split into input and output elements
sequences = array(sequences)
X, y = sequences[:,:-1],sequences[:,-1]
y = to_categorical(y, num_classes=vocab_size)
# define model
model = Sequential()
model.add(Embedding(vocab_size, 10, input_length=max_length-1))
model.add(LSTM(50))
model.add(Dense(vocab_size, activation='softmax'))
print(model.summary())
# compile network
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit network
model.fit(X, y, epochs=500, verbose=2)
# evaluate model
print(generate_seq(model, tokenizer, max_length-1, 'Jack', 4))
print(generate_seq(model, tokenizer, max_length-1, 'Jill', 4))
```
運行該示例可以更好地適應源數據。添加的上下文允許模型消除一些示例的歧義。
仍有兩行文字以“ _Jack_ ”開頭,可能仍然是網絡的問題。
```py
...
Epoch 496/500
0s - loss: 0.1039 - acc: 0.9524
Epoch 497/500
0s - loss: 0.1037 - acc: 0.9524
Epoch 498/500
0s - loss: 0.1035 - acc: 0.9524
Epoch 499/500
0s - loss: 0.1033 - acc: 0.9524
Epoch 500/500
0s - loss: 0.1032 - acc: 0.9524
```
在運行結束時,我們生成兩個具有不同種子詞的序列:' _Jack_ '和' _Jill_ '。
第一個生成的行看起來很好,直接匹配源文本。第二個有點奇怪。這是有道理的,因為網絡只在輸入序列中看到' _Jill_ ',而不是在序列的開頭,所以它強制輸出使用' _Jill_ 這個詞',即押韻的最后一行。
```py
Jack fell down and broke
Jill jill came tumbling after
```
這是一個很好的例子,說明框架可能如何產生更好的新線條,但不是良好的部分輸入線條。
## 模型 3:雙字輸入,單字輸出序列
我們可以使用單詞輸入和全句子方法之間的中間,并傳入單詞的子序列作為輸入。
這將在兩個框架之間進行權衡,允許生成新線并在中線拾取生成。
我們將使用 3 個單詞作為輸入來預測一個單詞作為輸出。序列的準備與第一個示例非常相似,只是源序列數組中的偏移量不同,如下所示:
```py
# encode 2 words -> 1 word
sequences = list()
for i in range(2, len(encoded)):
sequence = encoded[i-2:i+1]
sequences.append(sequence)
```
下面列出了完整的示例
```py
from numpy import array
from keras.preprocessing.text import Tokenizer
from keras.utils import to_categorical
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Embedding
# generate a sequence from a language model
def generate_seq(model, tokenizer, max_length, seed_text, n_words):
in_text = seed_text
# generate a fixed number of words
for _ in range(n_words):
# encode the text as integer
encoded = tokenizer.texts_to_sequences([in_text])[0]
# pre-pad sequences to a fixed length
encoded = pad_sequences([encoded], maxlen=max_length, padding='pre')
# predict probabilities for each word
yhat = model.predict_classes(encoded, verbose=0)
# map predicted word index to word
out_word = ''
for word, index in tokenizer.word_index.items():
if index == yhat:
out_word = word
break
# append to input
in_text += ' ' + out_word
return in_text
# source text
data = """ Jack and Jill went up the hill\n
To fetch a pail of water\n
Jack fell down and broke his crown\n
And Jill came tumbling after\n """
# integer encode sequences of words
tokenizer = Tokenizer()
tokenizer.fit_on_texts([data])
encoded = tokenizer.texts_to_sequences([data])[0]
# retrieve vocabulary size
vocab_size = len(tokenizer.word_index) + 1
print('Vocabulary Size: %d' % vocab_size)
# encode 2 words -> 1 word
sequences = list()
for i in range(2, len(encoded)):
sequence = encoded[i-2:i+1]
sequences.append(sequence)
print('Total Sequences: %d' % len(sequences))
# pad sequences
max_length = max([len(seq) for seq in sequences])
sequences = pad_sequences(sequences, maxlen=max_length, padding='pre')
print('Max Sequence Length: %d' % max_length)
# split into input and output elements
sequences = array(sequences)
X, y = sequences[:,:-1],sequences[:,-1]
y = to_categorical(y, num_classes=vocab_size)
# define model
model = Sequential()
model.add(Embedding(vocab_size, 10, input_length=max_length-1))
model.add(LSTM(50))
model.add(Dense(vocab_size, activation='softmax'))
print(model.summary())
# compile network
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit network
model.fit(X, y, epochs=500, verbose=2)
# evaluate model
print(generate_seq(model, tokenizer, max_length-1, 'Jack and', 5))
print(generate_seq(model, tokenizer, max_length-1, 'And Jill', 3))
print(generate_seq(model, tokenizer, max_length-1, 'fell down', 5))
print(generate_seq(model, tokenizer, max_length-1, 'pail of', 5))
```
再次運行示例可以很好地適應源文本,準確度大約為 95%。
```py
...
Epoch 496/500
0s - loss: 0.0685 - acc: 0.9565
Epoch 497/500
0s - loss: 0.0685 - acc: 0.9565
Epoch 498/500
0s - loss: 0.0684 - acc: 0.9565
Epoch 499/500
0s - loss: 0.0684 - acc: 0.9565
Epoch 500/500
0s - loss: 0.0684 - acc: 0.9565
```
我們看一下 4 代示例,兩個線路起始線和兩個起始中線。
```py
Jack and jill went up the hill
And Jill went up the
fell down and broke his crown and
pail of water jack fell down and
```
第一次啟動行案例正確生成,但第二次沒有生成。第二種情況是第 4 行的一個例子,它與第一行的內容含糊不清。也許進一步擴展到 3 個輸入單詞會更好。
正確生成了兩個中線生成示例,與源文本匹配。
我們可以看到,語言模型的框架選擇以及模型的使用要求必須兼容。一般情況下使用語言模型時需要仔細設計,或許通過序列生成進行現場測試,以確認模型要求已得到滿足。
## 擴展
本節列出了一些擴展您可能希望探索的教程的想法。
* **全韻序列**。考慮更新上述示例中的一個以構建整個押韻作為輸入序列。該模型應該能夠在給定第一個單詞的種子的情況下生成整個事物,并證明這一點。
* **預訓練嵌入**。在嵌入中使用預先訓練的單詞向量進行探索,而不是將嵌入作為模型的一部分進行學習。這樣一個小的源文本不需要這樣做,但可能是一個好習慣。
* **角色模型**。探索使用基于字符的語言模型來源文本而不是本教程中演示的基于單詞的方法。
## 進一步閱讀
如果您要深入了解,本節將提供有關該主題的更多資源。
* [杰克和吉爾在維基百科](https://en.wikipedia.org/wiki/Jack_and_Jill_(nursery_rhyme))
* 維基百科上的[語言模型](https://en.wikipedia.org/wiki/Language_model)
* [Keras 嵌入層 API](https://keras.io/layers/embeddings/#embedding)
* [Keras 文本處理 API](https://keras.io/preprocessing/text/)
* [Keras 序列處理 API](https://keras.io/preprocessing/sequence/)
* [Keras Utils API](https://keras.io/utils/)
## 摘要
在本教程中,您了解了如何為簡單的童謠開發不同的基于單詞的語言模型。
具體來說,你學到了:
* 為給定的應用程序開發基于單詞的語言模型的良好框架的挑戰。
* 如何為基于單詞的語言模型開發單字,雙字和基于行的框架。
* 如何使用擬合語言模型生成序列。
你有任何問題嗎?
在下面的評論中提出您的問題,我會盡力回答。
- Machine Learning Mastery 應用機器學習教程
- 5競爭機器學習的好處
- 過度擬合的簡單直覺,或者為什么測試訓練數據是一個壞主意
- 特征選擇簡介
- 應用機器學習作為一個搜索問題的溫和介紹
- 為什么應用機器學習很難
- 為什么我的結果不如我想的那么好?你可能過度擬合了
- 用ROC曲線評估和比較分類器表現
- BigML評論:發現本機學習即服務平臺的聰明功能
- BigML教程:開發您的第一個決策樹并進行預測
- 構建生產機器學習基礎設施
- 分類準確性不夠:可以使用更多表現測量
- 一種預測模型的巧妙應用
- 機器學習項目中常見的陷阱
- 數據清理:將凌亂的數據轉換為整潔的數據
- 機器學習中的數據泄漏
- 數據,學習和建模
- 數據管理至關重要以及為什么需要認真對待它
- 將預測模型部署到生產中
- 參數和超參數之間有什么區別?
- 測試和驗證數據集之間有什么區別?
- 發現特征工程,如何設計特征以及如何獲得它
- 如何開始使用Kaggle
- 超越預測
- 如何在評估機器學習算法時選擇正確的測試選項
- 如何定義機器學習問題
- 如何評估機器學習算法
- 如何獲得基線結果及其重要性
- 如何充分利用機器學習數據
- 如何識別數據中的異常值
- 如何提高機器學習效果
- 如何在競爭機器學習中踢屁股
- 如何知道您的機器學習模型是否具有良好的表現
- 如何布局和管理您的機器學習項目
- 如何為機器學習準備數據
- 如何減少最終機器學習模型中的方差
- 如何使用機器學習結果
- 如何解決像數據科學家這樣的問題
- 通過數據預處理提高模型精度
- 處理機器學習的大數據文件的7種方法
- 建立機器學習系統的經驗教訓
- 如何使用機器學習清單可靠地獲得準確的預測(即使您是初學者)
- 機器學習模型運行期間要做什么
- 機器學習表現改進備忘單
- 來自世界級從業者的機器學習技巧:Phil Brierley
- 模型預測精度與機器學習中的解釋
- 競爭機器學習的模型選擇技巧
- 機器學習需要多少訓練數據?
- 如何系統地規劃和運行機器學習實驗
- 應用機器學習過程
- 默認情況下可重現的機器學習結果
- 10個實踐應用機器學習的標準數據集
- 簡單的三步法到最佳機器學習算法
- 打擊機器學習數據集中不平衡類的8種策略
- 模型表現不匹配問題(以及如何處理)
- 黑箱機器學習的誘惑陷阱
- 如何培養最終的機器學習模型
- 使用探索性數據分析了解您的問題并獲得更好的結果
- 什么是數據挖掘和KDD
- 為什么One-Hot在機器學習中編碼數據?
- 為什么你應該在你的機器學習問題上進行抽樣檢查算法
- 所以,你正在研究機器學習問題......
- Machine Learning Mastery Keras 深度學習教程
- Keras 中神經網絡模型的 5 步生命周期
- 在 Python 迷你課程中應用深度學習
- Keras 深度學習庫的二元分類教程
- 如何用 Keras 構建多層感知器神經網絡模型
- 如何在 Keras 中檢查深度學習模型
- 10 個用于 Amazon Web Services 深度學習的命令行秘籍
- 機器學習卷積神經網絡的速成課程
- 如何在 Python 中使用 Keras 進行深度學習的度量
- 深度學習書籍
- 深度學習課程
- 你所知道的深度學習是一種謊言
- 如何設置 Amazon AWS EC2 GPU 以訓練 Keras 深度學習模型(分步)
- 神經網絡中批量和迭代之間的區別是什么?
- 在 Keras 展示深度學習模型訓練歷史
- 基于 Keras 的深度學習模型中的dropout正則化
- 評估 Keras 中深度學習模型的表現
- 如何評價深度學習模型的技巧
- 小批量梯度下降的簡要介紹以及如何配置批量大小
- 在 Keras 中獲得深度學習幫助的 9 種方法
- 如何使用 Keras 在 Python 中網格搜索深度學習模型的超參數
- 用 Keras 在 Python 中使用卷積神經網絡進行手寫數字識別
- 如何用 Keras 進行預測
- 用 Keras 進行深度學習的圖像增強
- 8 個深度學習的鼓舞人心的應用
- Python 深度學習庫 Keras 簡介
- Python 深度學習庫 TensorFlow 簡介
- Python 深度學習庫 Theano 簡介
- 如何使用 Keras 函數式 API 進行深度學習
- Keras 深度學習庫的多類分類教程
- 多層感知器神經網絡速成課程
- 基于卷積神經網絡的 Keras 深度學習庫中的目標識別
- 流行的深度學習庫
- 用深度學習預測電影評論的情感
- Python 中的 Keras 深度學習庫的回歸教程
- 如何使用 Keras 獲得可重現的結果
- 如何在 Linux 服務器上運行深度學習實驗
- 保存并加載您的 Keras 深度學習模型
- 用 Keras 逐步開發 Python 中的第一個神經網絡
- 用 Keras 理解 Python 中的有狀態 LSTM 循環神經網絡
- 在 Python 中使用 Keras 深度學習模型和 Scikit-Learn
- 如何使用預訓練的 VGG 模型對照片中的物體進行分類
- 在 Python 和 Keras 中對深度學習模型使用學習率調度
- 如何在 Keras 中可視化深度學習神經網絡模型
- 什么是深度學習?
- 何時使用 MLP,CNN 和 RNN 神經網絡
- 為什么用隨機權重初始化神經網絡?
- Machine Learning Mastery 深度學習 NLP 教程
- 深度學習在自然語言處理中的 7 個應用
- 如何實現自然語言處理的波束搜索解碼器
- 深度學習文檔分類的最佳實踐
- 關于自然語言處理的熱門書籍
- 在 Python 中計算文本 BLEU 分數的溫和介紹
- 使用編碼器 - 解碼器模型的用于字幕生成的注入和合并架構
- 如何用 Python 清理機器學習的文本
- 如何配置神經機器翻譯的編碼器 - 解碼器模型
- 如何開始深度學習自然語言處理(7 天迷你課程)
- 自然語言處理的數據集
- 如何開發一種深度學習的詞袋模型來預測電影評論情感
- 深度學習字幕生成模型的溫和介紹
- 如何在 Keras 中定義神經機器翻譯的編碼器 - 解碼器序列 - 序列模型
- 如何利用小實驗在 Keras 中開發字幕生成模型
- 如何從頭開發深度學習圖片標題生成器
- 如何在 Keras 中開發基于字符的神經語言模型
- 如何開發用于情感分析的 N-gram 多通道卷積神經網絡
- 如何從零開始開發神經機器翻譯系統
- 如何在 Python 中用 Keras 開發基于單詞的神經語言模型
- 如何開發一種預測電影評論情感的詞嵌入模型
- 如何使用 Gensim 在 Python 中開發詞嵌入
- 用于文本摘要的編碼器 - 解碼器深度學習模型
- Keras 中文本摘要的編碼器 - 解碼器模型
- 用于神經機器翻譯的編碼器 - 解碼器循環神經網絡模型
- 淺談詞袋模型
- 文本摘要的溫和介紹
- 編碼器 - 解碼器循環神經網絡中的注意力如何工作
- 如何利用深度學習自動生成照片的文本描述
- 如何開發一個單詞級神經語言模型并用它來生成文本
- 淺談神經機器翻譯
- 什么是自然語言處理?
- 牛津自然語言處理深度學習課程
- 如何為機器翻譯準備法語到英語的數據集
- 如何為情感分析準備電影評論數據
- 如何為文本摘要準備新聞文章
- 如何準備照片標題數據集以訓練深度學習模型
- 如何使用 Keras 為深度學習準備文本數據
- 如何使用 scikit-learn 為機器學習準備文本數據
- 自然語言處理神經網絡模型入門
- 對自然語言處理的深度學習的承諾
- 在 Python 中用 Keras 進行 LSTM 循環神經網絡的序列分類
- 斯坦福自然語言處理深度學習課程評價
- 統計語言建模和神經語言模型的簡要介紹
- 使用 Keras 在 Python 中進行 LSTM 循環神經網絡的文本生成
- 淺談機器學習中的轉換
- 如何使用 Keras 將詞嵌入層用于深度學習
- 什么是用于文本的詞嵌入
- Machine Learning Mastery 深度學習時間序列教程
- 如何開發人類活動識別的一維卷積神經網絡模型
- 人類活動識別的深度學習模型
- 如何評估人類活動識別的機器學習算法
- 時間序列預測的多層感知器網絡探索性配置
- 比較經典和機器學習方法進行時間序列預測的結果
- 如何通過深度學習快速獲得時間序列預測的結果
- 如何利用 Python 處理序列預測問題中的缺失時間步長
- 如何建立預測大氣污染日的概率預測模型
- 如何開發一種熟練的機器學習時間序列預測模型
- 如何構建家庭用電自回歸預測模型
- 如何開發多步空氣污染時間序列預測的自回歸預測模型
- 如何制定多站點多元空氣污染時間序列預測的基線預測
- 如何開發時間序列預測的卷積神經網絡模型
- 如何開發卷積神經網絡用于多步時間序列預測
- 如何開發單變量時間序列預測的深度學習模型
- 如何開發 LSTM 模型用于家庭用電的多步時間序列預測
- 如何開發 LSTM 模型進行時間序列預測
- 如何開發多元多步空氣污染時間序列預測的機器學習模型
- 如何開發多層感知器模型進行時間序列預測
- 如何開發人類活動識別時間序列分類的 RNN 模型
- 如何開始深度學習的時間序列預測(7 天迷你課程)
- 如何網格搜索深度學習模型進行時間序列預測
- 如何對單變量時間序列預測的網格搜索樸素方法
- 如何在 Python 中搜索 SARIMA 模型超參數用于時間序列預測
- 如何在 Python 中進行時間序列預測的網格搜索三次指數平滑
- 一個標準的人類活動識別問題的溫和介紹
- 如何加載和探索家庭用電數據
- 如何加載,可視化和探索復雜的多變量多步時間序列預測數據集
- 如何從智能手機數據模擬人類活動
- 如何根據環境因素預測房間占用率
- 如何使用腦波預測人眼是開放還是閉合
- 如何在 Python 中擴展長短期內存網絡的數據
- 如何使用 TimeseriesGenerator 進行 Keras 中的時間序列預測
- 基于機器學習算法的室內運動時間序列分類
- 用于時間序列預測的狀態 LSTM 在線學習的不穩定性
- 用于罕見事件時間序列預測的 LSTM 模型體系結構
- 用于時間序列預測的 4 種通用機器學習數據變換
- Python 中長短期記憶網絡的多步時間序列預測
- 家庭用電機器學習的多步時間序列預測
- Keras 中 LSTM 的多變量時間序列預測
- 如何開發和評估樸素的家庭用電量預測方法
- 如何為長短期記憶網絡準備單變量時間序列數據
- 循環神經網絡在時間序列預測中的應用
- 如何在 Python 中使用差異變換刪除趨勢和季節性
- 如何在 LSTM 中種子狀態用于 Python 中的時間序列預測
- 使用 Python 進行時間序列預測的有狀態和無狀態 LSTM
- 長短時記憶網絡在時間序列預測中的適用性
- 時間序列預測問題的分類
- Python 中長短期記憶網絡的時間序列預測
- 基于 Keras 的 Python 中 LSTM 循環神經網絡的時間序列預測
- Keras 中深度學習的時間序列預測
- 如何用 Keras 調整 LSTM 超參數進行時間序列預測
- 如何在時間序列預測訓練期間更新 LSTM 網絡
- 如何使用 LSTM 網絡的 Dropout 進行時間序列預測
- 如何使用 LSTM 網絡中的特征進行時間序列預測
- 如何在 LSTM 網絡中使用時間序列進行時間序列預測
- 如何利用 LSTM 網絡進行權重正則化進行時間序列預測
- Machine Learning Mastery 線性代數教程
- 機器學習數學符號的基礎知識
- 用 NumPy 陣列輕松介紹廣播
- 如何從 Python 中的 Scratch 計算主成分分析(PCA)
- 用于編碼器審查的計算線性代數
- 10 機器學習中的線性代數示例
- 線性代數的溫和介紹
- 用 NumPy 輕松介紹 Python 中的 N 維數組
- 機器學習向量的溫和介紹
- 如何在 Python 中為機器學習索引,切片和重塑 NumPy 數組
- 機器學習的矩陣和矩陣算法簡介
- 溫和地介紹機器學習的特征分解,特征值和特征向量
- NumPy 對預期價值,方差和協方差的簡要介紹
- 機器學習矩陣分解的溫和介紹
- 用 NumPy 輕松介紹機器學習的張量
- 用于機器學習的線性代數中的矩陣類型簡介
- 用于機器學習的線性代數備忘單
- 線性代數的深度學習
- 用于機器學習的線性代數(7 天迷你課程)
- 機器學習的線性代數
- 機器學習矩陣運算的溫和介紹
- 線性代數評論沒有廢話指南
- 學習機器學習線性代數的主要資源
- 淺談機器學習的奇異值分解
- 如何用線性代數求解線性回歸
- 用于機器學習的稀疏矩陣的溫和介紹
- 機器學習中向量規范的溫和介紹
- 學習線性代數用于機器學習的 5 個理由
- Machine Learning Mastery LSTM 教程
- Keras中長短期記憶模型的5步生命周期
- 長短時記憶循環神經網絡的注意事項
- CNN長短期記憶網絡
- 逆向神經網絡中的深度學習速成課程
- 可變長度輸入序列的數據準備
- 如何用Keras開發用于Python序列分類的雙向LSTM
- 如何開發Keras序列到序列預測的編碼器 - 解碼器模型
- 如何診斷LSTM模型的過度擬合和欠擬合
- 如何開發一種編碼器 - 解碼器模型,注重Keras中的序列到序列預測
- 編碼器 - 解碼器長短期存儲器網絡
- 神經網絡中爆炸梯度的溫和介紹
- 對時間反向傳播的溫和介紹
- 生成長短期記憶網絡的溫和介紹
- 專家對長短期記憶網絡的簡要介紹
- 在序列預測問題上充分利用LSTM
- 編輯器 - 解碼器循環神經網絡全局注意的溫和介紹
- 如何利用長短時記憶循環神經網絡處理很長的序列
- 如何在Python中對一個熱編碼序列數據
- 如何使用編碼器 - 解碼器LSTM來回顯隨機整數序列
- 具有注意力的編碼器 - 解碼器RNN體系結構的實現模式
- 學習使用編碼器解碼器LSTM循環神經網絡添加數字
- 如何學習長短時記憶循環神經網絡回聲隨機整數
- 具有Keras的長短期記憶循環神經網絡的迷你課程
- LSTM自動編碼器的溫和介紹
- 如何用Keras中的長短期記憶模型進行預測
- 用Python中的長短期內存網絡演示內存
- 基于循環神經網絡的序列預測模型的簡要介紹
- 深度學習的循環神經網絡算法之旅
- 如何重塑Keras中長短期存儲網絡的輸入數據
- 了解Keras中LSTM的返回序列和返回狀態之間的差異
- RNN展開的溫和介紹
- 5學習LSTM循環神經網絡的簡單序列預測問題的例子
- 使用序列進行預測
- 堆疊長短期內存網絡
- 什么是教師強制循環神經網絡?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何準備Keras中截斷反向傳播的序列預測
- 如何在使用LSTM進行訓練和預測時使用不同的批量大小
- Machine Learning Mastery 機器學習算法教程
- 機器學習算法之旅
- 用于機器學習的裝袋和隨機森林集合算法
- 從頭開始實施機器學習算法的好處
- 更好的樸素貝葉斯:從樸素貝葉斯算法中獲取最多的12個技巧
- 機器學習的提升和AdaBoost
- 選擇機器學習算法:Microsoft Azure的經驗教訓
- 機器學習的分類和回歸樹
- 什么是機器學習中的混淆矩陣
- 如何使用Python從頭開始創建算法測試工具
- 通過創建機器學習算法的目標列表來控制
- 從頭開始停止編碼機器學習算法
- 在實現機器學習算法時,不要從開源代碼開始
- 不要使用隨機猜測作為基線分類器
- 淺談機器學習中的概念漂移
- 溫和介紹機器學習中的偏差 - 方差權衡
- 機器學習的梯度下降
- 機器學習算法如何工作(他們學習輸入到輸出的映射)
- 如何建立機器學習算法的直覺
- 如何實現機器學習算法
- 如何研究機器學習算法行為
- 如何學習機器學習算法
- 如何研究機器學習算法
- 如何研究機器學習算法
- 如何在Python中從頭開始實現反向傳播算法
- 如何用Python從頭開始實現Bagging
- 如何用Python從頭開始實現基線機器學習算法
- 如何在Python中從頭開始實現決策樹算法
- 如何用Python從頭開始實現學習向量量化
- 如何利用Python從頭開始隨機梯度下降實現線性回歸
- 如何利用Python從頭開始隨機梯度下降實現Logistic回歸
- 如何用Python從頭開始實現機器學習算法表現指標
- 如何在Python中從頭開始實現感知器算法
- 如何在Python中從零開始實現隨機森林
- 如何在Python中從頭開始實現重采樣方法
- 如何用Python從頭開始實現簡單線性回歸
- 如何用Python從頭開始實現堆棧泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 學習機器學習的向量量化
- 機器學習的線性判別分析
- 機器學習的線性回歸
- 使用梯度下降進行機器學習的線性回歸教程
- 如何在Python中從頭開始加載機器學習數據
- 機器學習的Logistic回歸
- 機器學習的Logistic回歸教程
- 機器學習算法迷你課程
- 如何在Python中從頭開始實現樸素貝葉斯
- 樸素貝葉斯機器學習
- 樸素貝葉斯機器學習教程
- 機器學習算法的過擬合和欠擬合
- 參數化和非參數機器學習算法
- 理解任何機器學習算法的6個問題
- 在機器學習中擁抱隨機性
- 如何使用Python從頭開始擴展機器學習數據
- 機器學習的簡單線性回歸教程
- 有監督和無監督的機器學習算法
- 用于機器學習的支持向量機
- 在沒有數學背景的情況下理解機器學習算法的5種技術
- 最好的機器學習算法
- 教程從頭開始在Python中實現k-Nearest Neighbors
- 通過從零開始實現它們來理解機器學習算法(以及繞過壞代碼的策略)
- 使用隨機森林:在121個數據集上測試179個分類器
- 為什么從零開始實現機器學習算法
- Machine Learning Mastery 機器學習入門教程
- 機器學習入門的四個步驟:初學者入門與實踐的自上而下策略
- 你應該培養的 5 個機器學習領域
- 一種選擇機器學習算法的數據驅動方法
- 機器學習中的分析與數值解
- 應用機器學習是一種精英政治
- 機器學習的基本概念
- 如何成為數據科學家
- 初學者如何在機器學習中弄錯
- 機器學習的最佳編程語言
- 構建機器學習組合
- 機器學習中分類與回歸的區別
- 評估自己作為數據科學家并利用結果建立驚人的數據科學團隊
- 探索 Kaggle 大師的方法論和心態:對 Diogo Ferreira 的采訪
- 擴展機器學習工具并展示掌握
- 通過尋找地標開始機器學習
- 溫和地介紹預測建模
- 通過提供結果在機器學習中獲得夢想的工作
- 如何開始機器學習:自學藍圖
- 開始并在機器學習方面取得進展
- 應用機器學習的 Hello World
- 初學者如何使用小型項目開始機器學習并在 Kaggle 上進行競爭
- 我如何開始機器學習? (簡短版)
- 我是如何開始機器學習的
- 如何在機器學習中取得更好的成績
- 如何從在銀行工作到擔任 Target 的高級數據科學家
- 如何學習任何機器學習工具
- 使用小型目標項目深入了解機器學習工具
- 獲得付費申請機器學習
- 映射機器學習工具的景觀
- 機器學習開發環境
- 機器學習金錢
- 程序員的機器學習
- 機器學習很有意思
- 機器學習是 Kaggle 比賽
- 機器學習現在很受歡迎
- 機器學習掌握方法
- 機器學習很重要
- 機器學習 Q& A:概念漂移,更好的結果和學習更快
- 缺乏自學機器學習的路線圖
- 機器學習很重要
- 快速了解任何機器學習工具(即使您是初學者)
- 機器學習工具
- 找到你的機器學習部落
- 機器學習在一年
- 通過競爭一致的大師 Kaggle
- 5 程序員在機器學習中開始犯錯誤
- 哲學畢業生到機器學習從業者(Brian Thomas 采訪)
- 機器學習入門的實用建議
- 實用機器學習問題
- 使用來自 UCI 機器學習庫的數據集練習機器學習
- 使用秘籍的任何機器學習工具快速啟動
- 程序員可以進入機器學習
- 程序員應該進入機器學習
- 項目焦點:Shashank Singh 的人臉識別
- 項目焦點:使用 Mahout 和 Konstantin Slisenko 進行堆棧交換群集
- 機器學習自學指南
- 4 個自學機器學習項目
- álvaroLemos 如何在數據科學團隊中獲得機器學習實習
- 如何思考機器學習
- 現實世界機器學習問題之旅
- 有關機器學習的有用知識
- 如果我沒有學位怎么辦?
- 如果我不是一個優秀的程序員怎么辦?
- 如果我不擅長數學怎么辦?
- 為什么機器學習算法會處理以前從未見過的數據?
- 是什么阻礙了你的機器學習目標?
- 什么是機器學習?
- 機器學習適合哪里?
- 為什么要進入機器學習?
- 研究對您來說很重要的機器學習問題
- 你這樣做是錯的。為什么機器學習不必如此困難
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的溫和介紹:Python 機器學習庫
- 使用 Python 管道和 scikit-learn 自動化機器學習工作流程
- 如何以及何時使用帶有 scikit-learn 的校準分類模型
- 如何比較 Python 中的機器學習算法與 scikit-learn
- 用于機器學習開發人員的 Python 崩潰課程
- 用 scikit-learn 在 Python 中集成機器學習算法
- 使用重采樣評估 Python 中機器學習算法的表現
- 使用 Scikit-Learn 在 Python 中進行特征選擇
- Python 中機器學習的特征選擇
- 如何使用 scikit-learn 在 Python 中生成測試數據集
- scikit-learn 中的機器學習算法秘籍
- 如何使用 Python 處理丟失的數據
- 如何開始使用 Python 進行機器學習
- 如何使用 Scikit-Learn 在 Python 中加載數據
- Python 中概率評分方法的簡要介紹
- 如何用 Scikit-Learn 調整算法參數
- 如何在 Mac OS X 上安裝 Python 3 環境以進行機器學習和深度學習
- 使用 scikit-learn 進行機器學習簡介
- 從 shell 到一本帶有 Fernando Perez 單一工具的書的 IPython
- 如何使用 Python 3 為機器學習開發創建 Linux 虛擬機
- 如何在 Python 中加載機器學習數據
- 您在 Python 中的第一個機器學習項目循序漸進
- 如何使用 scikit-learn 進行預測
- 用于評估 Python 中機器學習算法的度量標準
- 使用 Pandas 為 Python 中的機器學習準備數據
- 如何使用 Scikit-Learn 為 Python 機器學習準備數據
- 項目焦點:使用 Artem Yankov 在 Python 中進行事件推薦
- 用于機器學習的 Python 生態系統
- Python 是應用機器學習的成長平臺
- Python 機器學習書籍
- Python 機器學習迷你課程
- 使用 Pandas 快速和骯臟的數據分析
- 使用 Scikit-Learn 重新調整 Python 中的機器學習數據
- 如何以及何時使用 ROC 曲線和精確調用曲線進行 Python 分類
- 使用 scikit-learn 在 Python 中保存和加載機器學習模型
- scikit-learn Cookbook 書評
- 如何使用 Anaconda 為機器學習和深度學習設置 Python 環境
- 使用 scikit-learn 在 Python 中進行 Spot-Check 分類機器學習算法
- 如何在 Python 中開發可重復使用的抽樣檢查算法框架
- 使用 scikit-learn 在 Python 中進行 Spot-Check 回歸機器學習算法
- 使用 Python 中的描述性統計來了解您的機器學習數據
- 使用 OpenCV,Python 和模板匹配來播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可視化機器學習數據
- Machine Learning Mastery 統計學教程
- 淺談計算正態匯總統計量
- 非參數統計的溫和介紹
- Python中常態測試的溫和介紹
- 淺談Bootstrap方法
- 淺談機器學習的中心極限定理
- 淺談機器學習中的大數定律
- 機器學習的所有統計數據
- 如何計算Python中機器學習結果的Bootstrap置信區間
- 淺談機器學習的Chi-Squared測試
- 機器學習的置信區間
- 隨機化在機器學習中解決混雜變量的作用
- 機器學習中的受控實驗
- 機器學習統計學速成班
- 統計假設檢驗的關鍵值以及如何在Python中計算它們
- 如何在機器學習中談論數據(統計學和計算機科學術語)
- Python中數據可視化方法的簡要介紹
- Python中效果大小度量的溫和介紹
- 估計隨機機器學習算法的實驗重復次數
- 機器學習評估統計的溫和介紹
- 如何計算Python中的非參數秩相關性
- 如何在Python中計算數據的5位數摘要
- 如何在Python中從頭開始編寫學生t檢驗
- 如何在Python中生成隨機數
- 如何轉換數據以更好地擬合正態分布
- 如何使用相關來理解變量之間的關系
- 如何使用統計信息識別數據中的異常值
- 用于Python機器學習的隨機數生成器簡介
- k-fold交叉驗證的溫和介紹
- 如何計算McNemar的比較兩種機器學習量詞的測試
- Python中非參數統計顯著性測試簡介
- 如何在Python中使用參數統計顯著性測試
- 機器學習的預測間隔
- 應用統計學與機器學習的密切關系
- 如何使用置信區間報告分類器表現
- 統計數據分布的簡要介紹
- 15 Python中的統計假設檢驗(備忘單)
- 統計假設檢驗的溫和介紹
- 10如何在機器學習項目中使用統計方法的示例
- Python中統計功效和功耗分析的簡要介紹
- 統計抽樣和重新抽樣的簡要介紹
- 比較機器學習算法的統計顯著性檢驗
- 機器學習中統計容差區間的溫和介紹
- 機器學習統計書籍
- 評估機器學習模型的統計數據
- 機器學習統計(7天迷你課程)
- 用于機器學習的簡明英語統計
- 如何使用統計顯著性檢驗來解釋機器學習結果
- 什么是統計(為什么它在機器學習中很重要)?
- Machine Learning Mastery 時間序列入門教程
- 如何在 Python 中為時間序列預測創建 ARIMA 模型
- 用 Python 進行時間序列預測的自回歸模型
- 如何回溯機器學習模型的時間序列預測
- Python 中基于時間序列數據的基本特征工程
- R 的時間序列預測熱門書籍
- 10 挑戰機器學習時間序列預測問題
- 如何將時間序列轉換為 Python 中的監督學習問題
- 如何將時間序列數據分解為趨勢和季節性
- 如何用 ARCH 和 GARCH 模擬波動率進行時間序列預測
- 如何將時間序列數據集與 Python 區分開來
- Python 中時間序列預測的指數平滑的溫和介紹
- 用 Python 進行時間序列預測的特征選擇
- 淺談自相關和部分自相關
- 時間序列預測的 Box-Jenkins 方法簡介
- 用 Python 簡要介紹時間序列的時間序列預測
- 如何使用 Python 網格搜索 ARIMA 模型超參數
- 如何在 Python 中加載和探索時間序列數據
- 如何使用 Python 對 ARIMA 模型進行手動預測
- 如何用 Python 進行時間序列預測的預測
- 如何使用 Python 中的 ARIMA 進行樣本外預測
- 如何利用 Python 模擬殘差錯誤來糾正時間序列預測
- 使用 Python 進行數據準備,特征工程和時間序列預測的移動平均平滑
- 多步時間序列預測的 4 種策略
- 如何在 Python 中規范化和標準化時間序列數據
- 如何利用 Python 進行時間序列預測的基線預測
- 如何使用 Python 對時間序列預測數據進行功率變換
- 用于時間序列預測的 Python 環境
- 如何重構時間序列預測問題
- 如何使用 Python 重新采樣和插值您的時間序列數據
- 用 Python 編寫 SARIMA 時間序列預測
- 如何在 Python 中保存 ARIMA 時間序列預測模型
- 使用 Python 進行季節性持久性預測
- 基于 ARIMA 的 Python 歷史規模敏感性預測技巧分析
- 簡單的時間序列預測模型進行測試,這樣你就不會欺騙自己
- 標準多變量,多步驟和多站點時間序列預測問題
- 如何使用 Python 檢查時間序列數據是否是固定的
- 使用 Python 進行時間序列數據可視化
- 7 個機器學習的時間序列數據集
- 時間序列預測案例研究與 Python:波士頓每月武裝搶劫案
- Python 的時間序列預測案例研究:巴爾的摩的年度用水量
- 使用 Python 進行時間序列預測研究:法國香檳的月銷售額
- 使用 Python 的置信區間理解時間序列預測不確定性
- 11 Python 中的經典時間序列預測方法(備忘單)
- 使用 Python 進行時間序列預測表現測量
- 使用 Python 7 天迷你課程進行時間序列預測
- 時間序列預測作為監督學習
- 什么是時間序列預測?
- 如何使用 Python 識別和刪除時間序列數據的季節性
- 如何在 Python 中使用和刪除時間序列數據中的趨勢信息
- 如何在 Python 中調整 ARIMA 參數
- 如何用 Python 可視化時間序列殘差預測錯誤
- 白噪聲時間序列與 Python
- 如何通過時間序列預測項目
- Machine Learning Mastery XGBoost 教程
- 通過在 Python 中使用 XGBoost 提前停止來避免過度擬合
- 如何在 Python 中調優 XGBoost 的多線程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 進行梯度提升的數據準備
- 如何使用 scikit-learn 在 Python 中開發您的第一個 XGBoost 模型
- 如何在 Python 中使用 XGBoost 評估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征選擇
- 淺談機器學習的梯度提升算法
- 應用機器學習的 XGBoost 簡介
- 如何在 macOS 上為 Python 安裝 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 從梯度提升開始,比較 165 個數據集上的 13 種算法
- 在 Python 中使用 XGBoost 和 scikit-learn 進行隨機梯度提升
- 如何使用 Amazon Web Services 在云中訓練 XGBoost 模型
- 在 Python 中使用 XGBoost 調整梯度提升的學習率
- 如何在 Python 中使用 XGBoost 調整決策樹的數量和大小
- 如何在 Python 中使用 XGBoost 可視化梯度提升決策樹
- 在 Python 中開始使用 XGBoost 的 7 步迷你課程