[TOC]
## **Synchronized**同步鎖
synchronized?它可以把任意一個非?NULL?的對象當作鎖。他屬于獨占式的悲觀鎖,同時屬于可重
入鎖。
### **Synchronized作用范圍**
1. 作用于方法時,鎖住的是對象的實例(this);
2. 當作用于靜態方法時,鎖住的是?Class?實例,又因為?Class?的相關數據存儲在永久帶?PermGen
(jdk1.8?則是?metaspace?),永久帶是全局共享的,因此靜態方法鎖相當于類的一個全局鎖,
會鎖所有調用該方法的線程;
3. synchronized?作用于一個對象實例時,鎖住的是所有以該對象為鎖的代碼塊。它有多個隊列,
當多個線程一起訪問某個對象監視器的時候,對象監視器會將這些線程存儲在不同的容器中。
### **Synchronized核心組件**
1)**WaitSet**:哪些調用wait方法被阻塞的線程被放置在這里;
2)**Contention?List**:競爭隊列,所有請求鎖的線程首先被放在這個競爭隊列中;
3)**Entry?List**:Contention?List?中那些有資格成為候選資源的線程被移動到?Entry?List?中;
4)**OnDeck**?:任意時刻,最多只有一個線程正在競爭鎖資源,該線程被成為?OnDeck;
5)**Owner**:當前已經獲取到所資源的線程被稱為Owner;
6)**!Owner**:當前釋放鎖的線程。
### **Synchronized實現**
:-: 
1. JVM?每次從隊列的尾部取出一個數據用于鎖競爭候選者(?OnDeck?),但是并發情況下,ContentionList?會被大量的并發線程進行?CAS?訪問,為了降低對尾部元素的競爭,JVM?會將一部分線程移動到?EntryList?中作為候選競爭線程。
<br>
2. Owner?線程會在?unlock?時,將?ContentionList?中的部分線程遷移到?EntryList?中,并指定EntryList?中的某個線程為?OnDeck?線程(一般是最先進去的那個線程)。
<br>
3. Owner?線程并不直接把鎖傳遞給?OnDeck?線程,而是把鎖競爭的權利交給?OnDeck?,OnDeck?需要重新競爭鎖。這樣雖然犧牲了一些公平性,但是能極大的提升系統的吞吐量,在JVM?中,也把這種選擇行為稱之為“競爭切換”。
<br>
4. OnDeck?線程獲取到鎖資源后會變為?Owner?線程,而沒有得到鎖資源的仍然停留在?EntryList中。如果?Owner?線程被?wait?方法阻塞,則轉移到?WaitSet?隊列中,直到某個時刻通過?notify或者?notifyAll?喚醒,會重新進去?EntryList?中。
<br>
5. 處于?ContentionList?、?EntryList?、WaitSet?中的線程都處于阻塞狀態,該阻塞是由操作系統來完成的(Linux?內核下采用?pthread\_mutex\_lock?內核函數實現的)。
<br>
6. Synchronized?是**非公平鎖**。?Synchronized?在線程進入?ContentionList?時,等待的線程會先嘗試自旋獲取鎖,如果獲取不到就進入?ContentionList,這明顯對于已經進入隊列的線程是不公平的,還有一個不公平的事情就是自旋獲取鎖的線程還可能直接搶占?OnDeck?線程的鎖資源。
參考:[https://blog.csdn.net/zqz\_zqz/article/details/70233767](http://https:/blog.csdn.net/zqz_zqz/article/details/70233767)
<br>
7. 每個對象都有個?monitor?對象,加鎖就是在競爭?monitor?對象,代碼塊加鎖是在前后分別加上?monitorenter?和?monitorexit?指令來實現的,方法加鎖是通過一個標記位來判斷的
<br>
8. synchronized是一個**重量級**操作,需要調用操作系統相關接口,性能是低效的,有可能給線程加鎖消耗的時間比有用操作消耗的時間更多。
<br>
9. Java1.6?,synchronized?進行了很多的優化,有適應自旋、鎖消除、鎖粗化、輕量級鎖及偏向鎖等,效率有了本質上的提高。在之后推出的?Java1.7?與?1.8?中,均對該關鍵字的實現機理做了優化。引入了偏向鎖和輕量級鎖。都是在對象頭中有標記位,不需要經過操作系統加鎖。
<br>
10.鎖可以從偏向鎖升級到輕量級鎖,再升級到重量級鎖。這種升級過程叫做鎖膨脹;
<br>
11.JDK?1.6?中默認是開啟偏向鎖和輕量級鎖,可以通過?-XX:-UseBiasedLocking?來禁用偏向鎖。
<br>
### **synchronized用法**
**1\. 同步一個代碼塊**
~~~java
public void func() {
synchronized (this) {
// ...
}
}
~~~
它只作用于同一個對象,如果調用兩個對象上的同步代碼塊,就不會進行同步。
對于以下代碼,使用 ExecutorService 執行了兩個線程,由于調用的是同一個對象的同步代碼塊,因此這兩個線程會進行同步,當一個線程進入同步語句塊時,另一個線程就必須等待。
~~~java
public class SynchronizedExample {
public void func1() {
synchronized (this) {
for (int i = 0; i < 10; i++) {
System.out.print(i + " ");
}
}
}
}
~~~
~~~java
public static void main(String[] args) {
SynchronizedExample e1 = new SynchronizedExample();
ExecutorService executorService = Executors.newCachedThreadPool();
executorService.execute(() -> e1.func1());
executorService.execute(() -> e1.func1());
}
~~~
~~~java
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
~~~
對于以下代碼,兩個線程調用了不同對象的同步代碼塊,因此這兩個線程就不需要同步。從輸出結果可以看出,兩個線程交叉執行。
~~~java
public static void main(String[] args) {
SynchronizedExample e1 = new SynchronizedExample();
SynchronizedExample e2 = new SynchronizedExample();
ExecutorService executorService = Executors.newCachedThreadPool();
executorService.execute(() -> e1.func1());
executorService.execute(() -> e2.func1());
}
~~~
~~~
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
~~~
**2\. 同步一個方法**
~~~java
public synchronized void func () {
// ...
}
~~~
它和同步代碼塊一樣,作用于同一個對象。
**3\. 同步一個類**
~~~java
public void func() {
synchronized (SynchronizedExample.class) {
// ...
}
}
~~~
作用于整個類,也就是說兩個線程調用同一個類的不同對象上的這種同步語句,也會進行同步。
~~~java
public class SynchronizedExample {
public void func2() {
synchronized (SynchronizedExample.class) {
for (int i = 0; i < 10; i++) {
System.out.print(i + " ");
}
}
}
}
~~~
~~~java
public static void main(String[] args) {
SynchronizedExample e1 = new SynchronizedExample();
SynchronizedExample e2 = new SynchronizedExample();
ExecutorService executorService = Executors.newCachedThreadPool();
executorService.execute(() -> e1.func2());
executorService.execute(() -> e2.func2());
}
~~~
~~~
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
~~~
**4\. 同步一個靜態方法**
* 非靜態同步函數的鎖是:this
* 靜態的同步函數的鎖是:字節碼對象
~~~java
public synchronized static void fun() {
// ...
}
~~~
作用于整個類。
- 一.JVM
- 1.1 java代碼是怎么運行的
- 1.2 JVM的內存區域
- 1.3 JVM運行時內存
- 1.4 JVM內存分配策略
- 1.5 JVM類加載機制與對象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面試相關文章
- 2.1 可能是把Java內存區域講得最清楚的一篇文章
- 2.0 GC調優參數
- 2.1GC排查系列
- 2.2 內存泄漏和內存溢出
- 2.2.3 深入理解JVM-hotspot虛擬機對象探秘
- 1.10 并發的可達性分析相關問題
- 二.Java集合架構
- 1.ArrayList深入源碼分析
- 2.Vector深入源碼分析
- 3.LinkedList深入源碼分析
- 4.HashMap深入源碼分析
- 5.ConcurrentHashMap深入源碼分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的設計模式
- 8.集合架構之面試指南
- 9.TreeSet和TreeMap
- 三.Java基礎
- 1.基礎概念
- 1.1 Java程序初始化的順序是怎么樣的
- 1.2 Java和C++的區別
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字節與字符的區別以及訪問修飾符
- 1.7 深拷貝與淺拷貝
- 1.8 字符串常量池
- 2.面向對象
- 3.關鍵字
- 4.基本數據類型與運算
- 5.字符串與數組
- 6.異常處理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 數據流(Stream)
- 8.3 Java 8 并發教程:線程和執行器
- 8.4 Java 8 并發教程:同步和鎖
- 8.5 Java 8 并發教程:原子變量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、數值、算術和文件
- 8.7 在 Java 8 中避免 Null 檢查
- 8.8 使用 Intellij IDEA 解決 Java 8 的數據流問題
- 四.Java 并發編程
- 1.線程的實現/創建
- 2.線程生命周期/狀態轉換
- 3.線程池
- 4.線程中的協作、中斷
- 5.Java鎖
- 5.1 樂觀鎖、悲觀鎖和自旋鎖
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平鎖和非公平鎖
- 5.3.1 說說ReentrantLock的實現原理,以及ReentrantLock的核心源碼是如何實現的?
- 5.5 鎖優化和升級
- 6.多線程的上下文切換
- 7.死鎖的產生和解決
- 8.J.U.C(java.util.concurrent)
- 0.簡化版(快速復習用)
- 9.鎖優化
- 10.Java 內存模型(JMM)
- 11.ThreadLocal詳解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的實現原理
- 1.DelayQueue的實現原理
- 14.Thread.join()實現原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的實際使用場景
- 五.Java I/O NIO
- 1.I/O模型簡述
- 2.Java NIO之緩沖區
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之選擇器
- 6.基于 Java NIO 實現簡單的 HTTP 服務器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面試題
- 六.Java設計模式
- 1.單例模式
- 2.策略模式
- 3.模板方法
- 4.適配器模式
- 5.簡單工廠
- 6.門面模式
- 7.代理模式
- 七.數據結構和算法
- 1.什么是紅黑樹
- 2.二叉樹
- 2.1 二叉樹的前序、中序、后序遍歷
- 3.排序算法匯總
- 4.java實現鏈表及鏈表的重用操作
- 4.1算法題-鏈表反轉
- 5.圖的概述
- 6.常見的幾道字符串算法題
- 7.幾道常見的鏈表算法題
- 8.leetcode常見算法題1
- 9.LRU緩存策略
- 10.二進制及位運算
- 10.1.二進制和十進制轉換
- 10.2.位運算
- 11.常見鏈表算法題
- 12.算法好文推薦
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事務管理
- 4.SpringMVC 運行流程和手動實現
- 0.Spring 核心技術
- 5.spring如何解決循環依賴問題
- 6.springboot自動裝配原理
- 7.Spring中的循環依賴解決機制中,為什么要三級緩存,用二級緩存不夠嗎
- 8.beanFactory和factoryBean有什么區別
- 九.數據庫
- 1.mybatis
- 1.1 MyBatis-# 與 $ 區別以及 sql 預編譯
- Mybatis系列1-Configuration
- Mybatis系列2-SQL執行過程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-參數設置揭秘(ParameterHandler)
- Mybatis系列8-緩存機制
- 2.淺談聚簇索引和非聚簇索引的區別
- 3.mysql 證明為什么用limit時,offset很大會影響性能
- 4.MySQL中的索引
- 5.數據庫索引2
- 6.面試題收集
- 7.MySQL行鎖、表鎖、間隙鎖詳解
- 8.數據庫MVCC詳解
- 9.一條SQL查詢語句是如何執行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能優化神器 Explain 使用分析
- 12.mysql中,一條update語句執行的過程是怎么樣的?期間用到了mysql的哪些log,分別有什么作用
- 十.Redis
- 0.快速復習回顧Redis
- 1.通俗易懂的Redis數據結構基礎教程
- 2.分布式鎖(一)
- 3.分布式鎖(二)
- 4.延時隊列
- 5.位圖Bitmaps
- 6.Bitmaps(位圖)的使用
- 7.Scan
- 8.redis緩存雪崩、緩存擊穿、緩存穿透
- 9.Redis為什么是單線程、及高并發快的3大原因詳解
- 10.布隆過濾器你值得擁有的開發利器
- 11.Redis哨兵、復制、集群的設計原理與區別
- 12.redis的IO多路復用
- 13.相關redis面試題
- 14.redis集群
- 十一.中間件
- 1.RabbitMQ
- 1.1 RabbitMQ實戰,hello world
- 1.2 RabbitMQ 實戰,工作隊列
- 1.3 RabbitMQ 實戰, 發布訂閱
- 1.4 RabbitMQ 實戰,路由
- 1.5 RabbitMQ 實戰,主題
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 實戰 – 整合 RabbitMQ 發送郵件
- 1.8 RabbitMQ 的消息持久化與 Spring AMQP 的實現剖析
- 1.9 RabbitMQ必備核心知識
- 2.RocketMQ 的幾個簡單問題與答案
- 2.Kafka
- 2.1 kafka 基礎概念和術語
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志機制
- 2.4 kafka是pull還是push的方式傳遞消息的?
- 2.5 Kafka的數據處理流程
- 2.6 Kafka的腦裂預防和處理機制
- 2.7 Kafka中partition副本的Leader選舉機制
- 2.8 如果Leader掛了的時候,follower沒來得及同步,是否會出現數據不一致
- 2.9 kafka的partition副本是否會出現腦裂情況
- 十二.Zookeeper
- 0.什么是Zookeeper(漫畫)
- 1.使用docker安裝Zookeeper偽集群
- 3.ZooKeeper-Plus
- 4.zk實現分布式鎖
- 5.ZooKeeper之Watcher機制
- 6.Zookeeper之選舉及數據一致性
- 十三.計算機網絡
- 1.進制轉換:二進制、八進制、十六進制、十進制之間的轉換
- 2.位運算
- 3.計算機網絡面試題匯總1
- 十四.Docker
- 100.面試題收集合集
- 1.美團面試常見問題總結
- 2.b站部分面試題
- 3.比心面試題
- 4.騰訊面試題
- 5.哈羅部分面試
- 6.筆記
- 十五.Storm
- 1.Storm和流處理簡介
- 2.Storm 核心概念詳解
- 3.Storm 單機版本環境搭建
- 4.Storm 集群環境搭建
- 5.Storm 編程模型詳解
- 6.Storm 項目三種打包方式對比分析
- 7.Storm 集成 Redis 詳解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初識ElasticSearch
- 2.文檔基本CRUD、集群健康檢查
- 3.shard&replica
- 4.document核心元數據解析及ES的并發控制
- 5.document的批量操作及數據路由原理
- 6.倒排索引
- 十七.分布式相關
- 1.分布式事務解決方案一網打盡
- 2.關于xxx怎么保證高可用的問題
- 3.一致性hash原理與實現
- 4.微服務注冊中心 Nacos 比 Eureka的優勢
- 5.Raft 協議算法
- 6.為什么微服務架構中需要網關
- 0.CAP與BASE理論
- 十八.Dubbo
- 1.快速掌握Dubbo常規應用
- 2.Dubbo應用進階
- 3.Dubbo調用模塊詳解
- 4.Dubbo調用模塊源碼分析
- 6.Dubbo協議模塊