## 一、簡介
Storm-Redis 提供了 Storm 與 Redis 的集成支持,你只需要引入對應的依賴即可使用:
~~~
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-redis</artifactId>
<version>${storm.version}</version>
<type>jar</type>
</dependency>
~~~
Storm-Redis 使用 Jedis 為 Redis 客戶端,并提供了如下三個基本的 Bolt 實現:
* **RedisLookupBolt**:從 Redis 中查詢數據;
* **RedisStoreBolt**:存儲數據到 Redis;
* **RedisFilterBolt** : 查詢符合條件的數據;
`RedisLookupBolt`、`RedisStoreBolt`、`RedisFilterBolt` 均繼承自 `AbstractRedisBolt` 抽象類。我們可以通過繼承該抽象類,實現自定義 RedisBolt,進行功能的拓展。
## 二、集成案例
### 2.1 項目結構
這里首先給出一個集成案例:進行詞頻統計并將最后的結果存儲到 Redis。項目結構如下:

> 用例源碼下載地址:[storm-redis-integration](https://github.com/heibaiying/BigData-Notes/tree/master/code/Storm/storm-redis-integration)
### 2.2 項目依賴
項目主要依賴如下:
~~~
<properties>
<storm.version>1.2.2</storm.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>${storm.version}</version>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-redis</artifactId>
<version>${storm.version}</version>
</dependency>
</dependencies>
~~~
### 2.3 DataSourceSpout
~~~
/**
* 產生詞頻樣本的數據源
*/
public class DataSourceSpout extends BaseRichSpout {
private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");
private SpoutOutputCollector spoutOutputCollector;
@Override
public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
this.spoutOutputCollector = spoutOutputCollector;
}
@Override
public void nextTuple() {
// 模擬產生數據
String lineData = productData();
spoutOutputCollector.emit(new Values(lineData));
Utils.sleep(1000);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("line"));
}
/**
* 模擬數據
*/
private String productData() {
Collections.shuffle(list);
Random random = new Random();
int endIndex = random.nextInt(list.size()) % (list.size()) + 1;
return StringUtils.join(list.toArray(), "\t", 0, endIndex);
}
}
~~~
產生的模擬數據格式如下:
~~~
Spark HBase
Hive Flink Storm Hadoop HBase Spark
Flink
HBase Storm
HBase Hadoop Hive Flink
HBase Flink Hive Storm
Hive Flink Hadoop
HBase Hive
Hadoop Spark HBase Storm
~~~
### 2.4 SplitBolt
~~~
/**
* 將每行數據按照指定分隔符進行拆分
*/
public class SplitBolt extends BaseRichBolt {
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
}
@Override
public void execute(Tuple input) {
String line = input.getStringByField("line");
String[] words = line.split("\t");
for (String word : words) {
collector.emit(new Values(word, String.valueOf(1)));
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
~~~
### 2.5 CountBolt
~~~
/**
* 進行詞頻統計
*/
public class CountBolt extends BaseRichBolt {
private Map<String, Integer> counts = new HashMap<>();
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector=collector;
}
@Override
public void execute(Tuple input) {
String word = input.getStringByField("word");
Integer count = counts.get(word);
if (count == null) {
count = 0;
}
count++;
counts.put(word, count);
// 輸出
collector.emit(new Values(word, String.valueOf(count)));
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
~~~
### 2.6 WordCountStoreMapper
實現 RedisStoreMapper 接口,定義 tuple 與 Redis 中數據的映射關系:即需要指定 tuple 中的哪個字段為 key,哪個字段為 value,并且存儲到 Redis 的何種數據結構中。
~~~
/**
* 定義 tuple 與 Redis 中數據的映射關系
*/
public class WordCountStoreMapper implements RedisStoreMapper {
private RedisDataTypeDescription description;
private final String hashKey = "wordCount";
public WordCountStoreMapper() {
description = new RedisDataTypeDescription(
RedisDataTypeDescription.RedisDataType.HASH, hashKey);
}
@Override
public RedisDataTypeDescription getDataTypeDescription() {
return description;
}
@Override
public String getKeyFromTuple(ITuple tuple) {
return tuple.getStringByField("word");
}
@Override
public String getValueFromTuple(ITuple tuple) {
return tuple.getStringByField("count");
}
}
~~~
### 2.7 WordCountToRedisApp
~~~
/**
* 進行詞頻統計 并將統計結果存儲到 Redis 中
*/
public class WordCountToRedisApp {
private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
private static final String SPLIT_BOLT = "splitBolt";
private static final String COUNT_BOLT = "countBolt";
private static final String STORE_BOLT = "storeBolt";
//在實際開發中這些參數可以將通過外部傳入 使得程序更加靈活
private static final String REDIS_HOST = "192.168.200.226";
private static final int REDIS_PORT = 6379;
public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout());
// split
builder.setBolt(SPLIT_BOLT, new SplitBolt()).shuffleGrouping(DATA_SOURCE_SPOUT);
// count
builder.setBolt(COUNT_BOLT, new CountBolt()).shuffleGrouping(SPLIT_BOLT);
// save to redis
JedisPoolConfig poolConfig = new JedisPoolConfig.Builder()
.setHost(REDIS_HOST).setPort(REDIS_PORT).build();
RedisStoreMapper storeMapper = new WordCountStoreMapper();
RedisStoreBolt storeBolt = new RedisStoreBolt(poolConfig, storeMapper);
builder.setBolt(STORE_BOLT, storeBolt).shuffleGrouping(COUNT_BOLT);
// 如果外部傳參 cluster 則代表線上環境啟動否則代表本地啟動
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterWordCountToRedisApp", new Config(), builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalWordCountToRedisApp",
new Config(), builder.createTopology());
}
}
}
~~~
### 2.8 啟動測試
可以用直接使用本地模式運行,也可以打包后提交到服務器集群運行。本倉庫提供的源碼默認采用 `maven-shade-plugin` 進行打包,打包命令如下:
~~~
# mvn clean package -D maven.test.skip=true
~~~
啟動后,查看 Redis 中的數據:

## 三、storm-redis 實現原理
### 3.1 AbstractRedisBolt
`RedisLookupBolt`、`RedisStoreBolt`、`RedisFilterBolt` 均繼承自 `AbstractRedisBolt` 抽象類,和我們自定義實現 Bolt 一樣,`AbstractRedisBolt` 間接繼承自 `BaseRichBolt`。

`AbstractRedisBolt` 中比較重要的是 prepare 方法,在該方法中通過外部傳入的 jedis 連接池配置 ( jedisPoolConfig/jedisClusterConfig) 創建用于管理 Jedis 實例的容器 `JedisCommandsInstanceContainer`。
~~~
public abstract class AbstractRedisBolt extends BaseTickTupleAwareRichBolt {
protected OutputCollector collector;
private transient JedisCommandsInstanceContainer container;
private JedisPoolConfig jedisPoolConfig;
private JedisClusterConfig jedisClusterConfig;
......
@Override
public void prepare(Map map, TopologyContext topologyContext, OutputCollector collector) {
// FIXME: stores map (stormConf), topologyContext and expose these to derived classes
this.collector = collector;
if (jedisPoolConfig != null) {
this.container = JedisCommandsContainerBuilder.build(jedisPoolConfig);
} else if (jedisClusterConfig != null) {
this.container = JedisCommandsContainerBuilder.build(jedisClusterConfig);
} else {
throw new IllegalArgumentException("Jedis configuration not found");
}
}
.......
}
~~~
`JedisCommandsInstanceContainer` 的 `build()` 方法如下,實際上就是創建 JedisPool 或 JedisCluster 并傳入容器中。
~~~
public static JedisCommandsInstanceContainer build(JedisPoolConfig config) {
JedisPool jedisPool = new JedisPool(DEFAULT_POOL_CONFIG, config.getHost(), config.getPort(), config.getTimeout(), config.getPassword(), config.getDatabase());
return new JedisContainer(jedisPool);
}
public static JedisCommandsInstanceContainer build(JedisClusterConfig config) {
JedisCluster jedisCluster = new JedisCluster(config.getNodes(), config.getTimeout(), config.getTimeout(), config.getMaxRedirections(), config.getPassword(), DEFAULT_POOL_CONFIG);
return new JedisClusterContainer(jedisCluster);
}
~~~
### 3.2 RedisStoreBolt和RedisLookupBolt
`RedisStoreBolt` 中比較重要的是 process 方法,該方法主要從 storeMapper 中獲取傳入 key/value 的值,并按照其存儲類型 `dataType` 調用 jedisCommand 的對應方法進行存儲。
RedisLookupBolt 的實現基本類似,從 lookupMapper 中獲取傳入的 key 值,并進行查詢操作。
~~~
public class RedisStoreBolt extends AbstractRedisBolt {
private final RedisStoreMapper storeMapper;
private final RedisDataTypeDescription.RedisDataType dataType;
private final String additionalKey;
public RedisStoreBolt(JedisPoolConfig config, RedisStoreMapper storeMapper) {
super(config);
this.storeMapper = storeMapper;
RedisDataTypeDescription dataTypeDescription = storeMapper.getDataTypeDescription();
this.dataType = dataTypeDescription.getDataType();
this.additionalKey = dataTypeDescription.getAdditionalKey();
}
public RedisStoreBolt(JedisClusterConfig config, RedisStoreMapper storeMapper) {
super(config);
this.storeMapper = storeMapper;
RedisDataTypeDescription dataTypeDescription = storeMapper.getDataTypeDescription();
this.dataType = dataTypeDescription.getDataType();
this.additionalKey = dataTypeDescription.getAdditionalKey();
}
@Override
public void process(Tuple input) {
String key = storeMapper.getKeyFromTuple(input);
String value = storeMapper.getValueFromTuple(input);
JedisCommands jedisCommand = null;
try {
jedisCommand = getInstance();
switch (dataType) {
case STRING:
jedisCommand.set(key, value);
break;
case LIST:
jedisCommand.rpush(key, value);
break;
case HASH:
jedisCommand.hset(additionalKey, key, value);
break;
case SET:
jedisCommand.sadd(key, value);
break;
case SORTED_SET:
jedisCommand.zadd(additionalKey, Double.valueOf(value), key);
break;
case HYPER_LOG_LOG:
jedisCommand.pfadd(key, value);
break;
case GEO:
String[] array = value.split(":");
if (array.length != 2) {
throw new IllegalArgumentException("value structure should be longitude:latitude");
}
double longitude = Double.valueOf(array[0]);
double latitude = Double.valueOf(array[1]);
jedisCommand.geoadd(additionalKey, longitude, latitude, key);
break;
default:
throw new IllegalArgumentException("Cannot process such data type: " + dataType);
}
collector.ack(input);
} catch (Exception e) {
this.collector.reportError(e);
this.collector.fail(input);
} finally {
returnInstance(jedisCommand);
}
}
.........
}
~~~
### 3.3 JedisCommands
JedisCommands 接口中定義了所有的 Redis 客戶端命令,它有以下三個實現類,分別是 Jedis、JedisCluster、ShardedJedis。Strom 中主要使用前兩種實現類,具體調用哪一個實現類來執行命令,由傳入的是 jedisPoolConfig 還是 jedisClusterConfig 來決定。

### 3.4 RedisMapper 和 TupleMapper
RedisMapper 和 TupleMapper 定義了 tuple 和 Redis 中的數據如何進行映射轉換。

#### 1\. TupleMapper
TupleMapper 主要定義了兩個方法:
* getKeyFromTuple(ITuple tuple): 從 tuple 中獲取那個字段作為 Key;
* getValueFromTuple(ITuple tuple):從 tuple 中獲取那個字段作為 Value;
#### 2\. RedisMapper
定義了獲取數據類型的方法 `getDataTypeDescription()`,RedisDataTypeDescription 中 RedisDataType 枚舉類定義了所有可用的 Redis 數據類型:
~~~
public class RedisDataTypeDescription implements Serializable {
public enum RedisDataType { STRING, HASH, LIST, SET, SORTED_SET, HYPER_LOG_LOG, GEO }
......
}
~~~
#### 3\. RedisStoreMapper
RedisStoreMapper 繼承 TupleMapper 和 RedisMapper 接口,用于數據存儲時,沒有定義額外方法。
#### 4\. RedisLookupMapper
RedisLookupMapper 繼承 TupleMapper 和 RedisMapper 接口:
* 定義了 declareOutputFields 方法,聲明輸出的字段。
* 定義了 toTuple 方法,將查詢結果組裝為 Storm 的 Values 的集合,并用于發送。
下面的例子表示從輸入 `Tuple` 的獲取 `word` 字段作為 key,使用 `RedisLookupBolt` 進行查詢后,將 key 和查詢結果 value 組裝為 values 并發送到下一個處理單元。
~~~
class WordCountRedisLookupMapper implements RedisLookupMapper {
private RedisDataTypeDescription description;
private final String hashKey = "wordCount";
public WordCountRedisLookupMapper() {
description = new RedisDataTypeDescription(
RedisDataTypeDescription.RedisDataType.HASH, hashKey);
}
@Override
public List<Values> toTuple(ITuple input, Object value) {
String member = getKeyFromTuple(input);
List<Values> values = Lists.newArrayList();
values.add(new Values(member, value));
return values;
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("wordName", "count"));
}
@Override
public RedisDataTypeDescription getDataTypeDescription() {
return description;
}
@Override
public String getKeyFromTuple(ITuple tuple) {
return tuple.getStringByField("word");
}
@Override
public String getValueFromTuple(ITuple tuple) {
return null;
}
}
~~~
#### 5\. RedisFilterMapper
RedisFilterMapper 繼承 TupleMapper 和 RedisMapper 接口,用于查詢數據時,定義了 declareOutputFields 方法,聲明輸出的字段。如下面的實現:
~~~
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("wordName", "count"));
}
~~~
## 四、自定義RedisBolt實現詞頻統計
### 4.1 實現原理
自定義 RedisBolt:主要利用 Redis 中哈希結構的 `hincrby key field` 命令進行詞頻統計。在 Redis 中 `hincrby` 的執行效果如下。hincrby 可以將字段按照指定的值進行遞增,如果該字段不存在的話,還會新建該字段,并賦值為 0。通過這個命令可以非常輕松的實現詞頻統計功能。
~~~
redis> HSET myhash field 5
(integer) 1
redis> HINCRBY myhash field 1
(integer) 6
redis> HINCRBY myhash field -1
(integer) 5
redis> HINCRBY myhash field -10
(integer) -5
redis>
~~~
### 4.2 項目結構

### 4.3 自定義RedisBolt的代碼實現
~~~
/**
* 自定義 RedisBolt 利用 Redis 的哈希數據結構的 hincrby key field 命令進行詞頻統計
*/
public class RedisCountStoreBolt extends AbstractRedisBolt {
private final RedisStoreMapper storeMapper;
private final RedisDataTypeDescription.RedisDataType dataType;
private final String additionalKey;
public RedisCountStoreBolt(JedisPoolConfig config, RedisStoreMapper storeMapper) {
super(config);
this.storeMapper = storeMapper;
RedisDataTypeDescription dataTypeDescription = storeMapper.getDataTypeDescription();
this.dataType = dataTypeDescription.getDataType();
this.additionalKey = dataTypeDescription.getAdditionalKey();
}
@Override
protected void process(Tuple tuple) {
String key = storeMapper.getKeyFromTuple(tuple);
String value = storeMapper.getValueFromTuple(tuple);
JedisCommands jedisCommand = null;
try {
jedisCommand = getInstance();
if (dataType == RedisDataTypeDescription.RedisDataType.HASH) {
jedisCommand.hincrBy(additionalKey, key, Long.valueOf(value));
} else {
throw new IllegalArgumentException("Cannot process such data type for Count: " + dataType);
}
collector.ack(tuple);
} catch (Exception e) {
this.collector.reportError(e);
this.collector.fail(tuple);
} finally {
returnInstance(jedisCommand);
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}
}
~~~
### 4.4 CustomRedisCountApp
~~~
/**
* 利用自定義的 RedisBolt 實現詞頻統計
*/
public class CustomRedisCountApp {
private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
private static final String SPLIT_BOLT = "splitBolt";
private static final String STORE_BOLT = "storeBolt";
private static final String REDIS_HOST = "192.168.200.226";
private static final int REDIS_PORT = 6379;
public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout());
// split
builder.setBolt(SPLIT_BOLT, new SplitBolt()).shuffleGrouping(DATA_SOURCE_SPOUT);
// save to redis and count
JedisPoolConfig poolConfig = new JedisPoolConfig.Builder()
.setHost(REDIS_HOST).setPort(REDIS_PORT).build();
RedisStoreMapper storeMapper = new WordCountStoreMapper();
RedisCountStoreBolt countStoreBolt = new RedisCountStoreBolt(poolConfig, storeMapper);
builder.setBolt(STORE_BOLT, countStoreBolt).shuffleGrouping(SPLIT_BOLT);
// 如果外部傳參 cluster 則代表線上環境啟動,否則代表本地啟動
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterCustomRedisCountApp", new Config(), builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalCustomRedisCountApp",
new Config(), builder.createTopology());
}
}
}
~~~
作者:heibaiying
鏈接:https://juejin.cn/post/6844903950039121934
來源:掘金
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請注明出處。
- 一.JVM
- 1.1 java代碼是怎么運行的
- 1.2 JVM的內存區域
- 1.3 JVM運行時內存
- 1.4 JVM內存分配策略
- 1.5 JVM類加載機制與對象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面試相關文章
- 2.1 可能是把Java內存區域講得最清楚的一篇文章
- 2.0 GC調優參數
- 2.1GC排查系列
- 2.2 內存泄漏和內存溢出
- 2.2.3 深入理解JVM-hotspot虛擬機對象探秘
- 1.10 并發的可達性分析相關問題
- 二.Java集合架構
- 1.ArrayList深入源碼分析
- 2.Vector深入源碼分析
- 3.LinkedList深入源碼分析
- 4.HashMap深入源碼分析
- 5.ConcurrentHashMap深入源碼分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的設計模式
- 8.集合架構之面試指南
- 9.TreeSet和TreeMap
- 三.Java基礎
- 1.基礎概念
- 1.1 Java程序初始化的順序是怎么樣的
- 1.2 Java和C++的區別
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字節與字符的區別以及訪問修飾符
- 1.7 深拷貝與淺拷貝
- 1.8 字符串常量池
- 2.面向對象
- 3.關鍵字
- 4.基本數據類型與運算
- 5.字符串與數組
- 6.異常處理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 數據流(Stream)
- 8.3 Java 8 并發教程:線程和執行器
- 8.4 Java 8 并發教程:同步和鎖
- 8.5 Java 8 并發教程:原子變量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、數值、算術和文件
- 8.7 在 Java 8 中避免 Null 檢查
- 8.8 使用 Intellij IDEA 解決 Java 8 的數據流問題
- 四.Java 并發編程
- 1.線程的實現/創建
- 2.線程生命周期/狀態轉換
- 3.線程池
- 4.線程中的協作、中斷
- 5.Java鎖
- 5.1 樂觀鎖、悲觀鎖和自旋鎖
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平鎖和非公平鎖
- 5.3.1 說說ReentrantLock的實現原理,以及ReentrantLock的核心源碼是如何實現的?
- 5.5 鎖優化和升級
- 6.多線程的上下文切換
- 7.死鎖的產生和解決
- 8.J.U.C(java.util.concurrent)
- 0.簡化版(快速復習用)
- 9.鎖優化
- 10.Java 內存模型(JMM)
- 11.ThreadLocal詳解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的實現原理
- 1.DelayQueue的實現原理
- 14.Thread.join()實現原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的實際使用場景
- 五.Java I/O NIO
- 1.I/O模型簡述
- 2.Java NIO之緩沖區
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之選擇器
- 6.基于 Java NIO 實現簡單的 HTTP 服務器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面試題
- 六.Java設計模式
- 1.單例模式
- 2.策略模式
- 3.模板方法
- 4.適配器模式
- 5.簡單工廠
- 6.門面模式
- 7.代理模式
- 七.數據結構和算法
- 1.什么是紅黑樹
- 2.二叉樹
- 2.1 二叉樹的前序、中序、后序遍歷
- 3.排序算法匯總
- 4.java實現鏈表及鏈表的重用操作
- 4.1算法題-鏈表反轉
- 5.圖的概述
- 6.常見的幾道字符串算法題
- 7.幾道常見的鏈表算法題
- 8.leetcode常見算法題1
- 9.LRU緩存策略
- 10.二進制及位運算
- 10.1.二進制和十進制轉換
- 10.2.位運算
- 11.常見鏈表算法題
- 12.算法好文推薦
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事務管理
- 4.SpringMVC 運行流程和手動實現
- 0.Spring 核心技術
- 5.spring如何解決循環依賴問題
- 6.springboot自動裝配原理
- 7.Spring中的循環依賴解決機制中,為什么要三級緩存,用二級緩存不夠嗎
- 8.beanFactory和factoryBean有什么區別
- 九.數據庫
- 1.mybatis
- 1.1 MyBatis-# 與 $ 區別以及 sql 預編譯
- Mybatis系列1-Configuration
- Mybatis系列2-SQL執行過程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-參數設置揭秘(ParameterHandler)
- Mybatis系列8-緩存機制
- 2.淺談聚簇索引和非聚簇索引的區別
- 3.mysql 證明為什么用limit時,offset很大會影響性能
- 4.MySQL中的索引
- 5.數據庫索引2
- 6.面試題收集
- 7.MySQL行鎖、表鎖、間隙鎖詳解
- 8.數據庫MVCC詳解
- 9.一條SQL查詢語句是如何執行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能優化神器 Explain 使用分析
- 12.mysql中,一條update語句執行的過程是怎么樣的?期間用到了mysql的哪些log,分別有什么作用
- 十.Redis
- 0.快速復習回顧Redis
- 1.通俗易懂的Redis數據結構基礎教程
- 2.分布式鎖(一)
- 3.分布式鎖(二)
- 4.延時隊列
- 5.位圖Bitmaps
- 6.Bitmaps(位圖)的使用
- 7.Scan
- 8.redis緩存雪崩、緩存擊穿、緩存穿透
- 9.Redis為什么是單線程、及高并發快的3大原因詳解
- 10.布隆過濾器你值得擁有的開發利器
- 11.Redis哨兵、復制、集群的設計原理與區別
- 12.redis的IO多路復用
- 13.相關redis面試題
- 14.redis集群
- 十一.中間件
- 1.RabbitMQ
- 1.1 RabbitMQ實戰,hello world
- 1.2 RabbitMQ 實戰,工作隊列
- 1.3 RabbitMQ 實戰, 發布訂閱
- 1.4 RabbitMQ 實戰,路由
- 1.5 RabbitMQ 實戰,主題
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 實戰 – 整合 RabbitMQ 發送郵件
- 1.8 RabbitMQ 的消息持久化與 Spring AMQP 的實現剖析
- 1.9 RabbitMQ必備核心知識
- 2.RocketMQ 的幾個簡單問題與答案
- 2.Kafka
- 2.1 kafka 基礎概念和術語
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志機制
- 2.4 kafka是pull還是push的方式傳遞消息的?
- 2.5 Kafka的數據處理流程
- 2.6 Kafka的腦裂預防和處理機制
- 2.7 Kafka中partition副本的Leader選舉機制
- 2.8 如果Leader掛了的時候,follower沒來得及同步,是否會出現數據不一致
- 2.9 kafka的partition副本是否會出現腦裂情況
- 十二.Zookeeper
- 0.什么是Zookeeper(漫畫)
- 1.使用docker安裝Zookeeper偽集群
- 3.ZooKeeper-Plus
- 4.zk實現分布式鎖
- 5.ZooKeeper之Watcher機制
- 6.Zookeeper之選舉及數據一致性
- 十三.計算機網絡
- 1.進制轉換:二進制、八進制、十六進制、十進制之間的轉換
- 2.位運算
- 3.計算機網絡面試題匯總1
- 十四.Docker
- 100.面試題收集合集
- 1.美團面試常見問題總結
- 2.b站部分面試題
- 3.比心面試題
- 4.騰訊面試題
- 5.哈羅部分面試
- 6.筆記
- 十五.Storm
- 1.Storm和流處理簡介
- 2.Storm 核心概念詳解
- 3.Storm 單機版本環境搭建
- 4.Storm 集群環境搭建
- 5.Storm 編程模型詳解
- 6.Storm 項目三種打包方式對比分析
- 7.Storm 集成 Redis 詳解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初識ElasticSearch
- 2.文檔基本CRUD、集群健康檢查
- 3.shard&replica
- 4.document核心元數據解析及ES的并發控制
- 5.document的批量操作及數據路由原理
- 6.倒排索引
- 十七.分布式相關
- 1.分布式事務解決方案一網打盡
- 2.關于xxx怎么保證高可用的問題
- 3.一致性hash原理與實現
- 4.微服務注冊中心 Nacos 比 Eureka的優勢
- 5.Raft 協議算法
- 6.為什么微服務架構中需要網關
- 0.CAP與BASE理論
- 十八.Dubbo
- 1.快速掌握Dubbo常規應用
- 2.Dubbo應用進階
- 3.Dubbo調用模塊詳解
- 4.Dubbo調用模塊源碼分析
- 6.Dubbo協議模塊