你有個最簡單的表,表里只有一個 ID 字段,在執行下面這個查詢語句時:
```
mysql> select * from T where ID=10;
```
我們看到的只是輸入一條語句,返回一個結果,卻不知道這條語句在 MySQL 內部的執行過程。
所以今天我想和你一起把 MySQL 拆解一下,看看里面都有哪些“零件”,希望借由這個拆解過程,讓你對 MySQL 有更深入的理解。這樣當我們碰到 MySQL 的一些異常或者問題時,就能夠直戳本質,更為快速地定位并解決問題。
下面我給出的是 MySQL 的基本架構示意圖,從中你可以清楚地看到 SQL 語句在 MySQL 的各個功能模塊中的執行過程。

## MySQL 的邏輯架構圖
大體來說,MySQL 可以分為 Server 層和存儲引擎層兩部分。
Server 層包括**連接器、查詢緩存、分析器、優化器、執行器**等,涵蓋 MySQL 的大多數核心服務功能,以及所有的內置函數(如日期、時間、數學和加密函數等),所有跨存儲引擎的功能都在這一層實現,比如存儲過程、觸發器、視圖等。
而存儲引擎層負責數據的存儲和提取。其架構模式是插件式的,支持 InnoDB、MyISAM、Memory 等多個存儲引擎。現在最常用的存儲引擎是 InnoDB,它從 MySQL 5.5.5 版本開始成為了默認存儲引擎。
也就是說,你執行 create table 建表的時候,如果不指定引擎類型,默認使用的就是 InnoDB。不過,你也可以通過指定存儲引擎的類型來選擇別的引擎,比如在 create table 語句中使用 engine=memory, 來指定使用內存引擎創建表。不同存儲引擎的表數據存取方式不同,支持的功能也不同,在后面的文章中,我們會討論到引擎的選擇。
從圖中不難看出,不同的存儲引擎共用一個Server 層,也就是從連接器到執行器的部分。你可以先對每個組件的名字有個印象,接下來我會結合開頭提到的那條 SQL 語句,帶你走一遍整個執行流程,依次看下每個組件的作用。
## 連接器
第一步,你會先連接到這個數據庫上,這時候接待你的就是連接器。連接器負責跟客戶端建立連接、獲取權限、維持和管理連接。連接命令一般是這么寫的:
```
mysql -h$ip -P$port -u$user -p
```
輸完命令之后,你就需要在交互對話里面輸入密碼。雖然密碼也可以直接跟在 -p 后面寫在命令行中,但這樣可能會導致你的密碼泄露。如果你連的是生產服務器,強烈建議你不要這么做。
連接命令中的 mysql 是客戶端工具,用來跟服務端建立連接。在完成經典的 TCP 握手后,連接器就要開始認證你的身份,這個時候用的就是你輸入的用戶名和密碼。
如果用戶名或密碼不對,你就會收到一個"Access denied for user"的錯誤,然后客戶端程序結束執行。
如果用戶名密碼認證通過,連接器會到權限表里面查出你擁有的權限。之后,這個連接里面的權限判斷邏輯,都將依賴于此時讀到的權限。
這就意味著,一個用戶成功建立連接后,即使你用管理員賬號對這個用戶的權限做了修改,也不會影響已經存在連接的權限。修改完成后,只有再新建的連接才會使用新的權限設置。
連接完成后,如果你沒有后續的動作,這個連接就處于空閑狀態,你可以在 show processlist 命令中看到它。文本中這個圖是 show processlist 的結果,其中的 Command 列顯示為“Sleep”的這一行,就表示現在系統里面有一個空閑連接。

客戶端如果太長時間沒動靜,連接器就會自動將它斷開。這個時間是由參數 wait_timeout 控制的,默認值是 8 小時。
如果在連接被斷開之后,客戶端再次發送請求的話,就會收到一個錯誤提醒: Lost connection to MySQL server during query。這時候如果你要繼續,就需要重連,然后再執行請求了。
數據庫里面,長連接是指連接成功后,如果客戶端持續有請求,則一直使用同一個連接。短連接則是指每次執行完很少的幾次查詢就斷開連接,下次查詢再重新建立一個。
建立連接的過程通常是比較復雜的,所以我建議你在使用中要盡量減少建立連接的動作,也就是盡量使用長連接。
但是全部使用長連接后,你可能會發現,有些時候 MySQL 占用內存漲得特別快,這是因為 MySQL 在執行過程中臨時使用的內存是管理在連接對象里面的。這些資源會在連接斷開的時候才釋放。所以如果長連接累積下來,可能導致內存占用太大,被系統強行殺掉(OOM),從現象看就是 MySQL 異常重啟了。
怎么解決這個問題呢?你可以考慮以下兩種方案。
定期斷開長連接。使用一段時間,或者程序里面判斷執行過一個占用內存的大查詢后,斷開連接,之后要查詢再重連。
如果你用的是 MySQL 5.7 或更新版本,可以在每次執行一個比較大的操作后,通過執行 mysql_reset_connection 來重新初始化連接資源。這個過程不需要重連和重新做權限驗證,但是會將連接恢復到剛剛創建完時的狀態。
## 查詢緩存
連接建立完成后,你就可以執行 select 語句了。執行邏輯就會來到第二步:查詢緩存。
MySQL 拿到一個查詢請求后,會先到查詢緩存看看,之前是不是執行過這條語句。之前執行過的語句及其結果可能會以 key-value 對的形式,被直接緩存在內存中。key 是查詢的語句,value 是查詢的結果。如果你的查詢能夠直接在這個緩存中找到 key,那么這個 value 就會被直接返回給客戶端。
如果語句不在查詢緩存中,就會繼續后面的執行階段。執行完成后,執行結果會被存入查詢緩存中。你可以看到,如果查詢命中緩存,MySQL 不需要執行后面的復雜操作,就可以直接返回結果,這個效率會很高。
**但是大多數情況下我會建議你不要使用查詢緩存,為什么呢?因為查詢緩存往往弊大于利。
**
查詢緩存的失效非常頻繁,只要有對一個表的更新,這個表上所有的查詢緩存都會被清空。因此很可能你費勁地把結果存起來,還沒使用呢,就被一個更新全清空了。對于更新壓力大的數據庫來說,查詢緩存的命中率會非常低。除非你的業務就是有一張靜態表,很長時間才會更新一次。比如,一個系統配置表,那這張表上的查詢才適合使用查詢緩存。
好在 MySQL 也提供了這種“按需使用”的方式。你可以將參數 query_cache_type 設置成 DEMAND,這樣對于默認的 SQL 語句都不使用查詢緩存。而對于你確定要使用查詢緩存的語句,可以用 SQL_CACHE 顯式指定,像下面這個語句一樣:
```
mysql> select SQL_CACHE * from T where ID=10;
```
需要注意的是,MySQL 8.0 版本直接將查詢緩存的整塊功能刪掉了,也就是說 8.0 開始徹底沒有這個功能了。
## 分析器
如果沒有命中查詢緩存,就要開始真正執行語句了。首先,MySQL 需要知道你要做什么,因此需要對 SQL 語句做解析。
分析器先會做“詞法分析”。你輸入的是由多個字符串和空格組成的一條 SQL 語句,MySQL 需要識別出里面的字符串分別是什么,代表什么。
MySQL 從你輸入的"select"這個關鍵字識別出來,這是一個查詢語句。它也要把字符串“T”識別成“表名 T”,把字符串“ID”識別成“列 ID”。
做完了這些識別以后,就要做“語法分析”。根據詞法分析的結果,語法分析器會根據語法規則,判斷你輸入的這個 SQL 語句是否滿足 MySQL 語法。
如果你的語句不對,就會收到“You have an error in your SQL syntax”的錯誤提醒,比如下面這個語句 select 少打了開頭的字母“s”。
```
mysql> elect * from t where ID=1;
```
```
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'elect * from t where ID=1' at line 1
```
一般語法錯誤會提示第一個出現錯誤的位置,所以你要關注的是緊接“use near”的內容。
## 優化器
經過了分析器,MySQL 就知道你要做什么了。在開始執行之前,還要先經過優化器的處理。
優化器是在表里面有多個索引的時候,決定使用哪個索引;或者在一個語句有多表關聯(join)的時候,決定各個表的連接順序。比如你執行下面這樣的語句,這個語句是執行兩個表的 join:
```
mysql> select * from t1 join t2 using(ID) where t1.c=10 and t2.d=20;
```
既可以先從表 t1 里面取出 c=10 的記錄的 ID 值,再根據 ID 值關聯到表 t2,再判斷 t2 里面 d 的值是否等于 20。
也可以先從表 t2 里面取出 d=20 的記錄的 ID 值,再根據 ID 值關聯到 t1,再判斷 t1 里面 c 的值是否等于 10。
這兩種執行方法的邏輯結果是一樣的,但是執行的效率會有不同,而優化器的作用就是決定選擇使用哪一個方案。
優化器階段完成后,這個語句的執行方案就確定下來了,然后進入執行器階段。如果你還有一些疑問,比如優化器是怎么選擇索引的,有沒有可能選擇錯等等,沒關系,我會在后面的文章中單獨展開說明優化器的內容。
## 執行器
MySQL 通過分析器知道了你要做什么,通過優化器知道了該怎么做,于是就進入了執行器階段,開始執行語句。
開始執行的時候,要先判斷一下你對這個表 T 有沒有執行查詢的權限,如果沒有,就會返回沒有權限的錯誤,如下所示 (在工程實現上,如果命中查詢緩存,會在查詢緩存返回結果的時候,做權限驗證。查詢也會在優化器之前調用 precheck 驗證權限)。
```
mysql> select * from T where ID=10;
```
```
ERROR 1142 (42000): SELECT command denied to user 'b'@'localhost' for table 'T'
```
如果有權限,就打開表繼續執行。打開表的時候,執行器就會根據表的引擎定義,去使用這個引擎提供的接口。
比如我們這個例子中的表 T 中,ID 字段沒有索引,那么執行器的執行流程是這樣的:
調用 InnoDB 引擎接口取這個表的第一行,判斷 ID 值是不是 10,如果不是則跳過,如果是則將這行存在結果集中;
調用引擎接口取“下一行”,重復相同的判斷邏輯,直到取到這個表的最后一行。
執行器將上述遍歷過程中所有滿足條件的行組成的記錄集作為結果集返回給客戶端。
至此,這個語句就執行完成了。
對于有索引的表,執行的邏輯也差不多。第一次調用的是“取滿足條件的第一行”這個接口,之后循環取“滿足條件的下一行”這個接口,這些接口都是引擎中已經定義好的。
你會在數據庫的慢查詢日志中看到一個 rows_examined 的字段,表示這個語句執行過程中掃描了多少行。這個值就是在執行器每次調用引擎獲取數據行的時候累加的。
在有些場景下,執行器調用一次,在引擎內部則掃描了多行,因此引擎掃描行數跟 rows_examined 并不是完全相同的。我們后面會專門有一篇文章來講存儲引擎的內部機制,里面會有詳細的說明。
小結
今天我給你介紹了 MySQL 的邏輯架構,希望你對一個 SQL 語句完整執行流程的各個階段有了一個初步的印象。由于篇幅的限制,我只是用一個查詢的例子將各個環節過了一遍。如果你還對每個環節的展開細節存有疑問,也不用擔心,后續在實戰章節中我還會再提到它們。
我給你留一個問題吧,如果表 T 中沒有字段 k,而你執行了這個語句 select * from T where k=1, 那肯定是會報“不存在這個列”的錯誤: “Unknown column ‘k’ in ‘where clause’”。你覺得這個錯誤是在我們上面提到的哪個階段報出來的呢?
- 一.JVM
- 1.1 java代碼是怎么運行的
- 1.2 JVM的內存區域
- 1.3 JVM運行時內存
- 1.4 JVM內存分配策略
- 1.5 JVM類加載機制與對象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面試相關文章
- 2.1 可能是把Java內存區域講得最清楚的一篇文章
- 2.0 GC調優參數
- 2.1GC排查系列
- 2.2 內存泄漏和內存溢出
- 2.2.3 深入理解JVM-hotspot虛擬機對象探秘
- 1.10 并發的可達性分析相關問題
- 二.Java集合架構
- 1.ArrayList深入源碼分析
- 2.Vector深入源碼分析
- 3.LinkedList深入源碼分析
- 4.HashMap深入源碼分析
- 5.ConcurrentHashMap深入源碼分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的設計模式
- 8.集合架構之面試指南
- 9.TreeSet和TreeMap
- 三.Java基礎
- 1.基礎概念
- 1.1 Java程序初始化的順序是怎么樣的
- 1.2 Java和C++的區別
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字節與字符的區別以及訪問修飾符
- 1.7 深拷貝與淺拷貝
- 1.8 字符串常量池
- 2.面向對象
- 3.關鍵字
- 4.基本數據類型與運算
- 5.字符串與數組
- 6.異常處理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 數據流(Stream)
- 8.3 Java 8 并發教程:線程和執行器
- 8.4 Java 8 并發教程:同步和鎖
- 8.5 Java 8 并發教程:原子變量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、數值、算術和文件
- 8.7 在 Java 8 中避免 Null 檢查
- 8.8 使用 Intellij IDEA 解決 Java 8 的數據流問題
- 四.Java 并發編程
- 1.線程的實現/創建
- 2.線程生命周期/狀態轉換
- 3.線程池
- 4.線程中的協作、中斷
- 5.Java鎖
- 5.1 樂觀鎖、悲觀鎖和自旋鎖
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平鎖和非公平鎖
- 5.3.1 說說ReentrantLock的實現原理,以及ReentrantLock的核心源碼是如何實現的?
- 5.5 鎖優化和升級
- 6.多線程的上下文切換
- 7.死鎖的產生和解決
- 8.J.U.C(java.util.concurrent)
- 0.簡化版(快速復習用)
- 9.鎖優化
- 10.Java 內存模型(JMM)
- 11.ThreadLocal詳解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的實現原理
- 1.DelayQueue的實現原理
- 14.Thread.join()實現原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的實際使用場景
- 五.Java I/O NIO
- 1.I/O模型簡述
- 2.Java NIO之緩沖區
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之選擇器
- 6.基于 Java NIO 實現簡單的 HTTP 服務器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面試題
- 六.Java設計模式
- 1.單例模式
- 2.策略模式
- 3.模板方法
- 4.適配器模式
- 5.簡單工廠
- 6.門面模式
- 7.代理模式
- 七.數據結構和算法
- 1.什么是紅黑樹
- 2.二叉樹
- 2.1 二叉樹的前序、中序、后序遍歷
- 3.排序算法匯總
- 4.java實現鏈表及鏈表的重用操作
- 4.1算法題-鏈表反轉
- 5.圖的概述
- 6.常見的幾道字符串算法題
- 7.幾道常見的鏈表算法題
- 8.leetcode常見算法題1
- 9.LRU緩存策略
- 10.二進制及位運算
- 10.1.二進制和十進制轉換
- 10.2.位運算
- 11.常見鏈表算法題
- 12.算法好文推薦
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事務管理
- 4.SpringMVC 運行流程和手動實現
- 0.Spring 核心技術
- 5.spring如何解決循環依賴問題
- 6.springboot自動裝配原理
- 7.Spring中的循環依賴解決機制中,為什么要三級緩存,用二級緩存不夠嗎
- 8.beanFactory和factoryBean有什么區別
- 九.數據庫
- 1.mybatis
- 1.1 MyBatis-# 與 $ 區別以及 sql 預編譯
- Mybatis系列1-Configuration
- Mybatis系列2-SQL執行過程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-參數設置揭秘(ParameterHandler)
- Mybatis系列8-緩存機制
- 2.淺談聚簇索引和非聚簇索引的區別
- 3.mysql 證明為什么用limit時,offset很大會影響性能
- 4.MySQL中的索引
- 5.數據庫索引2
- 6.面試題收集
- 7.MySQL行鎖、表鎖、間隙鎖詳解
- 8.數據庫MVCC詳解
- 9.一條SQL查詢語句是如何執行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能優化神器 Explain 使用分析
- 12.mysql中,一條update語句執行的過程是怎么樣的?期間用到了mysql的哪些log,分別有什么作用
- 十.Redis
- 0.快速復習回顧Redis
- 1.通俗易懂的Redis數據結構基礎教程
- 2.分布式鎖(一)
- 3.分布式鎖(二)
- 4.延時隊列
- 5.位圖Bitmaps
- 6.Bitmaps(位圖)的使用
- 7.Scan
- 8.redis緩存雪崩、緩存擊穿、緩存穿透
- 9.Redis為什么是單線程、及高并發快的3大原因詳解
- 10.布隆過濾器你值得擁有的開發利器
- 11.Redis哨兵、復制、集群的設計原理與區別
- 12.redis的IO多路復用
- 13.相關redis面試題
- 14.redis集群
- 十一.中間件
- 1.RabbitMQ
- 1.1 RabbitMQ實戰,hello world
- 1.2 RabbitMQ 實戰,工作隊列
- 1.3 RabbitMQ 實戰, 發布訂閱
- 1.4 RabbitMQ 實戰,路由
- 1.5 RabbitMQ 實戰,主題
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 實戰 – 整合 RabbitMQ 發送郵件
- 1.8 RabbitMQ 的消息持久化與 Spring AMQP 的實現剖析
- 1.9 RabbitMQ必備核心知識
- 2.RocketMQ 的幾個簡單問題與答案
- 2.Kafka
- 2.1 kafka 基礎概念和術語
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志機制
- 2.4 kafka是pull還是push的方式傳遞消息的?
- 2.5 Kafka的數據處理流程
- 2.6 Kafka的腦裂預防和處理機制
- 2.7 Kafka中partition副本的Leader選舉機制
- 2.8 如果Leader掛了的時候,follower沒來得及同步,是否會出現數據不一致
- 2.9 kafka的partition副本是否會出現腦裂情況
- 十二.Zookeeper
- 0.什么是Zookeeper(漫畫)
- 1.使用docker安裝Zookeeper偽集群
- 3.ZooKeeper-Plus
- 4.zk實現分布式鎖
- 5.ZooKeeper之Watcher機制
- 6.Zookeeper之選舉及數據一致性
- 十三.計算機網絡
- 1.進制轉換:二進制、八進制、十六進制、十進制之間的轉換
- 2.位運算
- 3.計算機網絡面試題匯總1
- 十四.Docker
- 100.面試題收集合集
- 1.美團面試常見問題總結
- 2.b站部分面試題
- 3.比心面試題
- 4.騰訊面試題
- 5.哈羅部分面試
- 6.筆記
- 十五.Storm
- 1.Storm和流處理簡介
- 2.Storm 核心概念詳解
- 3.Storm 單機版本環境搭建
- 4.Storm 集群環境搭建
- 5.Storm 編程模型詳解
- 6.Storm 項目三種打包方式對比分析
- 7.Storm 集成 Redis 詳解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初識ElasticSearch
- 2.文檔基本CRUD、集群健康檢查
- 3.shard&replica
- 4.document核心元數據解析及ES的并發控制
- 5.document的批量操作及數據路由原理
- 6.倒排索引
- 十七.分布式相關
- 1.分布式事務解決方案一網打盡
- 2.關于xxx怎么保證高可用的問題
- 3.一致性hash原理與實現
- 4.微服務注冊中心 Nacos 比 Eureka的優勢
- 5.Raft 協議算法
- 6.為什么微服務架構中需要網關
- 0.CAP與BASE理論
- 十八.Dubbo
- 1.快速掌握Dubbo常規應用
- 2.Dubbo應用進階
- 3.Dubbo調用模塊詳解
- 4.Dubbo調用模塊源碼分析
- 6.Dubbo協議模塊