## 一:單向鏈表基本介紹
鏈表是一種數據結構,和數組同級。比如,Java中我們使用的ArrayList,其實現原理是數組。而LinkedList的實現原理就是鏈表了。鏈表在進行循環遍歷時效率不高,但是插入和刪除時優勢明顯。下面對單向鏈表做一個介紹。
單向鏈表是一種線性表,實際上是由節點(Node)組成的,一個鏈表擁有不定數量的節點。其數據在內存中存儲是不連續的,它存儲的數據分散在內存中,每個結點只能也只有它能知道下一個結點的存儲位置。由N各節點(Node)組成單向鏈表,每一個Node記錄本Node的數據及下一個Node。向外暴露的只有一個頭節點(Head),我們對鏈表的所有操作,都是直接或者間接地通過其頭節點來進行的。

上圖中最左邊的節點即為頭結點(Head),但是添加節點的順序是從右向左的,添加的新節點會被作為新節點。最先添加的節點對下一節點的引用可以為空。引用是引用下一個節點而非下一個節點的對象。因為有著不斷的引用,所以頭節點就可以操作所有節點了。?
下圖描述了單向鏈表存儲情況。存儲是分散的,每一個節點只要記錄下一節點,就把所有數據串了起來,形成了一個單向鏈表。?

節點(Node)是由一個需要儲存的對象及對下一個節點的引用組成的。也就是說,節點擁有兩個成員:儲存的對象、對下一個節點的引用。下面圖是具體的說明:

## 二、單項鏈表的實現
~~~
/**
* @author Administrator
*/
public class MyLink {
Node head = null; // 頭節點
/**
* 鏈表中的節點,data代表節點的值,next是指向下一個節點的引用
*
* @author zjn
*
*/
class Node {
Node next = null;// 節點的引用,指向下一個節點
int data;// 節點的對象,即內容
public Node(int data) {
this.data = data;
}
}
/**
* 向鏈表中插入數據
*
* @param d
*/
public void addNode(int d) {
Node newNode = new Node(d);// 實例化一個節點
if (head == null) {
head = newNode;
return;
}
Node tmp = head;
while (tmp.next != null) {
tmp = tmp.next;
}
tmp.next = newNode;
}
/**
*
* @param index:刪除第index個節點
* @return
*/
public boolean deleteNode(int index) {
if (index < 1 || index > length()) {
return false;
}
if (index == 1) {
head = head.next;
return true;
}
int i = 1;
Node preNode = head;
Node curNode = preNode.next;
while (curNode != null) {
if (i == index) {
preNode.next = curNode.next;
return true;
}
preNode = curNode;
curNode = curNode.next;
i++;
}
return false;
}
/**
*
* @return 返回節點長度
*/
public int length() {
int length = 0;
Node tmp = head;
while (tmp != null) {
length++;
tmp = tmp.next;
}
return length;
}
/**
* 在不知道頭指針的情況下刪除指定節點
*
* @param n
* @return
*/
public boolean deleteNode11(Node n) {
if (n == null || n.next == null) {
return false;
}
int tmp = n.data;
n.data = n.next.data;
n.next.data = tmp;
n.next = n.next.next;
System.out.println("刪除成功!");
return true;
}
public void printList() {
Node tmp = head;
while (tmp != null) {
System.out.println(tmp.data);
tmp = tmp.next;
}
}
public static void main(String[] args) {
MyLink list = new MyLink();
list.addNode(5);
list.addNode(3);
list.addNode(1);
list.addNode(2);
list.addNode(55);
list.addNode(36);
System.out.println("linkLength:" + list.length());
System.out.println("head.data:" + list.head.data);
list.printList();
list.deleteNode(4);
System.out.println("After deleteNode(4):");
list.printList();
}
}
~~~
## 三、鏈表相關的常用操作實現方法
1\. 鏈表反轉
直接改變頭尾指向即可
~~~
/**
* 鏈表反轉
*
* @param head
* @return
*/
public Node ReverseIteratively(Node head) {
Node pReversedHead = head;
Node pNode = head;
Node pPrev = null;
while (pNode != null) {
Node pNext = pNode.next;
if (pNext == null) {
pReversedHead = pNode;
}
pNode.next = pPrev;
pPrev = pNode;
pNode = pNext;
}
this.head = pReversedHead;
return this.head;
}
~~~
2\. 查找單鏈表的中間節點
采用快慢指針的方式查找單鏈表的中間節點,快指針一次走兩步,慢指針一次走一步,當快指針走完時,慢指針剛好到達中間節點。
~~~
/**
* 查找單鏈表的中間節點
*
* @param head
* @return
*/
public Node SearchMid(Node head) {
Node p = this.head, q = this.head;
while (p != null && p.next != null && p.next.next != null) {
p = p.next.next;
q = q.next;
}
System.out.println("Mid:" + q.data);
return q;
}
~~~
3\. 查找倒數第k個元素
采用兩個指針P1,P2,P1先前移K步,然后P1、P2同時移動,當p1移動到尾部時,P2所指位置的元素即倒數第k個元素 。
~~~
/**
* 查找倒數 第k個元素
*
* @param head
* @param k
* @return
*/
public Node findElem(Node head, int k) {
if (k < 1 || k > this.length()) {
return null;
}
Node p1 = head;
Node p2 = head;
for (int i = 0; i < k; i++)// 前移k步
p1 = p1.next;
while (p1 != null) {
p1 = p1.next;
p2 = p2.next;
}
return p2;
}
~~~
4\. 對鏈表進行排序
~~~
/**
* 排序
*
* @return
*/
public Node orderList() {
Node nextNode = null;
int tmp = 0;
Node curNode = head;
while (curNode.next != null) {
nextNode = curNode.next;
while (nextNode != null) {
if (curNode.data > nextNode.data) {
tmp = curNode.data;
curNode.data = nextNode.data;
nextNode.data = tmp;
}
nextNode = nextNode.next;
}
curNode = curNode.next;
}
return head;
}
~~~
5\. 刪除鏈表中的重復節點
~~~
/**
* 刪除重復節點
*/
public void deleteDuplecate(Node head) {
Node p = head;
while (p != null) {
Node q = p;
while (q.next != null) {
if (p.data == q.next.data) {
q.next = q.next.next;
} else
q = q.next;
}
p = p.next;
}
}
~~~
6\. 從尾到頭輸出單鏈表,采用遞歸方式實現
~~~
/**
* 從尾到頭輸出單鏈表,采用遞歸方式實現
*
* @param pListHead
*/
public void printListReversely(Node pListHead) {
if (pListHead != null) {
printListReversely(pListHead.next);
System.out.println("printListReversely:" + pListHead.data);
}
}
~~~
[](javascript:void(0); "復制代碼")
7\. 判斷鏈表是否有環,有環情況下找出環的入口節點
[](javascript:void(0); "復制代碼")
~~~
/**
* 判斷鏈表是否有環,單向鏈表有環時,尾節點相同
*
* @param head
* @return
*/
public boolean IsLoop(Node head) {
Node fast = head, slow = head;
if (fast == null) {
return false;
}
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
if (fast == slow) {
System.out.println("該鏈表有環");
return true;
}
}
return !(fast == null || fast.next == null);
}
/**
* 找出鏈表環的入口
*
* @param head
* @return
*/
public Node FindLoopPort(Node head) {
Node fast = head, slow = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
if (slow == fast)
break;
}
if (fast == null || fast.next == null)
return null;
slow = head;
while (slow != fast) {
slow = slow.next;
fast = fast.next;
}
return slow;
}
~~~
轉載自:https://blog.csdn.net/jianyuerensheng/article/details/51200274
- 一.JVM
- 1.1 java代碼是怎么運行的
- 1.2 JVM的內存區域
- 1.3 JVM運行時內存
- 1.4 JVM內存分配策略
- 1.5 JVM類加載機制與對象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面試相關文章
- 2.1 可能是把Java內存區域講得最清楚的一篇文章
- 2.0 GC調優參數
- 2.1GC排查系列
- 2.2 內存泄漏和內存溢出
- 2.2.3 深入理解JVM-hotspot虛擬機對象探秘
- 1.10 并發的可達性分析相關問題
- 二.Java集合架構
- 1.ArrayList深入源碼分析
- 2.Vector深入源碼分析
- 3.LinkedList深入源碼分析
- 4.HashMap深入源碼分析
- 5.ConcurrentHashMap深入源碼分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的設計模式
- 8.集合架構之面試指南
- 9.TreeSet和TreeMap
- 三.Java基礎
- 1.基礎概念
- 1.1 Java程序初始化的順序是怎么樣的
- 1.2 Java和C++的區別
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字節與字符的區別以及訪問修飾符
- 1.7 深拷貝與淺拷貝
- 1.8 字符串常量池
- 2.面向對象
- 3.關鍵字
- 4.基本數據類型與運算
- 5.字符串與數組
- 6.異常處理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 數據流(Stream)
- 8.3 Java 8 并發教程:線程和執行器
- 8.4 Java 8 并發教程:同步和鎖
- 8.5 Java 8 并發教程:原子變量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、數值、算術和文件
- 8.7 在 Java 8 中避免 Null 檢查
- 8.8 使用 Intellij IDEA 解決 Java 8 的數據流問題
- 四.Java 并發編程
- 1.線程的實現/創建
- 2.線程生命周期/狀態轉換
- 3.線程池
- 4.線程中的協作、中斷
- 5.Java鎖
- 5.1 樂觀鎖、悲觀鎖和自旋鎖
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平鎖和非公平鎖
- 5.3.1 說說ReentrantLock的實現原理,以及ReentrantLock的核心源碼是如何實現的?
- 5.5 鎖優化和升級
- 6.多線程的上下文切換
- 7.死鎖的產生和解決
- 8.J.U.C(java.util.concurrent)
- 0.簡化版(快速復習用)
- 9.鎖優化
- 10.Java 內存模型(JMM)
- 11.ThreadLocal詳解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的實現原理
- 1.DelayQueue的實現原理
- 14.Thread.join()實現原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的實際使用場景
- 五.Java I/O NIO
- 1.I/O模型簡述
- 2.Java NIO之緩沖區
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之選擇器
- 6.基于 Java NIO 實現簡單的 HTTP 服務器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面試題
- 六.Java設計模式
- 1.單例模式
- 2.策略模式
- 3.模板方法
- 4.適配器模式
- 5.簡單工廠
- 6.門面模式
- 7.代理模式
- 七.數據結構和算法
- 1.什么是紅黑樹
- 2.二叉樹
- 2.1 二叉樹的前序、中序、后序遍歷
- 3.排序算法匯總
- 4.java實現鏈表及鏈表的重用操作
- 4.1算法題-鏈表反轉
- 5.圖的概述
- 6.常見的幾道字符串算法題
- 7.幾道常見的鏈表算法題
- 8.leetcode常見算法題1
- 9.LRU緩存策略
- 10.二進制及位運算
- 10.1.二進制和十進制轉換
- 10.2.位運算
- 11.常見鏈表算法題
- 12.算法好文推薦
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事務管理
- 4.SpringMVC 運行流程和手動實現
- 0.Spring 核心技術
- 5.spring如何解決循環依賴問題
- 6.springboot自動裝配原理
- 7.Spring中的循環依賴解決機制中,為什么要三級緩存,用二級緩存不夠嗎
- 8.beanFactory和factoryBean有什么區別
- 九.數據庫
- 1.mybatis
- 1.1 MyBatis-# 與 $ 區別以及 sql 預編譯
- Mybatis系列1-Configuration
- Mybatis系列2-SQL執行過程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-參數設置揭秘(ParameterHandler)
- Mybatis系列8-緩存機制
- 2.淺談聚簇索引和非聚簇索引的區別
- 3.mysql 證明為什么用limit時,offset很大會影響性能
- 4.MySQL中的索引
- 5.數據庫索引2
- 6.面試題收集
- 7.MySQL行鎖、表鎖、間隙鎖詳解
- 8.數據庫MVCC詳解
- 9.一條SQL查詢語句是如何執行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能優化神器 Explain 使用分析
- 12.mysql中,一條update語句執行的過程是怎么樣的?期間用到了mysql的哪些log,分別有什么作用
- 十.Redis
- 0.快速復習回顧Redis
- 1.通俗易懂的Redis數據結構基礎教程
- 2.分布式鎖(一)
- 3.分布式鎖(二)
- 4.延時隊列
- 5.位圖Bitmaps
- 6.Bitmaps(位圖)的使用
- 7.Scan
- 8.redis緩存雪崩、緩存擊穿、緩存穿透
- 9.Redis為什么是單線程、及高并發快的3大原因詳解
- 10.布隆過濾器你值得擁有的開發利器
- 11.Redis哨兵、復制、集群的設計原理與區別
- 12.redis的IO多路復用
- 13.相關redis面試題
- 14.redis集群
- 十一.中間件
- 1.RabbitMQ
- 1.1 RabbitMQ實戰,hello world
- 1.2 RabbitMQ 實戰,工作隊列
- 1.3 RabbitMQ 實戰, 發布訂閱
- 1.4 RabbitMQ 實戰,路由
- 1.5 RabbitMQ 實戰,主題
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 實戰 – 整合 RabbitMQ 發送郵件
- 1.8 RabbitMQ 的消息持久化與 Spring AMQP 的實現剖析
- 1.9 RabbitMQ必備核心知識
- 2.RocketMQ 的幾個簡單問題與答案
- 2.Kafka
- 2.1 kafka 基礎概念和術語
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志機制
- 2.4 kafka是pull還是push的方式傳遞消息的?
- 2.5 Kafka的數據處理流程
- 2.6 Kafka的腦裂預防和處理機制
- 2.7 Kafka中partition副本的Leader選舉機制
- 2.8 如果Leader掛了的時候,follower沒來得及同步,是否會出現數據不一致
- 2.9 kafka的partition副本是否會出現腦裂情況
- 十二.Zookeeper
- 0.什么是Zookeeper(漫畫)
- 1.使用docker安裝Zookeeper偽集群
- 3.ZooKeeper-Plus
- 4.zk實現分布式鎖
- 5.ZooKeeper之Watcher機制
- 6.Zookeeper之選舉及數據一致性
- 十三.計算機網絡
- 1.進制轉換:二進制、八進制、十六進制、十進制之間的轉換
- 2.位運算
- 3.計算機網絡面試題匯總1
- 十四.Docker
- 100.面試題收集合集
- 1.美團面試常見問題總結
- 2.b站部分面試題
- 3.比心面試題
- 4.騰訊面試題
- 5.哈羅部分面試
- 6.筆記
- 十五.Storm
- 1.Storm和流處理簡介
- 2.Storm 核心概念詳解
- 3.Storm 單機版本環境搭建
- 4.Storm 集群環境搭建
- 5.Storm 編程模型詳解
- 6.Storm 項目三種打包方式對比分析
- 7.Storm 集成 Redis 詳解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初識ElasticSearch
- 2.文檔基本CRUD、集群健康檢查
- 3.shard&replica
- 4.document核心元數據解析及ES的并發控制
- 5.document的批量操作及數據路由原理
- 6.倒排索引
- 十七.分布式相關
- 1.分布式事務解決方案一網打盡
- 2.關于xxx怎么保證高可用的問題
- 3.一致性hash原理與實現
- 4.微服務注冊中心 Nacos 比 Eureka的優勢
- 5.Raft 協議算法
- 6.為什么微服務架構中需要網關
- 0.CAP與BASE理論
- 十八.Dubbo
- 1.快速掌握Dubbo常規應用
- 2.Dubbo應用進階
- 3.Dubbo調用模塊詳解
- 4.Dubbo調用模塊源碼分析
- 6.Dubbo協議模塊