[TOC]
## 鎖優化
這里的鎖優化主要是指虛擬機對 synchronized 的優化。
### 自旋鎖
互斥同步的進入阻塞狀態的開銷都很大,應該盡量避免。在許多應用中,共享數據的鎖定狀態只會持續很短的一段時間。自旋鎖的思想是讓一個線程在請求一個共享數據的鎖時執行忙循環(自旋)一段時間,如果在這段時間內能獲得鎖,就可以避免進入阻塞狀態。
自旋鎖雖然能避免進入阻塞狀態從而減少開銷,但是它需要進行忙循環操作占用 CPU 時間,它只適用于共享數據的鎖定狀態很短的場景。
在 JDK 1.6 中引入了自適應的自旋鎖。自適應意味著自旋的次數不再固定了,而是由前一次在同一個鎖上的自旋次數及鎖的擁有者的狀態來決定。
### 鎖消除
鎖消除是指對于被檢測出不可能存在競爭的共享數據的鎖進行消除。
鎖消除主要是通過**逃逸分析**來支持,如果堆上的共享數據不可能逃逸出去被其它線程訪問到,那么就可以把它們當成私有數據對待,也就可以將它們的鎖進行消除。
對于一些看起來沒有加鎖的代碼,其實隱式的加了很多鎖。例如下面的字符串拼接代碼就隱式加了鎖:
~~~java
public static String concatString(String s1, String s2, String s3) {
return s1 + s2 + s3;
}
~~~
String 是一個不可變的類,編譯器會對 String 的拼接自動優化。在 JDK 1.5 之前,會轉化為 StringBuffer 對象的連續 append() 操作:
~~~java
public static String concatString(String s1, String s2, String s3) {
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
sb.append(s3);
return sb.toString();
}
~~~
每個 append() 方法中都有一個同步塊。虛擬機觀察變量 sb,很快就會發現它的動態作用域被限制在 concatString() 方法內部。也就是說,sb 的所有引用永遠不會“逃逸”到 concatString() 方法之外,其他線程無法訪問到它,因此可以進行消除。
### 鎖粗化
如果一系列的連續操作都對同一個對象反復加鎖和解鎖,頻繁的加鎖操作就會導致性能損耗。
上一節的示例代碼中連續的 append() 方法就屬于這類情況。如果虛擬機探測到由這樣的一串零碎的操作都對同一個對象加鎖,將會把加鎖的范圍擴展(粗化)到整個操作序列的外部。對于上一節的示例代碼就是擴展到第一個 append() 操作之前直至最后一個 append() 操作之后,這樣只需要加鎖一次就可以了。
### 輕量級鎖
JDK 1.6 引入了偏向鎖和輕量級鎖,從而讓鎖擁有了四個狀態:無鎖狀態(unlocked)、偏向鎖狀態(biasble)、輕量級鎖狀態(lightweight locked)和重量級鎖狀態(inflated)。
以下是 HotSpot 虛擬機對象頭的內存布局,這些數據被稱為 mark word。其中 tag bits 對應了五個狀態,這些狀態在右側的 state 表格中給出,應該注意的是 state 表格不是存儲在對象頭中的。除了 marked for gc 狀態,其它四個狀態已經在前面介紹過了。
[](https://github.com/frank-lam/fullstack-tutorial/blob/master/notes/JavaArchitecture/assets/bb6a49be-00f2-4f27-a0ce-4ed764bc605c-1534158631668.png)
下圖左側是一個線程的虛擬機棧,其中有一部分稱為 Lock Record 的區域,這是在輕量級鎖運行過程創建的,用于存放鎖對象的 Mark Word。而右側就是一個鎖對象,包含了 Mark Word 和其它信息。
[](https://github.com/frank-lam/fullstack-tutorial/blob/master/notes/JavaArchitecture/assets/051e436c-0e46-4c59-8f67-52d89d656182-1534158643175.png)
輕量級鎖是相對于傳統的重量級鎖而言,它使用 CAS 操作來避免重量級鎖使用互斥量的開銷。對于絕大部分的鎖,在整個同步周期內都是不存在競爭的,因此也就不需要都使用互斥量進行同步,可以先采用 CAS 操作進行同步,如果 CAS 失敗了再改用互斥量進行同步。
當嘗試獲取一個鎖對象時,如果鎖對象標記為 0 01,說明鎖對象的鎖未鎖定(unlocked)狀態。此時虛擬機在當前線程棧中創建 Lock Record,然后使用 CAS 操作將對象的 Mark Word 更新為 Lock Record 指針。如果 CAS 操作成功了,那么線程就獲取了該對象上的鎖,并且對象的 Mark Word 的鎖標記變為 00,表示該對象處于輕量級鎖狀態。
[](https://github.com/frank-lam/fullstack-tutorial/blob/master/notes/JavaArchitecture/assets/baaa681f-7c52-4198-a5ae-303b9386cf47-1534158703049.png)
如果 CAS 操作失敗了,虛擬機首先會檢查對象的 Mark Word 是否指向當前線程的虛擬機棧,如果是的話說明當前線程已經擁有了這個鎖對象,那就可以直接進入同步塊繼續執行,否則說明這個鎖對象已經被其他線程線程搶占了。如果有兩條以上的線程爭用同一個鎖,那輕量級鎖就不再有效,要膨脹為重量級鎖。
### 偏向鎖
偏向鎖的思想是偏向于讓第一個獲取鎖對象的線程,這個線程在之后獲取該鎖就不再需要進行同步操作,甚至連 CAS 操作也不再需要。
當鎖對象第一次被線程獲得的時候,進入偏向狀態,標記為 1 01。同時使用 CAS 操作將線程 ID 記錄到 Mark Word 中,如果 CAS 操作成功,這個線程以后每次進入這個鎖相關的同步塊就不需要再進行任何同步操作。
當有另外一個線程去嘗試獲取這個鎖對象時,偏向狀態就宣告結束,此時撤銷偏向(Revoke Bias)后恢復到未鎖定狀態或者輕量級鎖狀態。
[](https://github.com/frank-lam/fullstack-tutorial/blob/master/notes/JavaArchitecture/assets/390c913b-5f31-444f-bbdb-2b88b688e7ce-1534158712253.jpg)
<br>
## 多線程開發良好的實踐
* 給線程起個有意義的名字,這樣可以方便找 Bug。
* 縮小同步范圍,例如對于 synchronized,應該盡量使用同步塊而不是同步方法。
* 多用同步類少用 wait() 和 notify()。首先,CountDownLatch, CyclicBarrier, Semaphore 和 Exchanger 這些同步類簡化了編碼操作,而用 wait() 和 notify() 很難實現對復雜的控制流;其次,這些同步類是由最好的企業編寫和維護,在后續的 JDK 中還會不斷優化和完善,使用這些更高等級的同步工具你的程序可以不費吹灰之力獲得優化。
* 多用并發集合少用同步集合,例如應該使用 ConcurrentHashMap 而不是 Hashtable。
* 使用本地變量和不可變類來保證線程安全。
* 使用線程池而不是直接創建 Thread 對象,這是因為創建線程代價很高,線程池可以有效地利用有限的線程來啟動任務。
* 使用 BlockingQueue 實現生產者消費者問題。
- 一.JVM
- 1.1 java代碼是怎么運行的
- 1.2 JVM的內存區域
- 1.3 JVM運行時內存
- 1.4 JVM內存分配策略
- 1.5 JVM類加載機制與對象的生命周期
- 1.6 常用的垃圾回收算法
- 1.7 JVM垃圾收集器
- 1.8 CMS垃圾收集器
- 1.9 G1垃圾收集器
- 2.面試相關文章
- 2.1 可能是把Java內存區域講得最清楚的一篇文章
- 2.0 GC調優參數
- 2.1GC排查系列
- 2.2 內存泄漏和內存溢出
- 2.2.3 深入理解JVM-hotspot虛擬機對象探秘
- 1.10 并發的可達性分析相關問題
- 二.Java集合架構
- 1.ArrayList深入源碼分析
- 2.Vector深入源碼分析
- 3.LinkedList深入源碼分析
- 4.HashMap深入源碼分析
- 5.ConcurrentHashMap深入源碼分析
- 6.HashSet,LinkedHashSet 和 LinkedHashMap
- 7.容器中的設計模式
- 8.集合架構之面試指南
- 9.TreeSet和TreeMap
- 三.Java基礎
- 1.基礎概念
- 1.1 Java程序初始化的順序是怎么樣的
- 1.2 Java和C++的區別
- 1.3 反射
- 1.4 注解
- 1.5 泛型
- 1.6 字節與字符的區別以及訪問修飾符
- 1.7 深拷貝與淺拷貝
- 1.8 字符串常量池
- 2.面向對象
- 3.關鍵字
- 4.基本數據類型與運算
- 5.字符串與數組
- 6.異常處理
- 7.Object 通用方法
- 8.Java8
- 8.1 Java 8 Tutorial
- 8.2 Java 8 數據流(Stream)
- 8.3 Java 8 并發教程:線程和執行器
- 8.4 Java 8 并發教程:同步和鎖
- 8.5 Java 8 并發教程:原子變量和 ConcurrentMap
- 8.6 Java 8 API 示例:字符串、數值、算術和文件
- 8.7 在 Java 8 中避免 Null 檢查
- 8.8 使用 Intellij IDEA 解決 Java 8 的數據流問題
- 四.Java 并發編程
- 1.線程的實現/創建
- 2.線程生命周期/狀態轉換
- 3.線程池
- 4.線程中的協作、中斷
- 5.Java鎖
- 5.1 樂觀鎖、悲觀鎖和自旋鎖
- 5.2 Synchronized
- 5.3 ReentrantLock
- 5.4 公平鎖和非公平鎖
- 5.3.1 說說ReentrantLock的實現原理,以及ReentrantLock的核心源碼是如何實現的?
- 5.5 鎖優化和升級
- 6.多線程的上下文切換
- 7.死鎖的產生和解決
- 8.J.U.C(java.util.concurrent)
- 0.簡化版(快速復習用)
- 9.鎖優化
- 10.Java 內存模型(JMM)
- 11.ThreadLocal詳解
- 12 CAS
- 13.AQS
- 0.ArrayBlockingQueue和LinkedBlockingQueue的實現原理
- 1.DelayQueue的實現原理
- 14.Thread.join()實現原理
- 15.PriorityQueue 的特性和原理
- 16.CyclicBarrier的實際使用場景
- 五.Java I/O NIO
- 1.I/O模型簡述
- 2.Java NIO之緩沖區
- 3.JAVA NIO之文件通道
- 4.Java NIO之套接字通道
- 5.Java NIO之選擇器
- 6.基于 Java NIO 實現簡單的 HTTP 服務器
- 7.BIO-NIO-AIO
- 8.netty(一)
- 9.NIO面試題
- 六.Java設計模式
- 1.單例模式
- 2.策略模式
- 3.模板方法
- 4.適配器模式
- 5.簡單工廠
- 6.門面模式
- 7.代理模式
- 七.數據結構和算法
- 1.什么是紅黑樹
- 2.二叉樹
- 2.1 二叉樹的前序、中序、后序遍歷
- 3.排序算法匯總
- 4.java實現鏈表及鏈表的重用操作
- 4.1算法題-鏈表反轉
- 5.圖的概述
- 6.常見的幾道字符串算法題
- 7.幾道常見的鏈表算法題
- 8.leetcode常見算法題1
- 9.LRU緩存策略
- 10.二進制及位運算
- 10.1.二進制和十進制轉換
- 10.2.位運算
- 11.常見鏈表算法題
- 12.算法好文推薦
- 13.跳表
- 八.Spring 全家桶
- 1.Spring IOC
- 2.Spring AOP
- 3.Spring 事務管理
- 4.SpringMVC 運行流程和手動實現
- 0.Spring 核心技術
- 5.spring如何解決循環依賴問題
- 6.springboot自動裝配原理
- 7.Spring中的循環依賴解決機制中,為什么要三級緩存,用二級緩存不夠嗎
- 8.beanFactory和factoryBean有什么區別
- 九.數據庫
- 1.mybatis
- 1.1 MyBatis-# 與 $ 區別以及 sql 預編譯
- Mybatis系列1-Configuration
- Mybatis系列2-SQL執行過程
- Mybatis系列3-之SqlSession
- Mybatis系列4-之Executor
- Mybatis系列5-StatementHandler
- Mybatis系列6-MappedStatement
- Mybatis系列7-參數設置揭秘(ParameterHandler)
- Mybatis系列8-緩存機制
- 2.淺談聚簇索引和非聚簇索引的區別
- 3.mysql 證明為什么用limit時,offset很大會影響性能
- 4.MySQL中的索引
- 5.數據庫索引2
- 6.面試題收集
- 7.MySQL行鎖、表鎖、間隙鎖詳解
- 8.數據庫MVCC詳解
- 9.一條SQL查詢語句是如何執行的
- 10.MySQL 的 crash-safe 原理解析
- 11.MySQL 性能優化神器 Explain 使用分析
- 12.mysql中,一條update語句執行的過程是怎么樣的?期間用到了mysql的哪些log,分別有什么作用
- 十.Redis
- 0.快速復習回顧Redis
- 1.通俗易懂的Redis數據結構基礎教程
- 2.分布式鎖(一)
- 3.分布式鎖(二)
- 4.延時隊列
- 5.位圖Bitmaps
- 6.Bitmaps(位圖)的使用
- 7.Scan
- 8.redis緩存雪崩、緩存擊穿、緩存穿透
- 9.Redis為什么是單線程、及高并發快的3大原因詳解
- 10.布隆過濾器你值得擁有的開發利器
- 11.Redis哨兵、復制、集群的設計原理與區別
- 12.redis的IO多路復用
- 13.相關redis面試題
- 14.redis集群
- 十一.中間件
- 1.RabbitMQ
- 1.1 RabbitMQ實戰,hello world
- 1.2 RabbitMQ 實戰,工作隊列
- 1.3 RabbitMQ 實戰, 發布訂閱
- 1.4 RabbitMQ 實戰,路由
- 1.5 RabbitMQ 實戰,主題
- 1.6 Spring AMQP 的 AMQP 抽象
- 1.7 Spring AMQP 實戰 – 整合 RabbitMQ 發送郵件
- 1.8 RabbitMQ 的消息持久化與 Spring AMQP 的實現剖析
- 1.9 RabbitMQ必備核心知識
- 2.RocketMQ 的幾個簡單問題與答案
- 2.Kafka
- 2.1 kafka 基礎概念和術語
- 2.2 Kafka的重平衡(Rebalance)
- 2.3.kafka日志機制
- 2.4 kafka是pull還是push的方式傳遞消息的?
- 2.5 Kafka的數據處理流程
- 2.6 Kafka的腦裂預防和處理機制
- 2.7 Kafka中partition副本的Leader選舉機制
- 2.8 如果Leader掛了的時候,follower沒來得及同步,是否會出現數據不一致
- 2.9 kafka的partition副本是否會出現腦裂情況
- 十二.Zookeeper
- 0.什么是Zookeeper(漫畫)
- 1.使用docker安裝Zookeeper偽集群
- 3.ZooKeeper-Plus
- 4.zk實現分布式鎖
- 5.ZooKeeper之Watcher機制
- 6.Zookeeper之選舉及數據一致性
- 十三.計算機網絡
- 1.進制轉換:二進制、八進制、十六進制、十進制之間的轉換
- 2.位運算
- 3.計算機網絡面試題匯總1
- 十四.Docker
- 100.面試題收集合集
- 1.美團面試常見問題總結
- 2.b站部分面試題
- 3.比心面試題
- 4.騰訊面試題
- 5.哈羅部分面試
- 6.筆記
- 十五.Storm
- 1.Storm和流處理簡介
- 2.Storm 核心概念詳解
- 3.Storm 單機版本環境搭建
- 4.Storm 集群環境搭建
- 5.Storm 編程模型詳解
- 6.Storm 項目三種打包方式對比分析
- 7.Storm 集成 Redis 詳解
- 8.Storm 集成 HDFS 和 HBase
- 9.Storm 集成 Kafka
- 十六.Elasticsearch
- 1.初識ElasticSearch
- 2.文檔基本CRUD、集群健康檢查
- 3.shard&replica
- 4.document核心元數據解析及ES的并發控制
- 5.document的批量操作及數據路由原理
- 6.倒排索引
- 十七.分布式相關
- 1.分布式事務解決方案一網打盡
- 2.關于xxx怎么保證高可用的問題
- 3.一致性hash原理與實現
- 4.微服務注冊中心 Nacos 比 Eureka的優勢
- 5.Raft 協議算法
- 6.為什么微服務架構中需要網關
- 0.CAP與BASE理論
- 十八.Dubbo
- 1.快速掌握Dubbo常規應用
- 2.Dubbo應用進階
- 3.Dubbo調用模塊詳解
- 4.Dubbo調用模塊源碼分析
- 6.Dubbo協議模塊