# 量化分析師的Python日記【第4天:一大波金融Library來襲之scipy篇】
> 來源:https://uqer.io/community/share/54d83bb3f9f06c276f651a6e
上一篇介紹了`numpy`,本篇中著重介紹一下另一個量化金融中常用的庫 `scipy`
## 一、SciPy概述
前篇已經大致介紹了NumPy,接下來讓我們看看SciPy能做些什么。NumPy替我們搞定了向量和矩陣的相關操作,基本上算是一個高級的科學計算器。SciPy基于NumPy提供了更為豐富和高級的功能擴展,在統計、優化、插值、數值積分、時頻轉換等方面提供了大量的可用函數,基本覆蓋了基礎科學計算相關的問題。
在量化分析中,運用最廣泛的是統計和優化的相關技術,本篇重點介紹SciPy中的統計和優化模塊,其他模塊在隨后系列文章中用到時再做詳述。
本篇會涉及到一些矩陣代數,如若感覺不適,可考慮跳過第三部分或者在理解時簡單采用一維的標量代替高維的向量。
首先還是導入相關的模塊,我們使用的是SciPy里面的統計和優化部分:
```py
import numpy as np
import scipy.stats as stats
import scipy.optimize as opt
```
## 二、統計部分
### 2.1 生成隨機數
我們從生成隨機數開始,這樣方便后面的介紹。生成n個隨機數可用`rv_continuous.rvs(size=n)`或`rv_discrete.rvs(size=n)`,其中`rv_continuous`表示連續型的隨機分布,如均勻分布(uniform)、正態分布(norm)、貝塔分布(beta)等;`rv_discrete`表示離散型的隨機分布,如伯努利分布(bernoulli)、幾何分布(geom)、泊松分布(poisson)等。我們生成10個`[0, 1]`區間上的隨機數和10個服從參數`a=4`,`b=2`的貝塔分布隨機數:
```py
rv_unif = stats.uniform.rvs(size=10)
print rv_unif
rv_beta = stats.beta.rvs(size=10, a=4, b=2)
print rv_beta
[ 0.6419336 0.48403001 0.89548809 0.73837498 0.65744886 0.41845577
0.3823512 0.0985301 0.66785949 0.73163835]
[ 0.82164685 0.69563836 0.74207073 0.94348192 0.82979411 0.87013796
0.78412952 0.47508183 0.29296073 0.52551156]
```
在每個隨機分布的生成函數里,都內置了默認的參數,如均勻分布的上下界默認是0和1。可是一旦需要修改這些參數,每次生成隨機都要敲這么老長一串有點麻煩,能不能簡單點?SciPy里頭有一個Freezing的功能,可以提供簡便版本的命令。`SciPy.stats`支持定義出某個具體的分布的對象,我們可以做如下的定義,讓`beta`直接指代具體參數`a=4`和`b=2`的貝塔分布。為讓結果具有可比性,這里指定了隨機數的生成種子,由NumPy提供。
```py
np.random.seed(seed=2015)
rv_beta = stats.beta.rvs(size=10, a=4, b=2)
print "method 1:"
print rv_beta
np.random.seed(seed=2015)
beta = stats.beta(a=4, b=2)
print "method 2:"
print beta.rvs(size=10)
method 1:
[ 0.43857338 0.9411551 0.75116671 0.92002864 0.62030521 0.56585548
0.41843548 0.5953096 0.88983036 0.94675351]
method 2:
[ 0.43857338 0.9411551 0.75116671 0.92002864 0.62030521 0.56585548
0.41843548 0.5953096 0.88983036 0.94675351]
```
### 2.2 假設檢驗
好了,現在我們生成一組數據,并查看相關的統計量(相關分布的參數可以在[這里](http://docs.scipy.org/doc/scipy/reference/stats.html)查到):
```py
norm_dist = stats.norm(loc=0.5, scale=2)
n = 200
dat = norm_dist.rvs(size=n)
print "mean of data is: " + str(np.mean(dat))
print "median of data is: " + str(np.median(dat))
print "standard deviation of data is: " + str(np.std(dat))
mean of data is: 0.383309149888
median of data is: 0.394980561217
standard deviation of data is: 2.00589851641
```
假設這個數據是我們獲取到的實際的某些數據,如股票日漲跌幅,我們對數據進行簡單的分析。最簡單的是檢驗這一組數據是否服從假設的分布,如正態分布。這個問題是典型的單樣本假設檢驗問題,最為常見的解決方案是采用K-S檢驗( Kolmogorov-Smirnov test)。單樣本K-S檢驗的原假設是給定的數據來自和原假設分布相同的分布,在SciPy中提供了`kstest`函數,參數分別是數據、擬檢驗的分布名稱和對應的參數:
```py
mu = np.mean(dat)
sigma = np.std(dat)
stat_val, p_val = stats.kstest(dat, 'norm', (mu, sigma))
print 'KS-statistic D = %6.3f p-value = %6.4f' % (stat_val, p_val)
KS-statistic D = 0.037 p-value = 0.9428
```
假設檢驗的p-value值很大(在原假設下,p-value是服從`[0, 1]`區間上的均勻分布的隨機變量,可參考 http://en.wikipedia.org/wiki/P-value ),因此我們接受原假設,即該數據通過了正態性的檢驗。在正態性的前提下,我們可進一步檢驗這組數據的均值是不是0。典型的方法是t檢驗(t-test),其中單樣本的t檢驗函數為`ttest_1samp`:
```py
stat_val, p_val = stats.ttest_1samp(dat, 0)
print 'One-sample t-statistic D = %6.3f, p-value = %6.4f' % (stat_val, p_val)
One-sample t-statistic D = 2.696, p-value = 0.0076
```
我們看到`p-value<0.05`,即給定顯著性水平0.05的前提下,我們應拒絕原假設:數據的均值為0。我們再生成一組數據,嘗試一下雙樣本的t檢驗(`ttest_ind`):
```py
norm_dist2 = stats.norm(loc=-0.2, scale=1.2)
dat2 = norm_dist2.rvs(size=n/2)
stat_val, p_val = stats.ttest_ind(dat, dat2, equal_var=False)
print 'Two-sample t-statistic D = %6.3f, p-value = %6.4f' % (stat_val, p_val)
Two-sample t-statistic D = 3.572, p-value = 0.0004
```
注意,這里我們生成的第二組數據樣本大小、方差和第一組均不相等,在運用t檢驗時需要使用Welch's t-test,即指定`ttest_ind`中的`equal_var=False`。我們同樣得到了比較小的`p-value$`,在顯著性水平0.05的前提下拒絕原假設,即認為兩組數據均值不等。
`stats`還提供其他大量的假設檢驗函數,如`bartlett`和`levene`用于檢驗方差是否相等;`anderson_ksam`p用于進行Anderson-Darling的K-樣本檢驗等。
### 2.3 其他函數
有時需要知道某數值在一個分布中的分位,或者給定了一個分布,求某分位上的數值。這可以通過`cdf`和`ppf`函數完成:
```py
g_dist = stats.gamma(a=2)
print "quantiles of 2, 4 and 5:"
print g_dist.cdf([2, 4, 5])
print "Values of 25%, 50% and 90%:"
print g_dist.pdf([0.25, 0.5, 0.95])
quantiles of 2, 4 and 5:
[ 0.59399415 0.90842181 0.95957232]
Values of 25%, 50% and 90%:
[ 0.1947002 0.30326533 0.36740397]
```
對于一個給定的分布,可以用`moment`很方便的查看分布的矩信息,例如我們查看`N(0,1)`的六階原點矩:
```py
stats.norm.moment(6, loc=0, scale=1)
15.000000000895332
```
`describe`函數提供對數據集的統計描述分析,包括數據樣本大小,極值,均值,方差,偏度和峰度:
```py
norm_dist = stats.norm(loc=0, scale=1.8)
dat = norm_dist.rvs(size=100)
info = stats.describe(dat)
print "Data size is: " + str(info[0])
print "Minimum value is: " + str(info[1][0])
print "Maximum value is: " + str(info[1][1])
print "Arithmetic mean is: " + str(info[2])
print "Unbiased variance is: " + str(info[3])
print "Biased skewness is: " + str(info[4])
print "Biased kurtosis is: " + str(info[5])
Data size is: 100
Minimum value is: -5.73556523159
Maximum value is: 3.77439818033
Arithmetic mean is: -0.00559348382755
Unbiased variance is: 3.64113204268
Biased skewness is: -0.600615731841
Biased kurtosis is: 0.432147856587
```
當我們知道一組數據服從某些分布的時候,可以調用`fit`函數來得到對應分布參數的極大似然估計(MLE, maximum-likelihood estimation)。以下代碼示例了假設數據服從正態分布,用極大似然估計分布參數:
```py
norm_dist = stats.norm(loc=0, scale=1.8)
dat = norm_dist.rvs(size=100)
mu, sigma = stats.norm.fit(dat)
print "MLE of data mean:" + str(mu)
print "MLE of data standard deviation:" + str(sigma)
MLE of data mean:0.00712958665203
MLE of data standard deviation:1.71228079199
```
`pearsonr`和`spearmanr`可以計算`Pearson`和`Spearman`相關系數,這兩個相關系數度量了兩組數據的相互線性關聯程度:
```py
norm_dist = stats.norm()
dat1 = norm_dist.rvs(size=100)
exp_dist = stats.expon()
dat2 = exp_dist.rvs(size=100)
cor, pval = stats.pearsonr(dat1, dat2)
print "Pearson correlation coefficient: " + str(cor)
cor, pval = stats.pearsonr(dat1, dat2)
print "Spearman's rank correlation coefficient: " + str(cor)
Pearson correlation coefficient: -0.0345336831321
Spearman's rank correlation coefficient: -0.0345336831321
```
其中的p-value表示原假設(兩組數據不相關)下,相關系數的顯著性。
最后,在分析金融數據中使用頻繁的線性回歸在SciPy中也有提供,我們來看一個例子:
```py
x = stats.chi2.rvs(3, size=50)
y = 2.5 + 1.2 * x + stats.norm.rvs(size=50, loc=0, scale=1.5)
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
print "Slope of fitted model is:" , slope
print "Intercept of fitted model is:", intercept
print "R-squared:", r_value**2
Slope of fitted model is: 1.20010505908
Intercept of fitted model is: 2.04778311819
R-squared: 0.781316678233
```
在前面的鏈接中,可以查到大部分`stat`中的函數,本節權作簡單介紹,挖掘更多功能的最好方法還是直接讀原始的文檔。另外,StatsModels( http://statsmodels.sourceforge.net )模塊提供了更為專業,更多的統計相關函數。若在SciPy沒有滿足需求,可以采用StatsModels。
## 三、優化部分
優化問題在投資中可謂是根本問題,如果手上有眾多可選的策略,應如何從中選擇一個“最好”的策略進行投資呢?這時就需要用到一些優化技術針對給定的指標進行尋優。隨著越來越多金融數據的出現,機器學習逐漸應用在投資領域,在機器學習中,優化也是十分重要的一個部分。以下介紹一些常見的優化方法,雖然例子是人工生成的,不直接應用于實際金融數據,我們希望讀者在后面遇到優化問題時,能夠從這些簡單例子迅速上手解決。
### 3.1 無約束優化問題
所謂的無約束優化問題指的是一個優化問題的尋優可行集合是目標函數自變量的定義域,即沒有外部的限制條件。例如,求解優化問題

就是一個無約束優化問題,而求解

則是一個帶約束的優化問題。更進一步,我們假設考慮的問題全部是凸優化問題,即目標函數是凸函數,其自變量的可行集是凸集。(詳細定義可參考斯坦福大學Stephen Boyd教授的教材convex optimization,下載鏈接:http://stanford.edu/~boyd/cvxbook )
我們以Rosenbrock函數

作為尋優的目標函數來簡要介紹在SciPy中使用優化模塊`scipy.optimize`。
首先需要定義一下這個Rosenbrock函數:
```py
def rosen(x):
"""The Rosenbrock function"""
return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)
```
3.1.1 Nelder-Mead單純形法
單純形法是運籌學中介紹的求解線性規劃問題的通用方法,這里的Nelder-Mead單純形法與其并不相同,只是用到單純形的概念。設定起始點`x0=(1.3,0.7,0.8,1.9,1.2)`,并進行最小化的尋優。這里`xtol`表示迭代收斂的容忍誤差上界:
```py
x_0 = np.array([0.5, 1.6, 1.1, 0.8, 1.2])
res = opt.minimize(rosen, x_0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})
print "Result of minimizing Rosenbrock function via Nelder-Mead Simplex algorithm:"
print res
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 436
Function evaluations: 706
Result of minimizing Rosenbrock function via Nelder-Mead Simplex algorithm:
status: 0
nfev: 706
success: True
fun: 1.6614969876635003e-17
x: array([ 1., 1., 1., 1., 1.])
message: 'Optimization terminated successfully.'
nit: 436
```
Rosenbrock函數的性質比較好,簡單的優化方法就可以處理了,還可以在`minimize`中使用`method='powell'`來指定使用Powell's method。這兩種簡單的方法并不使用函數的梯度,在略微復雜的情形下收斂速度比較慢,下面讓我們來看一下用到函數梯度進行尋優的方法。
3.1.2 Broyden-Fletcher-Goldfarb-Shanno法
Broyden-Fletcher-Goldfarb-Shanno(BFGS)法用到了梯度信息,首先求一下Rosenbrock函數的梯度:

其中當`i=j`時,`δi,j=1`,否則`δi,j=0`。
邊界的梯度是特例,有如下形式:

我們可以如下定義梯度向量的計算函數了:
```py
def rosen_der(x):
xm = x[1:-1]
xm_m1 = x[:-2]
xm_p1 = x[2:]
der = np.zeros_like(x)
der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
der[-1] = 200*(x[-1]-x[-2]**2)
return der
```
梯度信息的引入在`minimize`函數中通過參數`jac`指定:
```py
res = opt.minimize(rosen, x_0, method='BFGS', jac=rosen_der, options={'disp': True})
print "Result of minimizing Rosenbrock function via Broyden-Fletcher-Goldfarb-Shanno algorithm:"
print res
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 52
Function evaluations: 63
Gradient evaluations: 63
Result of minimizing Rosenbrock function via Broyden-Fletcher-Goldfarb-Shanno algorithm:
status: 0
success: True
njev: 63
nfev: 63
hess_inv: array([[ 0.00726515, 0.01195827, 0.0225785 , 0.04460906, 0.08923649],
[ 0.01195827, 0.02417936, 0.04591135, 0.09086889, 0.18165604],
[ 0.0225785 , 0.04591135, 0.09208689, 0.18237695, 0.36445491],
[ 0.04460906, 0.09086889, 0.18237695, 0.36609277, 0.73152922],
[ 0.08923649, 0.18165604, 0.36445491, 0.73152922, 1.46680958]])
fun: 3.179561068096293e-14
x: array([ 1. , 0.99999998, 0.99999996, 0.99999992, 0.99999983])
message: 'Optimization terminated successfully.'
jac: array([ 4.47207141e-06, 1.30357917e-06, -1.86454207e-07,
-2.00564982e-06, 4.98799446e-07])
```
3.1.3 牛頓共軛梯度法(Newton-Conjugate-Gradient algorithm)
用到梯度的方法還有牛頓法,牛頓法是收斂速度最快的方法,其缺點在于要求Hessian矩陣(二階導數矩陣)。牛頓法大致的思路是采用泰勒展開的二階近似:

其中`H(x0)`表示二階導數矩陣。若Hessian矩陣是正定的,函數的局部最小值可以通過使上面的二次型的一階導數等于0來獲取,我們有:

這里可使用共軛梯度近似Hessian矩陣的逆矩陣。下面給出Rosenbrock函數的Hessian矩陣元素通式:

其中`i,j∈[1,N?2]`。其他邊界上的元素通式為:

例如,當`N=5`時的Hessian矩陣為:

為使用牛頓共軛梯度法,我們需要提供一個計算Hessian矩陣的函數:
```py
def rosen_hess(x):
x = np.asarray(x)
H = np.diag(-400*x[:-1],1) - np.diag(400*x[:-1],-1)
diagonal = np.zeros_like(x)
diagonal[0] = 1200*x[0]**2-400*x[1]+2
diagonal[-1] = 200
diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]
H = H + np.diag(diagonal)
return H
```
```py
res = opt.minimize(rosen, x_0, method='Newton-CG', jac=rosen_der, hess=rosen_hess, options={'xtol': 1e-8, 'disp': True})
print "Result of minimizing Rosenbrock function via Newton-Conjugate-Gradient algorithm (Hessian):"
print res
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 20
Function evaluations: 22
Gradient evaluations: 41
Hessian evaluations: 20
Result of minimizing Rosenbrock function via Newton-Conjugate-Gradient algorithm:
status: 0
success: True
njev: 41
nfev: 22
fun: 1.47606641102778e-19
x: array([ 1., 1., 1., 1., 1.])
message: 'Optimization terminated successfully.'
nhev: 20
jac: array([ -3.62847530e-11, 2.68148992e-09, 1.16637362e-08,
4.81693414e-08, -2.76999090e-08])
```
對于一些大型的優化問題,Hessian矩陣將異常大,牛頓共軛梯度法用到的僅是Hessian矩陣和一個任意向量的乘積,為此,用戶可以提供兩個向量,一個是Hessian矩陣和一個任意向量`p`的乘積,另一個是向量`p`,這就減少了存儲的開銷。記向量`p=(p1,…,pN?1)`,可有

我們定義如下函數并使用牛頓共軛梯度方法尋優:
```py
def rosen_hess_p(x, p):
x = np.asarray(x)
Hp = np.zeros_like(x)
Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]
Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \
-400*x[1:-1]*p[2:]
Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]
return Hp
res = opt.minimize(rosen, x_0, method='Newton-CG', jac=rosen_der, hessp=rosen_hess_p, options={'xtol': 1e-8, 'disp': True})
print "Result of minimizing Rosenbrock function via Newton-Conjugate-Gradient algorithm (Hessian times arbitrary vector):"
print res
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 20
Function evaluations: 22
Gradient evaluations: 41
Hessian evaluations: 58
Result of minimizing Rosenbrock function via Newton-Conjugate-Gradient algorithm (Hessian times arbitrary vector):
status: 0
success: True
njev: 41
nfev: 22
fun: 1.47606641102778e-19
x: array([ 1., 1., 1., 1., 1.])
message: 'Optimization terminated successfully.'
nhev: 58
jac: array([ -3.62847530e-11, 2.68148992e-09, 1.16637362e-08,
4.81693414e-08, -2.76999090e-08])
```
### 3.2. 約束優化問題
無約束優化問題的一種標準形式為:

其中為空間上的二次可微的凸函數;`A`為`p×n`矩陣且秩`rankA=p<n`。
我們考察如下一個例子:

定義目標函數及其導數為:
```py
def func(x, sign=1.0):
""" Objective function """
return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)
def func_deriv(x, sign=1.0):
""" Derivative of objective function """
dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)
dfdx1 = sign*(2*x[0] - 4*x[1])
return np.array([ dfdx0, dfdx1 ])
```
其中`sign`表示求解最小或者最大值,我們進一步定義約束條件:
```py
cons = ({'type': 'eq', 'fun': lambda x: np.array([x[0]**3 - x[1]]), 'jac': lambda x: np.array([3.0*(x[0]**2.0), -1.0])},
{'type': 'ineq', 'fun': lambda x: np.array([x[1] - 1]), 'jac': lambda x: np.array([0.0, 1.0])})
```
最后我們使用SLSQP(Sequential Least SQuares Programming optimization algorithm)方法進行約束問題的求解(作為比較,同時列出了無約束優化的求解):
```py
res = opt.minimize(func, [-1.0, 1.0], args=(-1.0,), jac=func_deriv, method='SLSQP', options={'disp': True})
print "Result of unconstrained optimization:"
print res
res = opt.minimize(func, [-1.0, 1.0], args=(-1.0,), jac=func_deriv, constraints=cons, method='SLSQP', options={'disp': True})
print "Result of constrained optimization:"
print res
Optimization terminated successfully. (Exit mode 0)
Current function value: -2.0
Iterations: 4
Function evaluations: 5
Gradient evaluations: 4
Result of unconstrained optimization:
status: 0
success: True
njev: 4
nfev: 5
fun: -1.9999999999999996
x: array([ 2., 1.])
message: 'Optimization terminated successfully.'
jac: array([ -2.22044605e-16, -0.00000000e+00, 0.00000000e+00])
nit: 4
Optimization terminated successfully. (Exit mode 0)
Current function value: -1.00000018311
Iterations: 9
Function evaluations: 14
Gradient evaluations: 9
Result of constrained optimization:
status: 0
success: True
njev: 9
nfev: 14
fun: -1.0000001831052137
x: array([ 1.00000009, 1. ])
message: 'Optimization terminated successfully.'
jac: array([-1.99999982, 1.99999982, 0. ])
nit: 9
```
和統計部分一樣,Python也有專門的優化擴展模塊,CVXOPT( http://cvxopt.org )專門用于處理凸優化問題,在約束優化問題上提供了更多的備選方法。CVXOPT是著名的凸優化教材convex optimization的作者之一,加州大學洛杉磯分校Lieven Vandenberghe教授的大作,是處理優化問題的利器。
SciPy中的優化模塊還有一些特殊定制的函數,專門處理能夠轉化為優化求解的一些問題,如方程求根、最小方差擬合等,可到SciPy優化部分的指引頁面查看。
- Python 量化交易教程
- 第一部分 新手入門
- 一 量化投資視頻學習課程
- 二 Python 手把手教學
- 量化分析師的Python日記【第1天:誰來給我講講Python?】
- 量化分析師的Python日記【第2天:再接著介紹一下Python唄】
- 量化分析師的Python日記【第3天:一大波金融Library來襲之numpy篇】
- 量化分析師的Python日記【第4天:一大波金融Library來襲之scipy篇】
- 量化分析師的Python日記【第5天:數據處理的瑞士軍刀pandas】
- 量化分析師的Python日記【第6天:數據處理的瑞士軍刀pandas下篇
- 量化分析師的Python日記【第7天:Q Quant 之初出江湖】
- 量化分析師的Python日記【第8天 Q Quant兵器譜之函數插值】
- 量化分析師的Python日記【第9天 Q Quant兵器譜之二叉樹】
- 量化分析師的Python日記【第10天 Q Quant兵器譜 -之偏微分方程1】
- 量化分析師的Python日記【第11天 Q Quant兵器譜之偏微分方程2】
- 量化分析師的Python日記【第12天:量化入門進階之葵花寶典:因子如何產生和回測】
- 量化分析師的Python日記【第13天 Q Quant兵器譜之偏微分方程3】
- 量化分析師的Python日記【第14天:如何在優礦上做Alpha對沖模型】
- 量化分析師的Python日記【第15天:如何在優礦上搞一個wealthfront出來】
- 第二部分 股票量化相關
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha對沖策略——觀《量化分析師Python日記第14天》有感
- 熔斷不要怕, alpha model 為你保駕護航!
- 尋找 alpha 之: alpha 設計
- 1.2 基本面因子選股
- Porfolio(現金比率+負債現金+現金保障倍數)+市盈率
- ROE選股指標
- 成交量因子
- ROIC&cashROIC
- 【國信金工】資產周轉率選股模型
- 【基本面指標】Cash Cow
- 量化因子選股——凈利潤/營業總收入
- 營業收入增長率+市盈率
- 1.3 財報閱讀 ? [米缸量化讀財報] 資產負債表-投資相關資產
- 1.4 股東分析
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)— 更新版
- 誰是中國A股最有錢的自然人
- 1.5 宏觀研究
- 【干貨包郵】手把手教你做宏觀擇時
- 宏觀研究:從估值角度看當前市場
- 追尋“國家隊”的足跡
- 二 套利
- 2.1 配對交易
- HS300ETF套利(上)
- 【統計套利】配對交易
- 相似公司股票搬磚
- Paired trading
- 2.2 期現套利 ? 通過股指期貨的期現差與 ETF 對沖套利
- 三 事件驅動
- 3.1 盈利預增
- 盈利預增事件
- 事件驅動策略示例——盈利預增
- 3.2 分析師推薦 ? 分析師的金手指?
- 3.3 牛熊轉換
- 歷史總是相似 牛市還在延續
- 歷史總是相似 牛市已經見頂?
- 3.4 熔斷機制 ? 股海拾貝之 [熔斷錯殺股]
- 3.5 暴漲暴跌 ? [實盤感悟] 遇上暴跌我該怎么做?
- 3.6 兼并重組、舉牌收購 ? 寶萬戰-大戲開幕
- 四 技術分析
- 4.1 布林帶
- 布林帶交易策略
- 布林帶回調系統-日內
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均線系統
- 技術分析入門 —— 雙均線策略
- 5日線10日線交易策略
- 用5日均線和10日均線進行判斷 --- 改進版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑異同移動平均線方法
- 4.4 阿隆指標 ? 技術指標阿隆( Aroon )全解析
- 4.5 CCI ? CCI 順勢指標探索
- 4.6 RSI
- 重寫 rsi
- RSI指標策略
- 4.7 DMI ? DMI 指標體系的構建及簡單應用
- 4.8 EMV ? EMV 技術指標的構建及應用
- 4.9 KDJ ? KDJ 策略
- 4.10 CMO
- CMO 策略模仿練習 1
- CMO策略模仿練習2
- [技術指標] CMO
- 4.11 FPC ? FPC 指標選股
- 4.12 Chaikin Volatility
- 嘉慶離散指標測試
- 4.13 委比 ? 實時計算委比
- 4.14 封單量
- 按照封單跟流通股本比例排序,剔除6月上市新股,前50
- 漲停股票封單統計
- 實時計算漲停板股票的封單資金與總流通市值的比例
- 4.15 成交量 ? 決戰之地, IF1507 !
- 4.16 K 線分析 ? 尋找夜空中最亮的星
- 五 量化模型
- 5.1 動量模型
- Momentum策略
- 【小散學量化】-2-動量模型的簡單實踐
- 一個追漲的策略(修正版)
- 動量策略(momentum driven)
- 動量策略(momentum driven)——修正版
- 最經典的Momentum和Contrarian在中國市場的測試
- 最經典的Momentum和Contrarian在中國市場的測試-yanheven改進
- [策略]基于勝率的趨勢交易策略
- 策略探討(更新):價量結合+動量反轉
- 反向動量策略(reverse momentum driven)
- 輕松跑贏大盤 - 主題Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面選股系統:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR預測股票開盤價 v1.0
- 5.4 決策樹、隨機樹
- 決策樹模型(固定模型)
- 基于Random Forest的決策策略
- 5.5 鐘擺理論 · 鐘擺理論的簡單實現——完美躲過股災和精準抄底
- 5.6 海龜模型
- simple turtle
- 俠之大者 一起賺錢
- 5.7 5217 策略 · 白龍馬的新手策略
- 5.8 SMIA · 基于歷史狀態空間相似性匹配的行業配置 SMIA 模型—取交集
- 5.9 神經網絡
- 神經網絡交易的訓練部分
- 通過神經網絡進行交易
- 5.10 PAMR · PAMR : 基于均值反轉的投資組合選擇策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假說, Hurst 指數 · 分形市場假說,一個聽起來很美的假說
- 5.13 變點理論 · 變點策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用債風險模型初探之:Z-Score Model
- user-defined package
- 5.15 機器學習 · Machine Learning 學習筆記(一) by OTreeWEN
- 5.16 DualTrust 策略和布林強盜策略
- 5.17 卡爾曼濾波
- 5.18 LPPL anti-bubble model
- 今天大盤熔斷大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之謎——對數周期冪率(LPPL)模型
- 六 大數據模型
- 6.1 市場情緒分析
- 通聯情緒指標策略
- 互聯網+量化投資 大數據指數手把手
- 6.2 新聞熱點
- 如何使用優礦之“新聞熱點”?
- 技術分析【3】—— 眾星拱月,眾口鑠金?
- 七 排名選股系統
- 7.1 小市值投資法
- 學習筆記:可模擬(小市值+便宜 的修改版)
- 市值最小300指數
- 流通市值最小股票(新篩選器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊駝策略
- 羊駝策略
- 羊駝反轉策略(修改版)
- 羊駝反轉策略
- 我的羊駝策略,選5只股無腦輪替
- 7.3 低價策略
- 專撿便宜貨(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 輪動模型
- 8.1 大小盤輪動 · 新手上路 -- 二八ETF擇時輪動策略2.0
- 8.2 季節性策略
- Halloween Cycle
- Halloween cycle 2
- 夏買電,東買煤?
- 歷史的十一月板塊漲幅
- 8.3 行業輪動
- 銀行股輪動
- 申萬二級行業在最近1年、3個月、5個交易日的漲幅統計
- 8.4 主題輪動
- 快速研究主題神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板塊異動類
- 風險因子(離散類)
- 8.5 龍頭輪動
- Competitive Securities
- Market Competitiveness
- 主題龍頭類
- 九 組合投資
- 9.1 指數跟蹤 · [策略] 指數跟蹤低成本建倉策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸優化 · 如何在 Python 中利用 CVXOPT 求解二次規劃問題
- 十 波動率
- 10.1 波動率選股 · 風平浪靜 風起豬飛
- 10.2 波動率擇時
- 基于 VIX 指數的擇時策略
- 簡單低波動率指數
- 10.3 Arch/Garch 模型 · 如何使用優礦進行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高頻交易
- 12.1 order book 分析 · 基于高頻 limit order book 數據的短程價格方向預測—— via multi-class SVM
- 12.2 日內交易 · 大盤日內走勢 (for 擇時)
- 十三 Alternative Strategy
- 13.1 易經、傳統文化 · 老黃歷診股
- 第三部分 基金、利率互換、固定收益類
- 一 分級基金
- “優礦”集思錄——分級基金專題
- 基于期權定價的分級基金交易策略
- 基于期權定價的興全合潤基金交易策略
- 二 基金分析
- Alpha 基金“黑天鵝事件” -- 思考以及原因
- 三 債券
- 債券報價中的小陷阱
- 四 利率互換
- Swap Curve Construction
- 中國 Repo 7D 互換的例子
- 第四部分 衍生品相關
- 一 期權數據
- 如何獲取期權市場數據快照
- 期權高頻數據準備
- 二 期權系列
- [ 50ETF 期權] 1. 歷史成交持倉和 PCR 數據
- 【50ETF期權】 2. 歷史波動率
- 【50ETF期權】 3. 中國波指 iVIX
- 【50ETF期權】 4. Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 三 期權分析
- 【50ETF期權】 期權擇時指數 1.0
- 每日期權風險數據整理
- 期權頭寸計算
- 期權探秘1
- 期權探秘2
- 期權市場一周縱覽
- 基于期權PCR指數的擇時策略
- 期權每日成交額PC比例計算
- 四 期貨分析
- 【前方高能!】Gifts from Santa Claus——股指期貨趨勢交易研究