<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                # 期權每日成交額PC比例計算 > 來源:https://uqer.io/community/share/55bed777f9f06c915418c62f ## P/C作為市場情緒指標 計算方式 P/C比例作為一種反向情緒指標,是看跌期權的成交量(成交額,持倉量等)與看漲期權的成交量(持倉量)的比值。 指標含義 + 看跌期權的成交量可以作為市場看空力量多寡的衡量; + 看漲期權的成交量可以描述市場看多力量。 指標應用 + 當P/C比例過小達到一個極端時,被視為市場過度樂觀,此時市場將遏制原來的上漲趨勢; + 當P/C比例過大到達另一個極端時,被視為市場過度悲觀,此時市場可能出現反彈。 ```py from matplotlib import pylab import numpy as np import pandas as pd import DataAPI import seaborn as sns sns.set_style('white') ``` ## 1. 定義計算PCR的函數 此處計算看跌看漲期權每日成交額的比值 ```py def getHistDayOptions(var, date): # 使用DataAPI.OptGet,拿到已退市和上市的所有期權的基本信息; # 同時使用DataAPI.MktOptdGet,拿到歷史上某一天的期權成交信息; # 返回歷史上指定日期交易的所有期權信息,包括: # optID varSecID contractType strikePrice expDate tradeDate closePrice turnoverValue # 以optID為index。 vixDateStr = date.toISO().replace('-', '') optionsMkt = DataAPI.MktOptdGet(tradeDate = vixDateStr, field = [u"optID", "tradeDate", "closePrice", "turnoverValue"], pandas = "1") optionsMkt = optionsMkt.set_index(u"optID") optionsMkt.closePrice.name = u"price" optionsID = map(str, optionsMkt.index.values.tolist()) fieldNeeded = ["optID", u"varSecID", u'contractType', u'strikePrice', u'expDate'] optionsInfo = DataAPI.OptGet(optID=optionsID, contractStatus = [u"DE", u"L"], field=fieldNeeded, pandas="1") optionsInfo = optionsInfo.set_index(u"optID") options = pd.concat([optionsInfo, optionsMkt], axis=1, join='inner').sort_index() return options[options.varSecID==var] def calDayTurnoverValuePCR(optionVarSecID, date): # 計算歷史每日的看跌看漲期權交易額的比值 # PCR: put call ratio options = getHistDayOptions(optionVarSecID, date) call = options[options.contractType==u"CO"] put = options[options.contractType==u"PO"] callTurnoverValue = call.turnoverValue.sum() putTurnoverValue = put.turnoverValue.sum() return 1.0 * putTurnoverValue / callTurnoverValue def getHistPCR(beginDate, endDate): # 計算歷史一段時間內的PCR指數并返回 optionVarSecID = u"510050.XSHG" cal = Calendar('China.SSE') dates = cal.bizDatesList(beginDate, endDate) dates = map(Date.toDateTime, dates) histPCR = pd.DataFrame(0.0, index=dates, columns=['PCR']) histPCR.index.name = 'date' for date in histPCR.index: histPCR['PCR'][date] = calDayTurnoverValuePCR(optionVarSecID, Date.fromDateTime(date)) return histPCR def getDayPCR(date): # 計算歷史某一天的PCR指數并返回 optionVarSecID = u"510050.XSHG" return calDayTurnoverValuePCR(optionVarSecID, date) ``` ## 2. 計算PCR指標 ```py begin = Date(2015, 2, 9) end = Date(2015, 7, 30) getHistPCR(begin, end).tail() ``` | | PCR | | --- | --- | | date | | | 2015-07-24 | 1.032107 | | 2015-07-27 | 2.097952 | | 2015-07-28 | 2.288790 | | 2015-07-29 | 1.971831 | | 2015-07-30 | 1.527717 | ```py date = Date(2015, 7, 30) getDayPCR(date) 1.5277173819619587 ``` ## 3. PC指標歷史走勢 ```py secID = '510050.XSHG' begin = Date(2015, 2, 9) end = Date(2015, 7, 30) # 歷史PCR histPCR = getHistPCR(begin, end) # 華夏上證50ETF etf = DataAPI.MktFunddGet(secID, beginDate=begin.toISO().replace('-', ''), endDate=end.toISO().replace('-', ''), field=['tradeDate', 'closePrice']) etf['tradeDate'] = pd.to_datetime(etf['tradeDate']) etf = etf.set_index('tradeDate') font.set_size(12) pylab.figure(figsize = (12,6)) ax1 = histPCR.plot(x=histPCR.index, y='PCR', style='r') ax1.set_xlabel(u'日期', fontproperties=font) ax1.set_ylabel(u'VIX(%)', fontproperties=font) ax2 = ax1.twinx() ax2.plot(etf.index,etf.closePrice) ax2.set_ylabel(u'ETF Price', fontproperties=font) <matplotlib.text.Text at 0x53797d0> ``` ![](https://box.kancloud.cn/2016-07-30_579cbdc281366.png) 從上圖可以看出,每次PC指標的上升都對應著標的價格的下挫
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看