<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                # 【基本面指標】Cash Cow > 來源:https://uqer.io/community/share/55418287f9f06c1c3d687fde ## 策略思路 每個季度,計算滬深300成分股資產負債表中的 現金及現金等價物/總資產 ,數值以最近一次披露的財報為準 清倉,選出該比率最大的前30只股票,將資金分成30份,分別買入 每60個交易日調倉一次 ```py from heapq import nlargest from datetime import timedelta start = '2010-01-01' end = '2015-04-01' benchmark = 'HS300' universe = set_universe('HS300') capital_base = 500000 refresh_rate = 60 def initialize(account): pass def handle_data(account): cashpct = getCashPct(account.universe, account.current_date) buylist = nlargest(30, cashpct, key=cashpct.get) for stock in account.valid_secpos: order_to(stock, 0) for stock in buylist: order(stock, int(account.referencePortfolioValue/len(buylist)/account.referencePrice[stock]/100)*100) def getCashPct(universe, date): start, end = (date - timedelta(weeks=26)).strftime('%Y%m%d'), date.strftime('%Y%m%d') N = len(universe) if N == 0: return None elif N <= 45: batches = [universe] else: batches = [universe[i:i+45] for i in range(0, N, 45)] CashPct = {} for sub in batches: df = DataAPI.FdmtBSGet(secID=','.join(sub), publishDateBegin=start, publishDateEnd=end, field=['secID', 'cashCEquiv', 'TAssets']) for stock in sub: try: df_sub = df[df.secID==stock] df_sub['pct'] = df_sub['cashCEquiv'] / df_sub['TAssets'] CashPct[stock] = df_sub['pct'].mean() except: pass return CashPct ``` ![](https://box.kancloud.cn/2016-07-30_579cb73662365.jpg)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看