<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                # 10.1 波動率選股 · 風平浪靜 風起豬飛 > 來源:https://uqer.io/community/share/550fe978f9f06c7a9ae9a557 策略基本思路是:挑選具有較低波動率品種以防市場大跌,同時持有較低漲幅品種,等待時機,以圖崛起。 其中,較低波動率品種指標為股票近一年收盤價的標準差小于0.2;較低漲幅品種指股票年化收益率與無風險利率之差除以基準收益率與無風險利率之差小于0.5的股票。 本策略無風險利率特指:0.035 本策略的參數如下: + 起始日期: 2009年1月1日 + 結束日期: 2015年3月20日 + 股票池: 滬深300 + 業績基準: 滬深300 + 起始資金: 100000元 + 調倉周期: 3個月 ```py import numpy as np import pandas as pd from datetime import timedelta, datetime start = datetime(2009, 1, 1) # 回測起始時間 end = datetime(2015, 3, 20) # 回測結束時間 benchmark = 'HS300' # 策略參考標準 universe = set_universe('HS300') # 股票池 capital_base = 10000000 # 起始資金 refresh_rate = 60 # 調倉頻率60個交易日 longest_history = 20 def initialize(account): # 初始化虛擬賬戶狀態 pass def handle_data(account): # 每個交易日的買入賣出指令 today = account.current_date stocks = [] changes = [] vols = [] returns = [] hist = account.get_history(20) # 基準收益率 bm_return = hist['benchmark']['return'][-1] # 無風險利率 rf_return = 0.035 for stock in account.universe: # 計算股票的收益和收益波動率 rt = hist[stock]['closePrice'][-1]/hist[stock]['closePrice'][0] - 1 rts = hist[stock]['closePrice']/np.roll(hist[stock]['closePrice'], 1) - 1 vol = np.std(rts[1:]) stocks.append(stock) changes.append(((rt-rf_return)/(bm_return-rf_return))) vols.append(vol) returns.append(rt) df = pd.DataFrame({'stocks':stocks, 'changes':changes, 'vols':vols, 'returns':returns}) # 篩選符合條件的股票 signal_stocks = list(df[df.vols<0.2][df.changes<0.5].stocks.values) c = account.cash # 賣出不在信號股票集合內的持倉,計算可用資金 #print today #print '賣出' for stock in account.valid_secpos: if account.valid_secpos[stock] > 0 and stock not in signal_stocks: order_to(stock, 0) #print stock, c += account.valid_secpos[stock] * hist[stock]['closePrice'][-1] elif stock in signal_stocks: signal_stocks.remove(stock) # 買入股票 #print #print '買入' for stock in signal_stocks: #print stock, order(stock, int(0.9*c/len(signal_stocks)/hist[stock]['closePrice'][-1])/100*100) #print ``` ![](https://box.kancloud.cn/2016-07-30_579cbdb41185b.jpg)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看