# 【50ETF期權】 期權擇時指數 1.0
> 來源:https://uqer.io/community/share/561c883df9f06c4ca72fb5f7
本文中,我們使用期權的日行情數據,計算期權情緒指標,并用以指導實戰擇時
初步討論只包括兩個指標
+ 成交量(成交額) PCR:看跌看漲期權的成交量(成交額)比率
+ PCIVD:Put Call Implied Volatility Difference 看跌看漲期權隱含波動率差
```py
from CAL.PyCAL import *
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')
import seaborn as sns
sns.set_style('white')
from matplotlib import dates
from pandas import concat
from scipy import interpolate
import math
```
## 1. 看跌看漲成交量(成交額)比率 PCR
+ 計算每日看跌看漲成交量或成交額的比率,即PCR
+ 我們考慮PCR每日變化量與現貨50ETF隔日收益率的關系
+ 每日PCR變化量PCRD為:當日PCR減去前一日PCR得到的值,即對PCR做差分
```py
def histVolumeOpt50ETF(beginDate, endDate):
## 計算歷史一段時間內的50ETF期權持倉量交易量數據
optionVarSecID = u"510050.XSHG"
cal = Calendar('China.SSE')
dates = cal.bizDatesList(beginDate, endDate)
dates = map(Date.toDateTime, dates)
columns = ['callVol', 'putVol', 'callValue',
'putValue', 'callOpenInt', 'putOpenInt',
'nearCallVol', 'nearPutVol', 'nearCallValue',
'nearPutValue', 'nearCallOpenInt', 'nearPutOpenInt',
'netVol', 'netValue', 'netOpenInt',
'volPCR', 'valuePCR', 'openIntPCR',
'nearVolPCR', 'nearValuePCR', 'nearOpenIntPCR']
hist_opt = pd.DataFrame(0.0, index=dates, columns=columns)
hist_opt.index.name = 'date'
# 每一個交易日數據單獨計算
for date in hist_opt.index:
date_str = Date.fromDateTime(date).toISO().replace('-', '')
try:
opt_data = DataAPI.MktOptdGet(secID=u"", tradeDate=date_str, field=u"", pandas="1")
except:
hist_opt = hist_opt.drop(date)
continue
opt_type = []
exp_date = []
for ticker in opt_data.secID.values:
opt_type.append(ticker[6])
exp_date.append(ticker[7:11])
opt_data['optType'] = opt_type
opt_data['expDate'] = exp_date
near_exp = np.sort(opt_data.expDate.unique())[0]
data = opt_data.groupby('optType')
# 計算所有上市期權:看漲看跌交易量、看漲看跌交易額、看漲看跌持倉量
hist_opt['callVol'][date] = data.turnoverVol.sum()['C']
hist_opt['putVol'][date] = data.turnoverVol.sum()['P']
hist_opt['callValue'][date] = data.turnoverValue.sum()['C']
hist_opt['putValue'][date] = data.turnoverValue.sum()['P']
hist_opt['callOpenInt'][date] = data.openInt.sum()['C']
hist_opt['putOpenInt'][date] = data.openInt.sum()['P']
near_data = opt_data[opt_data.expDate == near_exp]
near_data = near_data.groupby('optType')
# 計算近月期權(主力合約): 看漲看跌交易量、看漲看跌交易額、看漲看跌持倉量
hist_opt['nearCallVol'][date] = near_data.turnoverVol.sum()['C']
hist_opt['nearPutVol'][date] = near_data.turnoverVol.sum()['P']
hist_opt['nearCallValue'][date] = near_data.turnoverValue.sum()['C']
hist_opt['nearPutValue'][date] = near_data.turnoverValue.sum()['P']
hist_opt['nearCallOpenInt'][date] = near_data.openInt.sum()['C']
hist_opt['nearPutOpenInt'][date] = near_data.openInt.sum()['P']
# 計算所有上市期權: 總交易量、總交易額、總持倉量
hist_opt['netVol'][date] = hist_opt['callVol'][date] + hist_opt['putVol'][date]
hist_opt['netValue'][date] = hist_opt['callValue'][date] + hist_opt['putValue'][date]
hist_opt['netOpenInt'][date] = hist_opt['callOpenInt'][date] + hist_opt['putOpenInt'][date]
# 計算期權看跌看漲期權交易量(持倉量)的比率:
# 交易量看跌看漲比率,交易額看跌看漲比率, 持倉量看跌看漲比率
# 近月期權交易量看跌看漲比率,近月期權交易額看跌看漲比率, 近月期權持倉量看跌看漲比率
# PCR = Put Call Ratio
hist_opt['volPCR'][date] = round(hist_opt['putVol'][date]*1.0/hist_opt['callVol'][date], 4)
hist_opt['valuePCR'][date] = round(hist_opt['putValue'][date]*1.0/hist_opt['callValue'][date], 4)
hist_opt['openIntPCR'][date] = round(hist_opt['putOpenInt'][date]*1.0/hist_opt['callOpenInt'][date], 4)
hist_opt['nearVolPCR'][date] = round(hist_opt['nearPutVol'][date]*1.0/hist_opt['nearCallVol'][date], 4)
hist_opt['nearValuePCR'][date] = round(hist_opt['nearPutValue'][date]*1.0/hist_opt['nearCallValue'][date], 4)
hist_opt['nearOpenIntPCR'][date] = round(hist_opt['nearPutOpenInt'][date]*1.0/hist_opt['nearCallOpenInt'][date], 4)
return hist_opt
def histPrice50ETF(beginDate, endDate):
# 華夏上證50ETF收盤價數據
secID = '510050.XSHG'
begin = Date.fromDateTime(beginDate).toISO().replace('-', '')
end = Date.fromDateTime(endDate).toISO().replace('-', '')
fields = ['tradeDate', 'closePrice', 'preClosePrice']
etf = DataAPI.MktFunddGet(secID, beginDate=begin, endDate=end, field=fields)
etf['tradeDate'] = pd.to_datetime(etf['tradeDate'])
etf['dailyReturn'] = etf['closePrice'] / etf['preClosePrice'] - 1.0
etf = etf.set_index('tradeDate')
return etf
def histPCR50ETF(beginDate, endDate):
# PCRD: Put Call Ratio Diff
# 計算每日PCR變化量:當日PCR減去前一日PCR得到的值,即對PCR做差分
# 專注于某一項PCR,例如:成交額PCR --- valuePCR
pcr_names = ['volPCR', 'valuePCR', 'openIntPCR',
'nearVolPCR', 'nearValuePCR', 'nearOpenIntPCR']
pcr_diff_names = [pcr + 'Diff' for pcr in pcr_names]
pcr = histVolumeOpt50ETF(beginDate, endDate)
for pcr_name in pcr_names:
pcr[pcr_name + 'Diff'] = pcr[pcr_name].diff()
return pcr[pcr_names + pcr_diff_names]
```
計算PCR
+ 期權自15年2月9號上市
+ 此處計算得到的數據可以用在后面幾條策略中
```py
## PCRD計算示例
start = datetime(2015,2, 9) # 回測起始時間
end = datetime(2015, 10, 13) # 回測結束時間
hist_pcrd = histPCR50ETF(start, end) # 計算PCRD
hist_pcrd.tail()
```
| | volPCR | valuePCR | openIntPCR | nearVolPCR | nearValuePCR | nearOpenIntPCR | volPCRDiff | valuePCRDiff | openIntPCRDiff | nearVolPCRDiff | nearValuePCRDiff | nearOpenIntPCRDiff |
| --- | --- |
| date | | | | | | | | | | | | |
| 2015-09-29 | 1.0863 | 1.5860 | 0.6680 | 1.2372 | 1.6552 | 0.7632 | 0.0255 | 0.4779 | -0.0058 | 0.0801 | 0.6352 | -0.0193 |
| 2015-09-30 | 0.9664 | 1.1366 | 0.6709 | 1.1153 | 1.1460 | 0.7579 | -0.1199 | -0.4494 | 0.0029 | -0.1219 | -0.5092 | -0.0053 |
| 2015-10-08 | 0.8997 | 0.5940 | 0.6726 | 0.9244 | 0.4646 | 0.7480 | -0.0667 | -0.5426 | 0.0017 | -0.1909 | -0.6814 | -0.0099 |
| 2015-10-09 | 1.0979 | 0.7708 | 0.7068 | 1.1542 | 0.6672 | 0.8121 | 0.1982 | 0.1768 | 0.0342 | 0.2298 | 0.2026 | 0.0641 |
| 2015-10-12 | 0.6494 | 0.2432 | 0.7713 | 0.6604 | 0.2002 | 1.0197 | -0.4485 | -0.5276 | 0.0645 | -0.4938 | -0.4670 | 0.2076 |
### 1.1 使用基于成交量 PCR 日變化量的擇時策略
策略思路:考慮成交量 PCR 日變化量 PCRD(volume)
+ 前一日PCRD(volume)小于0,則今天全倉50ETF
+ 否則,清倉觀望
+ 簡單來說,就是PCR上升,空倉;PCR下降,買入
```py
start = datetime(2015, 2, 9) # 回測起始時間
end = datetime(2015, 10, 7) # 回測結束時間
benchmark = '510050.XSHG' # 策略參考標準
universe = ['510050.XSHG'] # 股票池
capital_base = 100000 # 起始資金
commission = Commission(0.0,0.0)
refresh_rate = 1
# hist_pcrd = histPCR50ETF(start, end) # 計算PCRD
def initialize(account): # 初始化虛擬賬戶狀態
account.fund = universe[0]
def handle_data(account): # 每個交易日的買入賣出指令
fund = account.fund
# 獲取回測當日的前一天日期
dt = Date.fromDateTime(account.current_date)
cal = Calendar('China.IB')
last_day = cal.advanceDate(dt,'-1B',BizDayConvention.Preceding) #計算出倒數第一個交易日
last_day_str = last_day.strftime("%Y-%m-%d")
# 計算買入賣出信號
try:
# 拿取PCRD數據
pcrd_last_vol = hist_pcrd.volPCRDiff.loc[last_day_str] # PCRD(volumn)
long_flag = True if pcrd_last_vol < 0 else False # 調倉條件
except:
long_flag = False
if long_flag:
# 買入時,全倉殺入
try:
approximationAmount = int(account.cash / account.referencePrice[fund] / 100.0) * 100
order(fund, approximationAmount)
except:
return
else:
# 賣出時,全倉清空
order_to(fund, 0)
```

### 1.2 使用基于成交額 PCR 日變化量的擇時策略
策略思路:考慮成交額 PCR 日變化量 PCRD(value)
+ 前一日PCRD(value)小于0,則今天全倉50ETF
+ 否則,清倉觀望
+ 簡單來說,就是PCR上升,空倉;PCR下降,買入
```py
start = datetime(2015, 2, 9) # 回測起始時間
end = datetime(2015, 10, 7) # 回測結束時間
benchmark = '510050.XSHG' # 策略參考標準
universe = ['510050.XSHG'] # 股票池
capital_base = 100000 # 起始資金
commission = Commission(0.0,0.0)
refresh_rate = 1
# hist_pcrd = histPCR50ETF(start, end) # 計算PCRD
def initialize(account): # 初始化虛擬賬戶狀態
account.fund = universe[0]
def handle_data(account): # 每個交易日的買入賣出指令
fund = account.fund
# 獲取回測當日的前一天日期
dt = Date.fromDateTime(account.current_date)
cal = Calendar('China.IB')
last_day = cal.advanceDate(dt,'-1B',BizDayConvention.Preceding) #計算出倒數第一個交易日
last_day_str = last_day.strftime("%Y-%m-%d")
# 計算買入賣出信號
try:
# 拿取PCRD數據
pcrd_last_value = hist_pcrd.valuePCRDiff.loc[last_day_str] # PCRD(value)
long_flag = True if pcrd_last_value < 0 else False # 調倉條件
except:
long_flag = False
if long_flag:
# 買入時,全倉殺入
try:
approximationAmount = int(account.cash / account.referencePrice[fund] / 100.0) * 100
order(fund, approximationAmount)
except:
return
else:
# 賣出時,全倉清空
order_to(fund, 0)
```

### 1.3 結合使用成交量、成交額 PCR 日變化量的擇時策略
策略思路:考慮成交量PCRD(volume) 和成交額PCRD(value)
+ 前一日PCRD(volume)和PCRD(value)同時小于0,則今天全倉50ETF
+ 否則,清倉觀望
```py
start = datetime(2015, 2, 9) # 回測起始時間
end = datetime(2015, 10, 7) # 回測結束時間
benchmark = '510050.XSHG' # 策略參考標準
universe = ['510050.XSHG'] # 股票池
capital_base = 100000 # 起始資金
commission = Commission(0.0,0.0)
refresh_rate = 1
hist_pcrd = histPCR50ETF(start, end) # 計算PCRD
def initialize(account): # 初始化虛擬賬戶狀態
account.fund = universe[0]
def handle_data(account): # 每個交易日的買入賣出指令
fund = account.fund
# 獲取回測當日的前一天日期
dt = Date.fromDateTime(account.current_date)
cal = Calendar('China.IB')
last_day = cal.advanceDate(dt,'-1B',BizDayConvention.Preceding) #計算出倒數第一個交易日
last_day_str = last_day.strftime("%Y-%m-%d")
# 計算買入賣出信號
try:
# 拿取PCRD數據
pcrd_last_value = hist_pcrd.valuePCRDiff.loc[last_day_str] # PCRD(value)
pcrd_last_vol = hist_pcrd.volPCRDiff.loc[last_day_str] # PCRD(volumn)
long_flag = True if pcrd_last_value < 0.0 and pcrd_last_vol < 0.0 else False # 調倉條件
except:
long_flag = False
if long_flag:
# 買入時,全倉殺入
try:
approximationAmount = int(account.cash / account.referencePrice[fund] / 100.0) * 100
order(fund, approximationAmount)
except:
return
else:
# 賣出時,全倉清空
order_to(fund, 0)
```

## 2. 看跌看漲隱含波動率價差 PCIVD
+ 相同到期日、行權價的看跌看漲期權,其隱含波動率會有差異
+ 由于套保需要,一般看跌期權隱含波動率高于看漲期權
+ 看跌、看漲期權隱含波動率之差 PCIVD 的每日變化可以用來指導實際操作
+ 在計算中,我們使用平值附近的期權計算 PCIVD
```py
## 銀行間質押式回購利率
def histDayInterestRateInterbankRepo(date):
cal = Calendar('China.SSE')
period = Period('-10B')
begin = cal.advanceDate(date, period)
begin_str = begin.toISO().replace('-', '')
date_str = date.toISO().replace('-', '')
# 以下的indicID分別對應的銀行間質押式回購利率周期為:
# 1D, 7D, 14D, 21D, 1M, 3M, 4M, 6M, 9M, 1Y
indicID = [u"M120000067", u"M120000068", u"M120000069", u"M120000070", u"M120000071",
u"M120000072", u"M120000073", u"M120000074", u"M120000075", u"M120000076"]
period = np.asarray([1.0, 7.0, 14.0, 21.0, 30.0, 90.0, 120.0, 180.0, 270.0, 360.0]) / 360.0
period_matrix = pd.DataFrame(index=indicID, data=period, columns=['period'])
field = u"indicID,indicName,publishTime,periodDate,dataValue,unit"
interbank_repo = DataAPI.ChinaDataInterestRateInterbankRepoGet(indicID=indicID,beginDate=begin_str,endDate=date_str,field=field,pandas="1")
interbank_repo = interbank_repo.groupby('indicID').first()
interbank_repo = concat([interbank_repo, period_matrix], axis=1, join='inner').sort_index()
return interbank_repo
## 銀行間同業拆借利率
def histDaySHIBOR(date):
cal = Calendar('China.SSE')
period = Period('-10B')
begin = cal.advanceDate(date, period)
begin_str = begin.toISO().replace('-', '')
date_str = date.toISO().replace('-', '')
# 以下的indicID分別對應的SHIBOR周期為:
# 1D, 7D, 14D, 1M, 3M, 6M, 9M, 1Y
indicID = [u"M120000057", u"M120000058", u"M120000059", u"M120000060",
u"M120000061", u"M120000062", u"M120000063", u"M120000064"]
period = np.asarray([1.0, 7.0, 14.0, 30.0, 90.0, 180.0, 270.0, 360.0]) / 360.0
period_matrix = pd.DataFrame(index=indicID, data=period, columns=['period'])
field = u"indicID,indicName,publishTime,periodDate,dataValue,unit"
interest_shibor = DataAPI.ChinaDataInterestRateSHIBORGet(indicID=indicID,beginDate=begin_str,endDate=date_str,field=field,pandas="1")
interest_shibor = interest_shibor.groupby('indicID').first()
interest_shibor = concat([interest_shibor, period_matrix], axis=1, join='inner').sort_index()
return interest_shibor
## 插值得到給定的周期的無風險利率
def periodsSplineRiskFreeInterestRate(date, periods):
# 此處使用SHIBOR來插值
init_shibor = histDaySHIBOR(date)
shibor = {}
min_period = min(init_shibor.period.values)
min_period = 25.0/360.0
max_period = max(init_shibor.period.values)
for p in periods.keys():
tmp = periods[p]
if periods[p] > max_period:
tmp = max_period * 0.99999
elif periods[p] < min_period:
tmp = min_period * 1.00001
sh = interpolate.spline(init_shibor.period.values, init_shibor.dataValue.values, [tmp], order=3)
shibor[p] = sh[0]/100.0
return shibor
## 使用DataAPI.OptGet, DataAPI.MktOptdGet拿到計算所需數據
def histDayDataOpt50ETF(date):
date_str = date.toISO().replace('-', '')
#使用DataAPI.OptGet,拿到已退市和上市的所有期權的基本信息
info_fields = [u'optID', u'varSecID', u'varShortName', u'varTicker', u'varExchangeCD', u'varType',
u'contractType', u'strikePrice', u'contMultNum', u'contractStatus', u'listDate',
u'expYear', u'expMonth', u'expDate', u'lastTradeDate', u'exerDate', u'deliDate',
u'delistDate']
opt_info = DataAPI.OptGet(optID='', contractStatus=[u"DE",u"L"], field=info_fields, pandas="1")
#使用DataAPI.MktOptdGet,拿到歷史上某一天的期權成交信息
mkt_fields = [u'ticker', u'optID', u'secShortName', u'exchangeCD', u'tradeDate', u'preSettlePrice',
u'preClosePrice', u'openPrice', u'highestPrice', u'lowestPrice', u'closePrice',
u'settlPrice', u'turnoverVol', u'turnoverValue', u'openInt']
opt_mkt = DataAPI.MktOptdGet(tradeDate=date_str, field=mkt_fields, pandas = "1")
opt_info = opt_info.set_index(u"optID")
opt_mkt = opt_mkt.set_index(u"optID")
opt = concat([opt_info, opt_mkt], axis=1, join='inner').sort_index()
return opt
# 舊版forward計算稍有差別
def histDayMktForwardPriceOpt50ETF(opt, risk_free):
exp_dates_str = np.sort(opt.expDate.unique())
trade_date = Date.parseISO(opt.tradeDate.values[0])
forward = {}
for date_str in exp_dates_str:
opt_date = opt[opt.expDate == date_str]
opt_call_date = opt_date[opt_date.contractType == 'CO']
opt_put_date = opt_date[opt_date.contractType == 'PO']
opt_call_date = opt_call_date[[u'strikePrice', u'price']].set_index('strikePrice').sort_index()
opt_put_date = opt_put_date[[u'strikePrice', u'price']].set_index('strikePrice').sort_index()
opt_call_date.columns = [u'callPrice']
opt_put_date.columns = [u'putPrice']
opt_date = concat([opt_call_date, opt_put_date], axis=1, join='inner').sort_index()
opt_date['diffCallPut'] = opt_date.callPrice - opt_date.putPrice
strike = abs(opt_date['diffCallPut']).idxmin()
priceDiff = opt_date['diffCallPut'][strike]
date = Date.parseISO(date_str)
ttm = abs(float(date - trade_date + 1.0)/365.0)
rf = risk_free[date]
fw = strike + np.exp(ttm*rf) * priceDiff
forward[date] = fw
return forward
## 分析歷史某一日的期權收盤價信息,得到隱含波動率微笑和期權風險指標
def histDayAnalysisOpt50ETF(date):
opt_var_sec = u"510050.XSHG" # 期權標的
opt = histDayDataOpt50ETF(date)
#使用DataAPI.MktFunddGet拿到期權標的的日行情
date_str = date.toISO().replace('-', '')
opt_var_mkt = DataAPI.MktFunddGet(secID=opt_var_sec,tradeDate=date_str,beginDate=u"",endDate=u"",field=u"",pandas="1")
#opt_var_mkt = DataAPI.MktFunddAdjGet(secID=opt_var_sec,beginDate=date_str,endDate=date_str,field=u"",pandas="1")
# 計算shibor
exp_dates_str = opt.expDate.unique()
periods = {}
for date_str in exp_dates_str:
exp_date = Date.parseISO(date_str)
periods[exp_date] = (exp_date - date)/360.0
shibor = periodsSplineRiskFreeInterestRate(date, periods)
# 計算forward price
opt_tmp = opt[[u'contractType', u'tradeDate', u'strikePrice', u'expDate', u'settlPrice']]
opt_tmp.columns = [[u'contractType', u'tradeDate', u'strikePrice', u'expDate', u'price']]
forward_price = histDayMktForwardPriceOpt50ETF(opt_tmp, shibor)
settle = opt.settlPrice.values # 期權 settle price
close = opt.closePrice.values # 期權 close price
strike = opt.strikePrice.values # 期權 strike price
option_type = opt.contractType.values # 期權類型
exp_date_str = opt.expDate.values # 期權行權日期
eval_date_str = opt.tradeDate.values # 期權交易日期
mat_dates = []
eval_dates = []
spot = []
for epd, evd in zip(exp_date_str, eval_date_str):
mat_dates.append(Date.parseISO(epd))
eval_dates.append(Date.parseISO(evd))
spot.append(opt_var_mkt.closePrice[0])
time_to_maturity = [float(mat - eva + 1.0)/365.0 for (mat, eva) in zip(mat_dates, eval_dates)]
risk_free = [] # 無風險利率
forward = [] # 市場遠期
for s, mat, time in zip(spot, mat_dates, time_to_maturity):
#rf = math.log(forward_price[mat] / s) / time
rf = shibor[mat]
risk_free.append(rf)
forward.append(forward_price[mat])
opt_types = [] # 期權類型
for t in option_type:
if t == 'CO':
opt_types.append(1)
else:
opt_types.append(-1)
# 使用通聯CAL包中 BSMImpliedVolatity 計算隱含波動率
calculated_vol = BSMImpliedVolatity(opt_types, strike, spot, risk_free, 0.0, time_to_maturity, settle)
calculated_vol = calculated_vol.fillna(0.0)
# 使用通聯CAL包中 BSMPrice 計算期權風險指標
greeks = BSMPrice(opt_types, strike, spot, risk_free, 0.0, calculated_vol.vol.values, time_to_maturity)
# vega、rho、theta 的計量單位參照上交所的數據,以求統一對比
greeks.vega = greeks.vega #/ 100.0
greeks.rho = greeks.rho #/ 100.0
greeks.theta = greeks.theta #* 365.0 / 252.0 #/ 365.0
opt['strike'] = strike
opt['forward'] = np.around(forward, decimals=3)
opt['optType'] = option_type
opt['expDate'] = exp_date_str
opt['spotPrice'] = spot
opt['riskFree'] = risk_free
opt['timeToMaturity'] = np.around(time_to_maturity, decimals=4)
opt['settle'] = np.around(greeks.price.values.astype(np.double), decimals=4)
opt['iv'] = np.around(calculated_vol.vol.values.astype(np.double), decimals=4)
opt['delta'] = np.around(greeks.delta.values.astype(np.double), decimals=4)
opt['vega'] = np.around(greeks.vega.values.astype(np.double), decimals=4)
opt['gamma'] = np.around(greeks.gamma.values.astype(np.double), decimals=4)
opt['theta'] = np.around(greeks.theta.values.astype(np.double), decimals=4)
opt['rho'] = np.around(greeks.rho.values.astype(np.double), decimals=4)
fields = [u'ticker', u'contractType', u'strikePrice', 'forward', u'expDate', u'tradeDate',
u'closePrice', u'settlPrice', 'spotPrice', u'iv',
u'delta', u'vega', u'gamma', u'theta', u'rho']
opt = opt[fields].reset_index().set_index('ticker').sort_index()
#opt['iv'] = opt.iv.replace(to_replace=0.0, value=np.nan)
return opt
# 每日期權分析數據整理
def histDayGreeksIVOpt50ETF(date):
# Uqer 計算期權的風險數據
opt = histDayAnalysisOpt50ETF(date)
# 整理數據部分
opt.index = [index[-10:] for index in opt.index]
opt = opt[['contractType','strikePrice','spotPrice','forward','expDate','closePrice','iv','delta','theta','gamma','vega','rho']]
opt.columns = [['contractType','strike','spot','forward','expDate','close','iv','delta','theta','gamma','vega','rho']]
opt_call = opt[opt.contractType=='CO']
opt_put = opt[opt.contractType=='PO']
opt_call.columns = pd.MultiIndex.from_tuples([('Call', c) for c in opt_call.columns])
opt_call[('Call-Put', 'strike')] = opt_call[('Call', 'strike')]
opt_call[('Call-Put', 'spot')] = opt_call[('Call', 'spot')]
opt_call[('Call-Put', 'forward')] = opt_call[('Call', 'forward')]
opt_put.columns = pd.MultiIndex.from_tuples([('Put', c) for c in opt_put.columns])
opt = concat([opt_call, opt_put], axis=1, join='inner').sort_index()
opt = opt.set_index(('Call','expDate')).sort_index()
opt = opt.drop([('Call','contractType'), ('Call','strike'), ('Call','forward'), ('Call','spot')], axis=1)
opt = opt.drop([('Put','expDate'), ('Put','contractType'), ('Put','strike'), ('Put','forward'), ('Put','spot')], axis=1)
opt.index.name = 'expDate'
## 以上得到完整的歷史某日數據,格式簡潔明了
return opt
# 做圖展示某一天的隱含波動率微笑
def histDayPlotSmileVolatilityOpt50ETF(date):
cal = Calendar('China.SSE')
if not cal.isBizDay(date):
print date, ' is not a trading day!'
return
# Uqer 計算期權的風險數據
opt = histDayGreeksIVOpt50ETF(date)
spot = opt[('Call-Put', 'spot')].values[0]
# 下面展示波動率微笑
exp_dates = np.sort(opt.index.unique())
## ----------------------------------------------
fig = plt.figure(figsize=(10,8))
fig.set_tight_layout(True)
for i in range(exp_dates.shape[0]):
date = exp_dates[i]
ax = fig.add_subplot(2,2,i+1)
opt_date = opt[opt.index==date].set_index(('Call-Put', 'strike'))
opt_date.index.name = 'strike'
ax.plot(opt_date.index, opt_date[('Call', 'iv')], '-o')
ax.plot(opt_date.index, opt_date[('Put', 'iv')], '-s')
(y_min, y_max) = ax.get_ylim()
ax.plot([spot, spot], [y_min, y_max], '--')
ax.set_ylim(y_min, y_max)
ax.legend(['call', 'put'], loc=0)
ax.grid()
ax.set_xlabel(u"strike")
ax.set_ylabel(r"Implied Volatility")
plt.title(exp_dates[i])
```
```py
- Python 量化交易教程
- 第一部分 新手入門
- 一 量化投資視頻學習課程
- 二 Python 手把手教學
- 量化分析師的Python日記【第1天:誰來給我講講Python?】
- 量化分析師的Python日記【第2天:再接著介紹一下Python唄】
- 量化分析師的Python日記【第3天:一大波金融Library來襲之numpy篇】
- 量化分析師的Python日記【第4天:一大波金融Library來襲之scipy篇】
- 量化分析師的Python日記【第5天:數據處理的瑞士軍刀pandas】
- 量化分析師的Python日記【第6天:數據處理的瑞士軍刀pandas下篇
- 量化分析師的Python日記【第7天:Q Quant 之初出江湖】
- 量化分析師的Python日記【第8天 Q Quant兵器譜之函數插值】
- 量化分析師的Python日記【第9天 Q Quant兵器譜之二叉樹】
- 量化分析師的Python日記【第10天 Q Quant兵器譜 -之偏微分方程1】
- 量化分析師的Python日記【第11天 Q Quant兵器譜之偏微分方程2】
- 量化分析師的Python日記【第12天:量化入門進階之葵花寶典:因子如何產生和回測】
- 量化分析師的Python日記【第13天 Q Quant兵器譜之偏微分方程3】
- 量化分析師的Python日記【第14天:如何在優礦上做Alpha對沖模型】
- 量化分析師的Python日記【第15天:如何在優礦上搞一個wealthfront出來】
- 第二部分 股票量化相關
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha對沖策略——觀《量化分析師Python日記第14天》有感
- 熔斷不要怕, alpha model 為你保駕護航!
- 尋找 alpha 之: alpha 設計
- 1.2 基本面因子選股
- Porfolio(現金比率+負債現金+現金保障倍數)+市盈率
- ROE選股指標
- 成交量因子
- ROIC&cashROIC
- 【國信金工】資產周轉率選股模型
- 【基本面指標】Cash Cow
- 量化因子選股——凈利潤/營業總收入
- 營業收入增長率+市盈率
- 1.3 財報閱讀 ? [米缸量化讀財報] 資產負債表-投資相關資產
- 1.4 股東分析
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)— 更新版
- 誰是中國A股最有錢的自然人
- 1.5 宏觀研究
- 【干貨包郵】手把手教你做宏觀擇時
- 宏觀研究:從估值角度看當前市場
- 追尋“國家隊”的足跡
- 二 套利
- 2.1 配對交易
- HS300ETF套利(上)
- 【統計套利】配對交易
- 相似公司股票搬磚
- Paired trading
- 2.2 期現套利 ? 通過股指期貨的期現差與 ETF 對沖套利
- 三 事件驅動
- 3.1 盈利預增
- 盈利預增事件
- 事件驅動策略示例——盈利預增
- 3.2 分析師推薦 ? 分析師的金手指?
- 3.3 牛熊轉換
- 歷史總是相似 牛市還在延續
- 歷史總是相似 牛市已經見頂?
- 3.4 熔斷機制 ? 股海拾貝之 [熔斷錯殺股]
- 3.5 暴漲暴跌 ? [實盤感悟] 遇上暴跌我該怎么做?
- 3.6 兼并重組、舉牌收購 ? 寶萬戰-大戲開幕
- 四 技術分析
- 4.1 布林帶
- 布林帶交易策略
- 布林帶回調系統-日內
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均線系統
- 技術分析入門 —— 雙均線策略
- 5日線10日線交易策略
- 用5日均線和10日均線進行判斷 --- 改進版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑異同移動平均線方法
- 4.4 阿隆指標 ? 技術指標阿隆( Aroon )全解析
- 4.5 CCI ? CCI 順勢指標探索
- 4.6 RSI
- 重寫 rsi
- RSI指標策略
- 4.7 DMI ? DMI 指標體系的構建及簡單應用
- 4.8 EMV ? EMV 技術指標的構建及應用
- 4.9 KDJ ? KDJ 策略
- 4.10 CMO
- CMO 策略模仿練習 1
- CMO策略模仿練習2
- [技術指標] CMO
- 4.11 FPC ? FPC 指標選股
- 4.12 Chaikin Volatility
- 嘉慶離散指標測試
- 4.13 委比 ? 實時計算委比
- 4.14 封單量
- 按照封單跟流通股本比例排序,剔除6月上市新股,前50
- 漲停股票封單統計
- 實時計算漲停板股票的封單資金與總流通市值的比例
- 4.15 成交量 ? 決戰之地, IF1507 !
- 4.16 K 線分析 ? 尋找夜空中最亮的星
- 五 量化模型
- 5.1 動量模型
- Momentum策略
- 【小散學量化】-2-動量模型的簡單實踐
- 一個追漲的策略(修正版)
- 動量策略(momentum driven)
- 動量策略(momentum driven)——修正版
- 最經典的Momentum和Contrarian在中國市場的測試
- 最經典的Momentum和Contrarian在中國市場的測試-yanheven改進
- [策略]基于勝率的趨勢交易策略
- 策略探討(更新):價量結合+動量反轉
- 反向動量策略(reverse momentum driven)
- 輕松跑贏大盤 - 主題Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面選股系統:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR預測股票開盤價 v1.0
- 5.4 決策樹、隨機樹
- 決策樹模型(固定模型)
- 基于Random Forest的決策策略
- 5.5 鐘擺理論 · 鐘擺理論的簡單實現——完美躲過股災和精準抄底
- 5.6 海龜模型
- simple turtle
- 俠之大者 一起賺錢
- 5.7 5217 策略 · 白龍馬的新手策略
- 5.8 SMIA · 基于歷史狀態空間相似性匹配的行業配置 SMIA 模型—取交集
- 5.9 神經網絡
- 神經網絡交易的訓練部分
- 通過神經網絡進行交易
- 5.10 PAMR · PAMR : 基于均值反轉的投資組合選擇策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假說, Hurst 指數 · 分形市場假說,一個聽起來很美的假說
- 5.13 變點理論 · 變點策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用債風險模型初探之:Z-Score Model
- user-defined package
- 5.15 機器學習 · Machine Learning 學習筆記(一) by OTreeWEN
- 5.16 DualTrust 策略和布林強盜策略
- 5.17 卡爾曼濾波
- 5.18 LPPL anti-bubble model
- 今天大盤熔斷大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之謎——對數周期冪率(LPPL)模型
- 六 大數據模型
- 6.1 市場情緒分析
- 通聯情緒指標策略
- 互聯網+量化投資 大數據指數手把手
- 6.2 新聞熱點
- 如何使用優礦之“新聞熱點”?
- 技術分析【3】—— 眾星拱月,眾口鑠金?
- 七 排名選股系統
- 7.1 小市值投資法
- 學習筆記:可模擬(小市值+便宜 的修改版)
- 市值最小300指數
- 流通市值最小股票(新篩選器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊駝策略
- 羊駝策略
- 羊駝反轉策略(修改版)
- 羊駝反轉策略
- 我的羊駝策略,選5只股無腦輪替
- 7.3 低價策略
- 專撿便宜貨(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 輪動模型
- 8.1 大小盤輪動 · 新手上路 -- 二八ETF擇時輪動策略2.0
- 8.2 季節性策略
- Halloween Cycle
- Halloween cycle 2
- 夏買電,東買煤?
- 歷史的十一月板塊漲幅
- 8.3 行業輪動
- 銀行股輪動
- 申萬二級行業在最近1年、3個月、5個交易日的漲幅統計
- 8.4 主題輪動
- 快速研究主題神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板塊異動類
- 風險因子(離散類)
- 8.5 龍頭輪動
- Competitive Securities
- Market Competitiveness
- 主題龍頭類
- 九 組合投資
- 9.1 指數跟蹤 · [策略] 指數跟蹤低成本建倉策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸優化 · 如何在 Python 中利用 CVXOPT 求解二次規劃問題
- 十 波動率
- 10.1 波動率選股 · 風平浪靜 風起豬飛
- 10.2 波動率擇時
- 基于 VIX 指數的擇時策略
- 簡單低波動率指數
- 10.3 Arch/Garch 模型 · 如何使用優礦進行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高頻交易
- 12.1 order book 分析 · 基于高頻 limit order book 數據的短程價格方向預測—— via multi-class SVM
- 12.2 日內交易 · 大盤日內走勢 (for 擇時)
- 十三 Alternative Strategy
- 13.1 易經、傳統文化 · 老黃歷診股
- 第三部分 基金、利率互換、固定收益類
- 一 分級基金
- “優礦”集思錄——分級基金專題
- 基于期權定價的分級基金交易策略
- 基于期權定價的興全合潤基金交易策略
- 二 基金分析
- Alpha 基金“黑天鵝事件” -- 思考以及原因
- 三 債券
- 債券報價中的小陷阱
- 四 利率互換
- Swap Curve Construction
- 中國 Repo 7D 互換的例子
- 第四部分 衍生品相關
- 一 期權數據
- 如何獲取期權市場數據快照
- 期權高頻數據準備
- 二 期權系列
- [ 50ETF 期權] 1. 歷史成交持倉和 PCR 數據
- 【50ETF期權】 2. 歷史波動率
- 【50ETF期權】 3. 中國波指 iVIX
- 【50ETF期權】 4. Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 三 期權分析
- 【50ETF期權】 期權擇時指數 1.0
- 每日期權風險數據整理
- 期權頭寸計算
- 期權探秘1
- 期權探秘2
- 期權市場一周縱覽
- 基于期權PCR指數的擇時策略
- 期權每日成交額PC比例計算
- 四 期貨分析
- 【前方高能!】Gifts from Santa Claus——股指期貨趨勢交易研究