# 基于 VIX 指數的擇時策略
> 來源:https://uqer.io/community/share/55b6152ff9f06c91fa18c5c9
波動率VIX指數是跟蹤市場波動性的指數,一般通過標的期權的隱含波動率計算得來,以芝加哥期權交易所的VIX指數為例,如標的期權的隱含波動率越高,則VIX指數相應越高,一般而言,該指數反映出投資者愿意付出多少成本去對沖投資風險。業內認為,當VIX越高時,表示市場參與者預期后市波動程度會更加激烈,同時也反映其不安的心理狀態;相反,VIX越低時,則反映市場參與者預期后市波動程度會趨于緩和的心態。因此,VIX又被稱為投資人恐慌指標(The Investor Fear Gauge)。
中國波指是由上證所發布,用于衡量上證50ETF未來30日的預期波動。該指數是根據方差互換的原理,結合50ETF期權的實際運作特點,并通過對上證所交易的50ETF期權價格的計算編制而得。網址為: http://www.sse.com.cn/assortment/derivatives/options/volatility/
本文中,基于優礦平臺,自己嘗試計算了日間的中國波指,并將其用在了華夏上證50的擇時買賣上,以驗證VIX指數對未來的預測性
由于上證所未發布其iVIX計算方法,所以此處的計算基于CBOE發布的方法,具體參見: http://www.cboe.com/micro/vix/part2.aspx
## 策略思路
+ 當VIX指數快速上升時,表示市場恐慌情緒蔓延,產生賣出信號
+ 當VIX指數快速下降時,恐慌情緒有所舒緩,產生買入信號
+ 賣出買入信號均用來買賣華夏上證50ETF基金
注:國內唯一一只期權上證50ETF期權,跟蹤標的為華夏上證50ETF(510050)基金
## 1. 計算歷史VIX指數
```py
from matplotlib import pylab
import numpy as np
import pandas as pd
import DataAPI
import seaborn as sns
sns.set_style('white')
```
```py
from CAL.PyCAL import *
from pandas import Series, DataFrame, concat
import pandas as pd
import numpy as np
import seaborn as sns
sns.set_style('white')
from matplotlib import pylab
import time
import math
def getHistDayOptions(var, date):
# 使用DataAPI.OptGet,拿到已退市和上市的所有期權的基本信息;
# 同時使用DataAPI.MktOptdGet,拿到歷史上某一天的期權成交信息;
# 返回歷史上指定日期交易的所有期權信息,包括:
# optID varSecID contractType strikePrice expDate tradeDate closePrice
# 以optID為index。
vixDateStr = date.toISO().replace('-', '')
optionsMkt = DataAPI.MktOptdGet(tradeDate = vixDateStr, field = [u"optID", "tradeDate", "closePrice"], pandas = "1")
optionsMkt = optionsMkt.set_index(u"optID")
optionsMkt.closePrice.name = u"price"
optionsID = map(str, optionsMkt.index.values.tolist())
fieldNeeded = ["optID", u"varSecID", u'contractType', u'strikePrice', u'expDate']
optionsInfo = DataAPI.OptGet(optID=optionsID, contractStatus = [u"DE", u"L"], field=fieldNeeded, pandas="1")
optionsInfo = optionsInfo.set_index(u"optID")
options = concat([optionsInfo, optionsMkt], axis=1, join='inner').sort_index()
return options[options.varSecID==var]
def getNearNextOptExpDate(options, vixDate):
# 找到options中的當月和次月期權到期日;
# 用這兩個期權隱含的未來波動率來插值計算未來30隱含波動率,是為市場恐慌指數VIX;
# 如果options中的最近到期期權離到期日僅剩1天以內,則拋棄這一期權,改
# 選擇次月期權和次月期權之后第一個到期的期權來計算。
# 返回的near和next就是用來計算VIX的兩個期權的到期日
optionsExpDate = Series(options.expDate.values.ravel()).unique().tolist()
near = min(optionsExpDate)
optionsExpDate.remove(near)
if Date.parseISO(near) - vixDate < 1:
near = min(optionsExpDate)
optionsExpDate.remove(near)
next = min(optionsExpDate)
return near, next
def getStrikeMinCallMinusPutClosePrice(options):
# options 中包括計算某日VIX的call和put兩種期權,
# 對每個行權價,計算相應的call和put的價格差的絕對值,
# 返回這一價格差的絕對值最小的那個行權價,
# 并返回該行權價對應的call和put期權價格的差
call = options[options.contractType==u"CO"].set_index(u"strikePrice").sort_index()
put = options[options.contractType==u"PO"].set_index(u"strikePrice").sort_index()
callMinusPut = call.closePrice - put.closePrice
strike = abs(callMinusPut).idxmin()
priceDiff = callMinusPut[strike]
return strike, priceDiff
def calSigmaSquare(options, FF, R, T):
# 計算某個到期日期權對于VIX的貢獻sigma;
# 輸入為期權數據options,FF為forward index price,
# R為無風險利率, T為期權剩余到期時間
callAll = options[options.contractType==u"CO"].set_index(u"strikePrice").sort_index()
putAll = options[options.contractType==u"PO"].set_index(u"strikePrice").sort_index()
callAll['deltaK'] = 0.05
putAll['deltaK'] = 0.05
# Interval between strike prices
index = callAll.index
if len(index) < 3:
callAll['deltaK'] = index[-1] - index[0]
else:
for i in range(1,len(index)-1):
callAll['deltaK'].ix[index[i]] = (index[i+1]-index[i-1])/2.0
callAll['deltaK'].ix[index[0]] = index[1]-index[0]
callAll['deltaK'].ix[index[-1]] = index[-1] - index[-2]
index = putAll.index
if len(index) < 3:
putAll['deltaK'] = index[-1] - index[0]
else:
for i in range(1,len(index)-1):
putAll['deltaK'].ix[index[i]] = (index[i+1]-index[i-1])/2.0
putAll['deltaK'].ix[index[0]] = index[1]-index[0]
putAll['deltaK'].ix[index[-1]] = index[-1] - index[-2]
call = callAll[callAll.index > FF]
put = putAll[putAll.index < FF]
FF_idx = FF
if not put.empty:
FF_idx = put.index[-1]
put['closePrice'].iloc[-1] = (putAll.ix[FF_idx].closePrice + callAll.ix[FF_idx].closePrice)/2.0
callComponent = call.closePrice*call.deltaK/call.index/call.index
putComponent = put.closePrice*put.deltaK/put.index/put.index
sigma = (sum(callComponent)+sum(putComponent))*np.exp(T*R)*2/T
sigma = sigma - (FF/FF_idx - 1)**2/T
return sigma
def calDayVIX(optionVarSecID, vixDate):
# 利用CBOE的計算方法,計算歷史某一日的未來30日期權波動率指數VIX
# The risk-free interest rates
R_near = 0.06
R_next = 0.06
# 拿取所需期權信息
options = getHistDayOptions(optionVarSecID, vixDate)
termNearNext = getNearNextOptExpDate(options, vixDate)
optionsNearTerm = options[options.expDate == termNearNext[0]]
optionsNextTerm = options[options.expDate == termNearNext[1]]
# time to expiration
T_near = (Date.parseISO(termNearNext[0]) - vixDate)/365.0
T_next = (Date.parseISO(termNearNext[1]) - vixDate)/365.0
# the forward index prices
nearPriceDiff = getStrikeMinCallMinusPutClosePrice(optionsNearTerm)
nextPriceDiff = getStrikeMinCallMinusPutClosePrice(optionsNextTerm)
near_F = nearPriceDiff[0] + np.exp(T_near*R_near)*nearPriceDiff[1]
next_F = nextPriceDiff[0] + np.exp(T_next*R_next)*nextPriceDiff[1]
# 計算不同到期日期權對于VIX的貢獻
near_sigma = calSigmaSquare(optionsNearTerm, near_F, R_near, T_near)
next_sigma = calSigmaSquare(optionsNextTerm, next_F, R_next, T_next)
# 利用兩個不同到期日的期權對VIX的貢獻sig1和sig2,
# 已經相應的期權剩余到期時間T1和T2;
# 差值得到并返回VIX指數(%)
w = (T_next - 30.0/365.0)/(T_next - T_near)
vix = T_near*w*near_sigma + T_next*(1 - w)*next_sigma
return 100*np.sqrt(vix*365.0/30.0)
def getHistVIX(beginDate, endDate):
# 計算歷史一段時間內的VIX指數并返回
optionVarSecID = u"510050.XSHG"
cal = Calendar('China.SSE')
dates = cal.bizDatesList(beginDate, endDate)
dates = map(Date.toDateTime, dates)
histVIX = pd.DataFrame(0.0, index=dates, columns=['VIX'])
histVIX.index.name = 'date'
for date in histVIX.index:
histVIX['VIX'][date] = calDayVIX(optionVarSecID, Date.fromDateTime(date))
return histVIX
def getDayVIX(date):
optionVarSecID = u"510050.XSHG"
return calDayVIX(optionVarSecID, date)
```
## 2. VIX指數與華夏上證50ETF基金的走勢對比
```py
secID = '510050.XSHG'
begin = Date(2015, 2, 9)
end = Date(2015, 7, 23)
# 歷史VIX
histVIX = getHistVIX(begin, end)
# 華夏上證50ETF
etf = DataAPI.MktFunddGet(secID, beginDate=begin.toISO().replace('-', ''), endDate=end.toISO().replace('-', ''), field=['tradeDate', 'closePrice'])
etf['tradeDate'] = pd.to_datetime(etf['tradeDate'])
etf = etf.set_index('tradeDate')
```
```py
font.set_size(12)
pylab.figure(figsize = (16,8))
ax1 = histVIX.plot(x=histVIX.index, y='VIX', style='r')
ax1.set_xlabel(u'日期', fontproperties=font)
ax1.set_ylabel(u'VIX(%)', fontproperties=font)
ax2 = ax1.twinx()
ax2.plot(etf.index,etf.closePrice)
ax2.set_ylabel(u'ETF Price', fontproperties=font)
<matplotlib.text.Text at 0x5a66390>
```

關于VIX,比較成熟的美國市場中,標普500指數和相應的VIX之間呈負相關性。具體可以參照CBOE的數據:http://www.cboe.com/micro/vix/part3.aspx
這可以理解為:
+ 當VIX越高時,表示市場參與者預期后市波動程度會更加激烈,所以謹慎持倉,甚至逐漸減倉;
+ 相反,VIX越低時,市場參與者預期后市波動程度會趨于緩和,開始放心投資股市。
上圖中的中國市場VIX指數與華夏上證50ETF走勢對比中,我們不難發現以下幾點:
+ 上證50ETF期權于2月9日上市,之后一個月VIX穩定在低位運行,同時市場也表現出穩定的態勢
+ 3月下旬到5月初一段時間,VIX指數顯著上升,表示市場認為后期震蕩會加劇,但這種恐慌淹沒在牛市大潮中
+ 5月到6月VIX高位運行,但似乎沒有引起市場的足夠重視
+ 6月中的股市大跌開始后,VIX指數快速上升到接近60
+ 7月時候,市場認可國家救市決心,VIX開始從高位迅速下降,股指也日趨穩定
可以看出,VIX指數在和股指的并駕齊驅中總是慢人一步,沒法充分表現出股指在六月極高位時候市場的不安;實際上,國內期權市場建立不足半年,期權流動性并不夠大,導致基于期權市場的VIX指數對于中國股市的預測并不如成熟市場一樣流暢
## 3. 基于VIX指數的擇時策略示例
```py
start = datetime(2015, 2, 9) # 回測起始時間
end = datetime(2015, 7, 26) # 回測結束時間
benchmark = '510050.XSHG' # 策略參考標準
universe = ['510050.XSHG'] # 股票池
capital_base = 100000 # 起始資金
commission = Commission(0.0,0.0)
window_short = 1
window_long = 5
longest_history = 1
SD = 0.08
histVIX['short_window'] = pd.rolling_mean(histVIX['VIX'], window=window_short)
histVIX['long_window'] = pd.rolling_mean(histVIX['VIX'], window=window_long)
def initialize(account): # 初始化虛擬賬戶狀態
account.fund = universe[0]
def handle_data(account): # 每個交易日的買入賣出指令
hist = account.get_history(longest_history)
fund = account.fund
# 獲取回測當日的前一天日期
dt = Date.fromDateTime(account.current_date)
cal = Calendar('China.IB')
lastTDay = cal.advanceDate(dt,'-1B',BizDayConvention.Preceding) #計算出前一個交易日期
last_day_str = lastTDay.strftime("%Y-%m-%d")
# 計算買入賣出信號
try:
short_mean = histVIX['short_window'].loc[last_day_str] # 計算短均線值
long_mean = histVIX['long_window'].loc[last_day_str] # 計算長均線值
long_flag = True if (short_mean - long_mean) < -SD * long_mean else False
short_flag = True if (short_mean - long_mean) > SD * long_mean else False
except:
long_flag = False
short_flag = False
if long_flag:
if account.position.secpos.get(fund, 0) == 0:
# 空倉時全倉買入,買入股數為100的整數倍
approximationAmount = int(account.cash / hist[fund]['closePrice'][-1]/100.0) * 100
order(fund, approximationAmount)
elif short_flag:
# 賣出時,全倉清空
if account.position.secpos.get(fund, 0) >= 0:
order_to(fund, 0)
```

可以看出:
+ 基于VIX指數高位時空倉、低位時進場的策略,可以比較有效地避開股指大跌的風險
+ 但由于國內期權市場流動性不足,VIX指數并不能有效反應市場的情緒,導致我們也錯過了很多牛市的蛋糕
- Python 量化交易教程
- 第一部分 新手入門
- 一 量化投資視頻學習課程
- 二 Python 手把手教學
- 量化分析師的Python日記【第1天:誰來給我講講Python?】
- 量化分析師的Python日記【第2天:再接著介紹一下Python唄】
- 量化分析師的Python日記【第3天:一大波金融Library來襲之numpy篇】
- 量化分析師的Python日記【第4天:一大波金融Library來襲之scipy篇】
- 量化分析師的Python日記【第5天:數據處理的瑞士軍刀pandas】
- 量化分析師的Python日記【第6天:數據處理的瑞士軍刀pandas下篇
- 量化分析師的Python日記【第7天:Q Quant 之初出江湖】
- 量化分析師的Python日記【第8天 Q Quant兵器譜之函數插值】
- 量化分析師的Python日記【第9天 Q Quant兵器譜之二叉樹】
- 量化分析師的Python日記【第10天 Q Quant兵器譜 -之偏微分方程1】
- 量化分析師的Python日記【第11天 Q Quant兵器譜之偏微分方程2】
- 量化分析師的Python日記【第12天:量化入門進階之葵花寶典:因子如何產生和回測】
- 量化分析師的Python日記【第13天 Q Quant兵器譜之偏微分方程3】
- 量化分析師的Python日記【第14天:如何在優礦上做Alpha對沖模型】
- 量化分析師的Python日記【第15天:如何在優礦上搞一個wealthfront出來】
- 第二部分 股票量化相關
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha對沖策略——觀《量化分析師Python日記第14天》有感
- 熔斷不要怕, alpha model 為你保駕護航!
- 尋找 alpha 之: alpha 設計
- 1.2 基本面因子選股
- Porfolio(現金比率+負債現金+現金保障倍數)+市盈率
- ROE選股指標
- 成交量因子
- ROIC&cashROIC
- 【國信金工】資產周轉率選股模型
- 【基本面指標】Cash Cow
- 量化因子選股——凈利潤/營業總收入
- 營業收入增長率+市盈率
- 1.3 財報閱讀 ? [米缸量化讀財報] 資產負債表-投資相關資產
- 1.4 股東分析
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)— 更新版
- 誰是中國A股最有錢的自然人
- 1.5 宏觀研究
- 【干貨包郵】手把手教你做宏觀擇時
- 宏觀研究:從估值角度看當前市場
- 追尋“國家隊”的足跡
- 二 套利
- 2.1 配對交易
- HS300ETF套利(上)
- 【統計套利】配對交易
- 相似公司股票搬磚
- Paired trading
- 2.2 期現套利 ? 通過股指期貨的期現差與 ETF 對沖套利
- 三 事件驅動
- 3.1 盈利預增
- 盈利預增事件
- 事件驅動策略示例——盈利預增
- 3.2 分析師推薦 ? 分析師的金手指?
- 3.3 牛熊轉換
- 歷史總是相似 牛市還在延續
- 歷史總是相似 牛市已經見頂?
- 3.4 熔斷機制 ? 股海拾貝之 [熔斷錯殺股]
- 3.5 暴漲暴跌 ? [實盤感悟] 遇上暴跌我該怎么做?
- 3.6 兼并重組、舉牌收購 ? 寶萬戰-大戲開幕
- 四 技術分析
- 4.1 布林帶
- 布林帶交易策略
- 布林帶回調系統-日內
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均線系統
- 技術分析入門 —— 雙均線策略
- 5日線10日線交易策略
- 用5日均線和10日均線進行判斷 --- 改進版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑異同移動平均線方法
- 4.4 阿隆指標 ? 技術指標阿隆( Aroon )全解析
- 4.5 CCI ? CCI 順勢指標探索
- 4.6 RSI
- 重寫 rsi
- RSI指標策略
- 4.7 DMI ? DMI 指標體系的構建及簡單應用
- 4.8 EMV ? EMV 技術指標的構建及應用
- 4.9 KDJ ? KDJ 策略
- 4.10 CMO
- CMO 策略模仿練習 1
- CMO策略模仿練習2
- [技術指標] CMO
- 4.11 FPC ? FPC 指標選股
- 4.12 Chaikin Volatility
- 嘉慶離散指標測試
- 4.13 委比 ? 實時計算委比
- 4.14 封單量
- 按照封單跟流通股本比例排序,剔除6月上市新股,前50
- 漲停股票封單統計
- 實時計算漲停板股票的封單資金與總流通市值的比例
- 4.15 成交量 ? 決戰之地, IF1507 !
- 4.16 K 線分析 ? 尋找夜空中最亮的星
- 五 量化模型
- 5.1 動量模型
- Momentum策略
- 【小散學量化】-2-動量模型的簡單實踐
- 一個追漲的策略(修正版)
- 動量策略(momentum driven)
- 動量策略(momentum driven)——修正版
- 最經典的Momentum和Contrarian在中國市場的測試
- 最經典的Momentum和Contrarian在中國市場的測試-yanheven改進
- [策略]基于勝率的趨勢交易策略
- 策略探討(更新):價量結合+動量反轉
- 反向動量策略(reverse momentum driven)
- 輕松跑贏大盤 - 主題Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面選股系統:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR預測股票開盤價 v1.0
- 5.4 決策樹、隨機樹
- 決策樹模型(固定模型)
- 基于Random Forest的決策策略
- 5.5 鐘擺理論 · 鐘擺理論的簡單實現——完美躲過股災和精準抄底
- 5.6 海龜模型
- simple turtle
- 俠之大者 一起賺錢
- 5.7 5217 策略 · 白龍馬的新手策略
- 5.8 SMIA · 基于歷史狀態空間相似性匹配的行業配置 SMIA 模型—取交集
- 5.9 神經網絡
- 神經網絡交易的訓練部分
- 通過神經網絡進行交易
- 5.10 PAMR · PAMR : 基于均值反轉的投資組合選擇策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假說, Hurst 指數 · 分形市場假說,一個聽起來很美的假說
- 5.13 變點理論 · 變點策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用債風險模型初探之:Z-Score Model
- user-defined package
- 5.15 機器學習 · Machine Learning 學習筆記(一) by OTreeWEN
- 5.16 DualTrust 策略和布林強盜策略
- 5.17 卡爾曼濾波
- 5.18 LPPL anti-bubble model
- 今天大盤熔斷大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之謎——對數周期冪率(LPPL)模型
- 六 大數據模型
- 6.1 市場情緒分析
- 通聯情緒指標策略
- 互聯網+量化投資 大數據指數手把手
- 6.2 新聞熱點
- 如何使用優礦之“新聞熱點”?
- 技術分析【3】—— 眾星拱月,眾口鑠金?
- 七 排名選股系統
- 7.1 小市值投資法
- 學習筆記:可模擬(小市值+便宜 的修改版)
- 市值最小300指數
- 流通市值最小股票(新篩選器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊駝策略
- 羊駝策略
- 羊駝反轉策略(修改版)
- 羊駝反轉策略
- 我的羊駝策略,選5只股無腦輪替
- 7.3 低價策略
- 專撿便宜貨(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 輪動模型
- 8.1 大小盤輪動 · 新手上路 -- 二八ETF擇時輪動策略2.0
- 8.2 季節性策略
- Halloween Cycle
- Halloween cycle 2
- 夏買電,東買煤?
- 歷史的十一月板塊漲幅
- 8.3 行業輪動
- 銀行股輪動
- 申萬二級行業在最近1年、3個月、5個交易日的漲幅統計
- 8.4 主題輪動
- 快速研究主題神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板塊異動類
- 風險因子(離散類)
- 8.5 龍頭輪動
- Competitive Securities
- Market Competitiveness
- 主題龍頭類
- 九 組合投資
- 9.1 指數跟蹤 · [策略] 指數跟蹤低成本建倉策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸優化 · 如何在 Python 中利用 CVXOPT 求解二次規劃問題
- 十 波動率
- 10.1 波動率選股 · 風平浪靜 風起豬飛
- 10.2 波動率擇時
- 基于 VIX 指數的擇時策略
- 簡單低波動率指數
- 10.3 Arch/Garch 模型 · 如何使用優礦進行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高頻交易
- 12.1 order book 分析 · 基于高頻 limit order book 數據的短程價格方向預測—— via multi-class SVM
- 12.2 日內交易 · 大盤日內走勢 (for 擇時)
- 十三 Alternative Strategy
- 13.1 易經、傳統文化 · 老黃歷診股
- 第三部分 基金、利率互換、固定收益類
- 一 分級基金
- “優礦”集思錄——分級基金專題
- 基于期權定價的分級基金交易策略
- 基于期權定價的興全合潤基金交易策略
- 二 基金分析
- Alpha 基金“黑天鵝事件” -- 思考以及原因
- 三 債券
- 債券報價中的小陷阱
- 四 利率互換
- Swap Curve Construction
- 中國 Repo 7D 互換的例子
- 第四部分 衍生品相關
- 一 期權數據
- 如何獲取期權市場數據快照
- 期權高頻數據準備
- 二 期權系列
- [ 50ETF 期權] 1. 歷史成交持倉和 PCR 數據
- 【50ETF期權】 2. 歷史波動率
- 【50ETF期權】 3. 中國波指 iVIX
- 【50ETF期權】 4. Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 三 期權分析
- 【50ETF期權】 期權擇時指數 1.0
- 每日期權風險數據整理
- 期權頭寸計算
- 期權探秘1
- 期權探秘2
- 期權市場一周縱覽
- 基于期權PCR指數的擇時策略
- 期權每日成交額PC比例計算
- 四 期貨分析
- 【前方高能!】Gifts from Santa Claus——股指期貨趨勢交易研究