# 量化分析師的Python日記【第11天 Q Quant兵器譜之偏微分方程2】
> 來源:https://uqer.io/community/share/5534ad3ff9f06c8f33904689
> 這是量化分析師的偏微分方程系列的第二篇,在這一篇中我們將解決上一篇顯式格式留下的穩定性問題。本篇將引入隱式差分算法,讀者可以學到:
>
> 1. 隱式差分格式描述
> 1. 三對角矩陣求解
> 1. 如何使用`scipy`加速算法實現
>
> 在完成兩天的基礎學習之后,在下一天中,我們將把已經學到的知識運用到金融定價領域最重要的方程之一:Black - Shcoles - Merton 偏微分方差
```py
from matplotlib import pylab
import seaborn as sns
import numpy as np
np.set_printoptions(precision = 4)
font.set_size(20)
def initialCondition(x):
return 4.0*(1.0 - x) * x
```
## 1. 隱式差分格式
像上一天一樣,我們從差分格式的數學表述開始。隱式格式與顯式格式的區別,在于我們時間方向選擇的基準點。顯式格式使用`k`,而隱式格式選擇`k+1`:

剩下的推到過程我完全一樣,我們看到無論隱式格式還是顯式格式,它們的截斷誤差是一樣的:

用離散值`Uj,k`替換`uj,k`,我們得到差分方程:

最后,到這里我們得到一個迭代方程組:

其中。
```py
N = 500 # x方向網格數
M = 500 # t方向網格數
T = 1.0
X = 1.0
xArray = np.linspace(0,X,N+1)
yArray = map(initialCondition, xArray)
starValues = yArray
U = np.zeros((N+1,M+1))
U[:,0] = starValues
```
```py
dx = X / N
dt = T / M
kappa = 1.0
rho = kappa * dt / dx / dx
```
### 1.1 矩陣求解(`TridiagonalSystem`)
雖然看上去形式只是變了一點,但是求解的問題有很大的變化。在每個時間點上,我們需要求解如下的一個線性方程組:

這里` A`為:

幸運的是,這個是個三對角矩陣,可以很簡單的利用Gauss消去法求解。我們這里不會詳細討論算法的描述,細節都可以在下面的python類`TridiagonalSystem`中了解到:
```py
class TridiagonalSystem:
def __init__(self, udiag, cdiag, ldiag):
'''
三對角矩陣:
udiag -- 上對角線
cdiag -- 對角線
ldiag -- 下對角線
'''
assert len(udiag) == len(cdiag)
assert len(cdiag) == len(ldiag)
self.udiag = udiag
self.cdiag = cdiag
self.ldiag = ldiag
self.length = len(self.cdiag)
def solve(self, rhs):
'''
求解以下方程組
A \ dot x = rhs
'''
assert len(rhs) == len(self.cdiag)
udiag = self.udiag.copy()
cdiag = self.cdiag.copy()
ldiag = self.ldiag.copy()
b = rhs.copy()
# 消去下對角元
for i in range(1, self.length):
cdiag[i] -= udiag[i-1] * ldiag[i] / cdiag[i-1]
b[i] -= b[i-1] * ldiag[i] / cdiag[i-1]
# 從最后一個方程開始求解
x = np.zeros(self.length)
x[self.length-1] = b[self.length - 1] / cdiag[self.length - 1]
for i in range(self.length - 2, -1, -1):
x[i] = (b[i] - udiag[i]*x[i+1]) / cdiag[i]
return x
def multiply(self, x):
'''
矩陣乘法:
rhs = A \dot x
'''
assert len(x) == len(self.cdiag)
rhs = np.zeros(self.length)
rhs[0] = x[0] * self.cdiag[0] + x[1] * self.udiag[0]
for i in range(1, self.length - 1):
rhs[i] = x[i-1] * self.ldiag[i] + x[i] * self.cdiag[i] + x[i+1] * self.udiag[i]
rhs[self.length - 1] = x[self.length - 2] * self.ldiag[self.length - 1] + x[self.length - 1] * self.cdiag[self.length - 1]
return rhs
```
### 1.2 隱式格式求解
```py
for k in range(0, M):
udiag = - np.ones(N-1) * rho
ldiag = - np.ones(N-1) * rho
cdiag = np.ones(N-1) * (1.0 + 2. * rho)
mat = TridiagonalSystem(udiag, cdiag, ldiag)
rhs = U[1:N,k]
x = mat.solve(rhs)
U[1:N, k+1] = x
U[0][k+1] = 0.
U[N][k+1] = 0.
```
```py
from lib.utilities import plotLines
plotLines([U[:,0], U[:, int(0.10/ dt)], U[:, int(0.20/ dt)], U[:, int(0.50/ dt)]], xArray, title = u'一維熱傳導方程', xlabel = '$x$',
ylabel = r'$U(\dot, \tau)$', legend = [r'$\tau = 0.$', r'$\tau = 0.10$', r'$\tau = 0.20$', r'$\tau = 0.50$'])
```

```py
from lib.utilities import plotSurface
tArray = np.linspace(0, 0.2, int(0.2 / dt) + 1)
tGrids, xGrids = np.meshgrid(tArray, xArray)
plotSurface(xGrids, tGrids, U[:,:int(0.2 / dt) + 1], title = u"熱傳導方程 $u_\\tau = u_{xx}$,隱式格式($\\rho = 50$)", xlabel = "$x$", ylabel = r"$\tau$", zlabel = r"$U$")
```

## 2. 繼續組裝
像我們在顯示格式那一節介紹的同樣做法,我們把之前的代碼整合起來,歸集與一個完整的類`ImplicitEulerScheme`中:
```py
from lib.utilities import HeatEquation
```
上面的代碼(使用`library`功能,關于該功能的具體介紹請見[幫助 — Library是干什么的](https://app.wmcloud.com/mercury/help/faq/#Library是干什么的))導入我們在上一期中已經定義過的類`HeatEquation`,避免代碼重復。
```py
class ImplicitEulerScheme:
def __init__(self, M, N, equation):
self.eq = equation
self.dt = self.eq.T / M
self.dx = self.eq.X / N
self.U = np.zeros((N+1, M+1))
self.xArray = np.linspace(0,self.eq.X,N+1)
self.U[:,0] = map(self.eq.ic, self.xArray)
self.rho = self.eq.kappa * self.dt / self.dx / self.dx
self.M = M
self.N = N
def roll_back(self):
for k in range(0, self.M):
udiag = - np.ones(self.N-1) * self.rho
ldiag = - np.ones(self.N-1) * self.rho
cdiag = np.ones(self.N-1) * (1.0 + 2. * self.rho)
mat = TridiagonalSystem(udiag, cdiag, ldiag)
rhs = self.U[1:self.N,k]
x = mat.solve(rhs)
self.U[1:self.N, k+1] = x
self.U[0][k+1] = self.eq.bcl(self.xArray[0])
self.U[self.N][k+1] = self.eq.bcr(self.xArray[-1])
def mesh_grids(self):
tArray = np.linspace(0, self.eq.T, M+1)
tGrids, xGrids = np.meshgrid(tArray, self.xArray)
return tGrids, xGrids
```
然后我們可以使用下面的三行簡單調用完成功能:
```py
ht = HeatEquation(1.,X, T)
scheme = ImplicitEulerScheme(M,N, ht)
scheme.roll_back()
scheme.U
array([[ 0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00],
[ 7.9840e-03, 7.2843e-03, 6.9266e-03, ..., 3.8398e-07,
3.7655e-07, 3.6926e-07],
[ 1.5936e-02, 1.4567e-02, 1.3852e-02, ..., 7.6795e-07,
7.5308e-07, 7.3851e-07],
...,
[ 1.5936e-02, 1.4567e-02, 1.3852e-02, ..., 7.6795e-07,
7.5308e-07, 7.3851e-07],
[ 7.9840e-03, 7.2843e-03, 6.9266e-03, ..., 3.8398e-07,
3.7655e-07, 3.6926e-07],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 0.0000e+00,
0.0000e+00, 0.0000e+00]])
```
## 3. 使用 `scipy`加速
軟件工程行業里有句老話,叫做:“不要重復發明輪子!”。實際上,之前的代碼里面,我們就造了自己的輪子:`TridiagonalSystem`。三對角矩陣作為最最常見的稀疏矩陣,關于它的線性方程組求解算法實際上早已為業界熟知,也已經有很多庫內置了工業級別強度實現。這里我們取`scipy`作為例子,來展示使用外源庫實現的好處:
+ 更加穩健的算法: 知名庫算法由于使用者廣泛,有更大的概率發現一些極端情形下的bug。庫作者可以根據用戶反饋,及時調整算法;
+ 更高的性能: 由于庫的使用更為廣泛,庫作者有更大的動力去使用各種技術去提高算法的性能:例如使用更高效的語言實現,例如C。scipy中的情形就是一例。
+ 持續的維護: 庫的受眾范圍廣,社區的力量會推動庫作者持續維護。
下面的代碼展示,如何使用`scipy`中的`solve_banded`算法求解三對角矩陣:
```py
import scipy as sp
from scipy.linalg import solve_banded
A = np.zeros((3, 5))
A[0, :] = np.ones(5) * 1. # 上對角線
A[1, :] = np.ones(5) * 3. # 對角線
A[2, :] = np.ones(5) * (-1.) # 下對角線
b = [1.,2.,3.,4.,5.]
x = solve_banded ((1,1), A,b)
print 'x = A^-1b = ',x
x = A^-1b = [ 0.1833 0.45 0.8333 0.95 1.9833]
```
我們使用上面的算法替代我們之前的`TridiagonalSystem`,
```py
import scipy as sp
from scipy.linalg import solve_banded
for k in range(0, M):
udiag = - np.ones(N-1) * rho
ldiag = - np.ones(N-1) * rho
cdiag = np.ones(N-1) * (1.0 + 2. * rho)
mat = np.zeros((3,N-1))
mat[0,:] = udiag
mat[1,:] = cdiag
mat[2,:] = ldiag
rhs = U[1:N,k]
x = solve_banded ((1,1), mat,rhs)
U[1:N, k+1] = x
U[0][k+1] = 0.
U[N][k+1] = 0.
```
```py
plotLines([U[:,0], U[:, int(0.10/ dt)], U[:, int(0.20/ dt)], U[:, int(0.50/ dt)]], xArray, title = u'一維熱傳導方程,使用scipy', xlabel = '$x$',
ylabel = r'$U(\dot, \tau)$', legend = [r'$\tau = 0.$', r'$\tau = 0.10$', r'$\tau = 0.20$', r'$\tau = 0.50$'])
```

同樣的我們定義一個新類`ImplicitEulerSchemeWithScipy`使用`scipy`的算法:
```py
class ImplicitEulerSchemeWithScipy:
def __init__(self, M, N, equation):
self.eq = equation
self.dt = self.eq.T / M
self.dx = self.eq.X / N
self.U = np.zeros((N+1, M+1))
self.xArray = np.linspace(0,self.eq.X,N+1)
self.U[:,0] = map(self.eq.ic, self.xArray)
self.rho = self.eq.kappa * self.dt / self.dx / self.dx
self.M = M
self.N = N
def roll_back(self):
for k in range(0, self.M):
udiag = - np.ones(self.N-1) * self.rho
ldiag = - np.ones(self.N-1) * self.rho
cdiag = np.ones(self.N-1) * (1.0 + 2. * self.rho)
mat = np.zeros((3,self.N-1))
mat[0,:] = udiag
mat[1,:] = cdiag
mat[2,:] = ldiag
rhs = self.U[1:self.N,k]
x = solve_banded((1,1), mat, rhs)
self.U[1:self.N, k+1] = x
self.U[0][k+1] = self.eq.bcl(self.xArray[0])
self.U[self.N][k+1] = self.eq.bcr(self.xArray[-1])
def mesh_grids(self):
tArray = np.linspace(0, self.eq.T, M+1)
tGrids, xGrids = np.meshgrid(tArray, self.xArray)
return tGrids, xGrids
```
下面的代碼,比較了兩種做法的性能。可以看到僅僅簡單的替代三對角矩陣算法,我們就獲得了接近8倍的性能提升
```py
import time
startTime = time.time()
loop_round = 10
# 不使用scipy
for k in range(loop_round):
ht = HeatEquation(1.,X, T)
scheme = ImplicitEulerScheme(M,N, ht)
scheme.roll_back()
endTime = time.time()
print '{0:<40}{1:.4f}'.format('執行時間(s) -- 不使用scipy.linalg: ', endTime - startTime)
# 使用scipy
startTime = time.time()
for k in range(loop_round):
ht = HeatEquation(1.,X, T)
scheme = ImplicitEulerSchemeWithScipy(M,N, ht)
scheme.roll_back()
endTime = time.time()
print '{0:<40}{1:.4f}'.format('執行時間(s) -- 使用scipy.linalg: ', endTime - startTime)
執行時間(s) -- 不使用scipy.linalg: 12.1589
執行時間(s) -- 使用scipy.linalg: 1.6224
```
## 4. 尾聲
到這里為止,我們已經結束了偏微分方差差分格式的基礎學習。這是一個很大的學科,這兩天也只能做到“管中窺豹”。但是有了以上的基礎知識,讀者已經有了足夠的積累,可以處理一些金融工程中會實際遇到的方程。在下一天中,我們將把這兩天學習到的知識運用到金融工程史上最重要的方程:Black - Scholes - Merton 偏微分方程。
- Python 量化交易教程
- 第一部分 新手入門
- 一 量化投資視頻學習課程
- 二 Python 手把手教學
- 量化分析師的Python日記【第1天:誰來給我講講Python?】
- 量化分析師的Python日記【第2天:再接著介紹一下Python唄】
- 量化分析師的Python日記【第3天:一大波金融Library來襲之numpy篇】
- 量化分析師的Python日記【第4天:一大波金融Library來襲之scipy篇】
- 量化分析師的Python日記【第5天:數據處理的瑞士軍刀pandas】
- 量化分析師的Python日記【第6天:數據處理的瑞士軍刀pandas下篇
- 量化分析師的Python日記【第7天:Q Quant 之初出江湖】
- 量化分析師的Python日記【第8天 Q Quant兵器譜之函數插值】
- 量化分析師的Python日記【第9天 Q Quant兵器譜之二叉樹】
- 量化分析師的Python日記【第10天 Q Quant兵器譜 -之偏微分方程1】
- 量化分析師的Python日記【第11天 Q Quant兵器譜之偏微分方程2】
- 量化分析師的Python日記【第12天:量化入門進階之葵花寶典:因子如何產生和回測】
- 量化分析師的Python日記【第13天 Q Quant兵器譜之偏微分方程3】
- 量化分析師的Python日記【第14天:如何在優礦上做Alpha對沖模型】
- 量化分析師的Python日記【第15天:如何在優礦上搞一個wealthfront出來】
- 第二部分 股票量化相關
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha對沖策略——觀《量化分析師Python日記第14天》有感
- 熔斷不要怕, alpha model 為你保駕護航!
- 尋找 alpha 之: alpha 設計
- 1.2 基本面因子選股
- Porfolio(現金比率+負債現金+現金保障倍數)+市盈率
- ROE選股指標
- 成交量因子
- ROIC&cashROIC
- 【國信金工】資產周轉率選股模型
- 【基本面指標】Cash Cow
- 量化因子選股——凈利潤/營業總收入
- 營業收入增長率+市盈率
- 1.3 財報閱讀 ? [米缸量化讀財報] 資產負債表-投資相關資產
- 1.4 股東分析
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)— 更新版
- 誰是中國A股最有錢的自然人
- 1.5 宏觀研究
- 【干貨包郵】手把手教你做宏觀擇時
- 宏觀研究:從估值角度看當前市場
- 追尋“國家隊”的足跡
- 二 套利
- 2.1 配對交易
- HS300ETF套利(上)
- 【統計套利】配對交易
- 相似公司股票搬磚
- Paired trading
- 2.2 期現套利 ? 通過股指期貨的期現差與 ETF 對沖套利
- 三 事件驅動
- 3.1 盈利預增
- 盈利預增事件
- 事件驅動策略示例——盈利預增
- 3.2 分析師推薦 ? 分析師的金手指?
- 3.3 牛熊轉換
- 歷史總是相似 牛市還在延續
- 歷史總是相似 牛市已經見頂?
- 3.4 熔斷機制 ? 股海拾貝之 [熔斷錯殺股]
- 3.5 暴漲暴跌 ? [實盤感悟] 遇上暴跌我該怎么做?
- 3.6 兼并重組、舉牌收購 ? 寶萬戰-大戲開幕
- 四 技術分析
- 4.1 布林帶
- 布林帶交易策略
- 布林帶回調系統-日內
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均線系統
- 技術分析入門 —— 雙均線策略
- 5日線10日線交易策略
- 用5日均線和10日均線進行判斷 --- 改進版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑異同移動平均線方法
- 4.4 阿隆指標 ? 技術指標阿隆( Aroon )全解析
- 4.5 CCI ? CCI 順勢指標探索
- 4.6 RSI
- 重寫 rsi
- RSI指標策略
- 4.7 DMI ? DMI 指標體系的構建及簡單應用
- 4.8 EMV ? EMV 技術指標的構建及應用
- 4.9 KDJ ? KDJ 策略
- 4.10 CMO
- CMO 策略模仿練習 1
- CMO策略模仿練習2
- [技術指標] CMO
- 4.11 FPC ? FPC 指標選股
- 4.12 Chaikin Volatility
- 嘉慶離散指標測試
- 4.13 委比 ? 實時計算委比
- 4.14 封單量
- 按照封單跟流通股本比例排序,剔除6月上市新股,前50
- 漲停股票封單統計
- 實時計算漲停板股票的封單資金與總流通市值的比例
- 4.15 成交量 ? 決戰之地, IF1507 !
- 4.16 K 線分析 ? 尋找夜空中最亮的星
- 五 量化模型
- 5.1 動量模型
- Momentum策略
- 【小散學量化】-2-動量模型的簡單實踐
- 一個追漲的策略(修正版)
- 動量策略(momentum driven)
- 動量策略(momentum driven)——修正版
- 最經典的Momentum和Contrarian在中國市場的測試
- 最經典的Momentum和Contrarian在中國市場的測試-yanheven改進
- [策略]基于勝率的趨勢交易策略
- 策略探討(更新):價量結合+動量反轉
- 反向動量策略(reverse momentum driven)
- 輕松跑贏大盤 - 主題Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面選股系統:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR預測股票開盤價 v1.0
- 5.4 決策樹、隨機樹
- 決策樹模型(固定模型)
- 基于Random Forest的決策策略
- 5.5 鐘擺理論 · 鐘擺理論的簡單實現——完美躲過股災和精準抄底
- 5.6 海龜模型
- simple turtle
- 俠之大者 一起賺錢
- 5.7 5217 策略 · 白龍馬的新手策略
- 5.8 SMIA · 基于歷史狀態空間相似性匹配的行業配置 SMIA 模型—取交集
- 5.9 神經網絡
- 神經網絡交易的訓練部分
- 通過神經網絡進行交易
- 5.10 PAMR · PAMR : 基于均值反轉的投資組合選擇策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假說, Hurst 指數 · 分形市場假說,一個聽起來很美的假說
- 5.13 變點理論 · 變點策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用債風險模型初探之:Z-Score Model
- user-defined package
- 5.15 機器學習 · Machine Learning 學習筆記(一) by OTreeWEN
- 5.16 DualTrust 策略和布林強盜策略
- 5.17 卡爾曼濾波
- 5.18 LPPL anti-bubble model
- 今天大盤熔斷大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之謎——對數周期冪率(LPPL)模型
- 六 大數據模型
- 6.1 市場情緒分析
- 通聯情緒指標策略
- 互聯網+量化投資 大數據指數手把手
- 6.2 新聞熱點
- 如何使用優礦之“新聞熱點”?
- 技術分析【3】—— 眾星拱月,眾口鑠金?
- 七 排名選股系統
- 7.1 小市值投資法
- 學習筆記:可模擬(小市值+便宜 的修改版)
- 市值最小300指數
- 流通市值最小股票(新篩選器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊駝策略
- 羊駝策略
- 羊駝反轉策略(修改版)
- 羊駝反轉策略
- 我的羊駝策略,選5只股無腦輪替
- 7.3 低價策略
- 專撿便宜貨(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 輪動模型
- 8.1 大小盤輪動 · 新手上路 -- 二八ETF擇時輪動策略2.0
- 8.2 季節性策略
- Halloween Cycle
- Halloween cycle 2
- 夏買電,東買煤?
- 歷史的十一月板塊漲幅
- 8.3 行業輪動
- 銀行股輪動
- 申萬二級行業在最近1年、3個月、5個交易日的漲幅統計
- 8.4 主題輪動
- 快速研究主題神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板塊異動類
- 風險因子(離散類)
- 8.5 龍頭輪動
- Competitive Securities
- Market Competitiveness
- 主題龍頭類
- 九 組合投資
- 9.1 指數跟蹤 · [策略] 指數跟蹤低成本建倉策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸優化 · 如何在 Python 中利用 CVXOPT 求解二次規劃問題
- 十 波動率
- 10.1 波動率選股 · 風平浪靜 風起豬飛
- 10.2 波動率擇時
- 基于 VIX 指數的擇時策略
- 簡單低波動率指數
- 10.3 Arch/Garch 模型 · 如何使用優礦進行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高頻交易
- 12.1 order book 分析 · 基于高頻 limit order book 數據的短程價格方向預測—— via multi-class SVM
- 12.2 日內交易 · 大盤日內走勢 (for 擇時)
- 十三 Alternative Strategy
- 13.1 易經、傳統文化 · 老黃歷診股
- 第三部分 基金、利率互換、固定收益類
- 一 分級基金
- “優礦”集思錄——分級基金專題
- 基于期權定價的分級基金交易策略
- 基于期權定價的興全合潤基金交易策略
- 二 基金分析
- Alpha 基金“黑天鵝事件” -- 思考以及原因
- 三 債券
- 債券報價中的小陷阱
- 四 利率互換
- Swap Curve Construction
- 中國 Repo 7D 互換的例子
- 第四部分 衍生品相關
- 一 期權數據
- 如何獲取期權市場數據快照
- 期權高頻數據準備
- 二 期權系列
- [ 50ETF 期權] 1. 歷史成交持倉和 PCR 數據
- 【50ETF期權】 2. 歷史波動率
- 【50ETF期權】 3. 中國波指 iVIX
- 【50ETF期權】 4. Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 三 期權分析
- 【50ETF期權】 期權擇時指數 1.0
- 每日期權風險數據整理
- 期權頭寸計算
- 期權探秘1
- 期權探秘2
- 期權市場一周縱覽
- 基于期權PCR指數的擇時策略
- 期權每日成交額PC比例計算
- 四 期貨分析
- 【前方高能!】Gifts from Santa Claus——股指期貨趨勢交易研究