# 【50ETF期權】 2. 歷史波動率
> 來源:https://uqer.io/community/share/560493a4f9f06c597565ef03
在本文中,我們將通過量化實驗室提供的數據,計算上證50ETF的歷史波動率數據
```py
from CAL.PyCAL import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')
import seaborn as sns
sns.set_style('white')
import math
from scipy.stats import mstats
```
50ETF收盤價
```py
# 華夏上證50ETF
secID = '510050.XSHG'
begin = Date(2015, 2, 9)
end = Date.todaysDate()
fields = ['tradeDate', 'closePrice']
etf = DataAPI.MktFunddGet(secID, beginDate=begin.toISO().replace('-', ''), endDate=end.toISO().replace('-', ''), field=fields)
etf['tradeDate'] = pd.to_datetime(etf['tradeDate'])
etf = etf.set_index('tradeDate')
etf.tail(3)
```
| | closePrice |
| --- | --- |
| tradeDate | |
| 2015-09-22 | 2.237 |
| 2015-09-23 | 2.180 |
| 2015-09-24 | 2.187 |
## 1. EWMA模型計算歷史波動率
EWMA(Exponentially Weighted Moving Average)指數加權移動平均計算歷史波動率:

其中

上式中的 `Si` 為 `i` 天的收盤價,`λ` 為介于0和1之間的常數。也就是說,在第 `n?1` 天估算的第 `n` 天的波動率估計值 `σn` 由第 `n?1` 天的波動率估計值 `σn?1` 和收盤價在最近一天的變化百分比 `un?1` 決定。
計算周期為 `N` 天的波動率時, `λ` 可以取為:

```py
def getHistVolatilityEWMA(secID, beginDate, endDate):
cal = Calendar('China.SSE')
spotBeginDate = cal.advanceDate(beginDate,'-520B',BizDayConvention.Preceding)
spotBeginDate = Date(2006, 1, 1)
begin = spotBeginDate.toISO().replace('-', '')
end = endDate.toISO().replace('-', '')
fields = ['tradeDate', 'preClosePrice', 'closePrice', 'settlePrice', 'preSettlePrice']
security = DataAPI.MktFunddGet(secID, beginDate=begin, endDate=end, field=fields)
security['dailyReturn'] = security['closePrice']/security['preClosePrice'] # 日回報率
security['u2'] = (np.log(security['dailyReturn']))**2 # u2為復利形式的日回報率平方
# security['u2'] = (security['dailyReturn'] - 1.0)**2 # u2為日價格變化百分比的平方
security['tradeDate'] = pd.to_datetime(security['tradeDate'])
periods = {'hv1W': 5, 'hv2W': 10, 'hv1M': 21, 'hv2M': 41, 'hv3M': 62, 'hv4M': 83,
'hv5M': 104, 'hv6M': 124, 'hv9M': 186, 'hv1Y': 249, 'hv2Y': 497}
# 利用pandas中的ewma模型計算波動率
for prd in periods.keys():
# 此處的span實際上就是上面計算波動率公式中lambda表達式中的N
security[prd] = np.round(np.sqrt(pd.ewma(security['u2'], span=periods[prd], adjust=False)), 5)*math.sqrt(252.0)
security = security[security.tradeDate >= beginDate.toISO()]
security = security.set_index('tradeDate')
return security
```
```py
secID = '510050.XSHG'
start = Date(2015, 2, 9)
end = Date.todaysDate()
hist_HV = getHistVolatilityEWMA(secID, start, end)
hist_HV.tail(2)
```
| | preClosePrice | closePrice | dailyReturn | u2 | hv2M | hv1W | hv1Y | hv3M | hv4M | hv5M | hv2Y | hv1M | hv2W | hv6M | hv9M |
| --- | --- |
| tradeDate | | | | | | | | | | | | | | | |
| 2015-09-23 | 2.237 | 2.180 | 0.974519 | 0.000666 | 0.511318 | 0.304791 | 0.446550 | 0.523224 | 0.519890 | 0.511635 | 0.379718 | 0.449090 | 0.344477 | 0.502269 | 0.472743 |
| 2015-09-24 | 2.180 | 2.187 | 1.003211 | 0.000010 | 0.499095 | 0.250658 | 0.444804 | 0.514969 | 0.513699 | 0.506714 | 0.378925 | 0.428453 | 0.312410 | 0.498142 | 0.470203 |
```py
secID = '510050.XSHG'
start = Date(2007, 1, 1)
end = Date.todaysDate()
hist_HV = getHistVolatilityEWMA(secID, start, end)
## ----- 50ETF歷史波動率 -----
fig = plt.figure(figsize=(10,12))
ax = fig.add_subplot(211)
font.set_size(16)
hist_plot = hist_HV[hist_HV.index >= Date(2015,2,9).toISO()]
etf_plot = etf[etf.index >= Date(2015,2,9).toISO()]
lns1 = ax.plot(hist_plot.index, hist_plot.hv1M, '-', label = u'HV(1M)')
lns2 = ax.plot(hist_plot.index, hist_plot.hv2M, '-', label = u'HV(2M)')
ax2 = ax.twinx()
lns3 = ax2.plot(etf_plot.index, etf_plot.closePrice, '-r', label = '50ETF closePrice')
lns = lns1+lns2+lns3
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=2)
ax.grid()
ax.set_xlabel(u"tradeDate")
ax.set_ylabel(r"Historical Volatility")
ax2.set_ylabel(r"closePrice")
ax.set_ylim(0, 0.9)
ax2.set_ylim(1.5, 4)
plt.title('50ETF Historical EWMA Volatility')
## -----------------------------------
## ----- 50ETF歷史波動率統計數據 -----
# 注意: 該統計數據基于07年以來將近九年的歷史波動率得出
ax3 = fig.add_subplot(212)
font.set_size(16)
hist_plot = hist_HV[[u'hv2W', u'hv1M', u'hv2M', u'hv3M', u'hv4M', u'hv5M', u'hv6M', u'hv9M', u'hv1Y']]
# Calculate the quantiles column wise
quantiles = mstats.mquantiles(hist_plot, prob=[0.0, 0.25, 0.5, 0.75, 1.0], axis=0)
labels = ['Minimum', '1st quartile', 'Median', '3rd quartile', 'Maximum']
for i, q in enumerate(quantiles):
ax3.plot(q, label=labels[i])
# 在統計圖中標出某一天的波動率
date = Date(2015,8,27)
last_day_HV = hist_plot.ix[date.toDateTime()].T
ax3.plot(last_day_HV.values, 'dr', label=date.toISO())
# 在統計圖中標出最近一天的波動率
last_day_HV = hist_plot.tail(1).T
ax3.plot(last_day_HV.values, 'sb', label=Date.fromDateTime(last_day_HV.columns[0]).toISO())
ax3.set_ylabel(r"Volatility")
plt.xticks((0,1,2,3,4,5,6,7,8),(0.5,1,2,3,4,5,6,9,12))
plt.xlabel('Periods(Months)')
plt.legend()
plt.grid()
```

波動率圖中,上圖表示50ETF收盤價格和歷史波動率的走勢關系:
+ 顯然,短周期波動率對于近期的波動更敏感
+ 收盤價的下跌往往伴隨著波動率的上升,兩者的負相關性質明顯
波動率圖中,下圖表示50ETF歷史波動率的統計數據,圖中給出了四分位波動率錐:
+ 8月底時,各個周期歷史波動率均處于歷史高位
+ 目前,短周期波動率已經有所回落
## 2. Close to Close 模型計算歷史波動率
m 天周期的Close to Close波動率:

其中

也就是說,在第 `n?1` 天估算的第 `n` 天的波動率估計值 `σn` 由前面 `m `天的每日收盤價變化百分比 `ui` 的標準差決定。
```py
## 計算一段時間標的的歷史波動率,返回值包括以下不同周期的波動率:
# 一周,半月,一個月,兩個月,三個月,四個月,五個月,半年,九個月,一年,兩年
def getHistVolatilityC2C(secID, beginDate, endDate):
cal = Calendar('China.SSE')
spotBeginDate = cal.advanceDate(beginDate,'-520B',BizDayConvention.Preceding)
spotBeginDate = Date(2006, 1, 1)
begin = spotBeginDate.toISO().replace('-', '')
end = endDate.toISO().replace('-', '')
fields = ['tradeDate', 'preClosePrice', 'closePrice', 'settlePrice', 'preSettlePrice']
security = DataAPI.MktFunddGet(secID, beginDate=begin, endDate=end, field=fields)
security['dailyReturn'] = security['closePrice']/security['preClosePrice'] # 日回報率
security['u'] = np.log(security['dailyReturn']) # u2為復利形式的日回報率
security['tradeDate'] = pd.to_datetime(security['tradeDate'])
periods = {'hv1W': 5, 'hv2W': 10, 'hv1M': 21, 'hv2M': 41, 'hv3M': 62, 'hv4M': 83,
'hv5M': 104, 'hv6M': 124, 'hv9M': 186, 'hv1Y': 249, 'hv2Y': 497}
# 利用方差模型計算波動率
for prd in periods.keys():
security[prd] = np.round(pd.rolling_std(security['u'], window=periods[prd]), 5)*math.sqrt(252.0)
security = security[security.tradeDate >= beginDate.toISO()]
security = security.set_index('tradeDate')
return security
```
```py
secID = '510050.XSHG'
start = Date(2007, 1, 1)
end = Date.todaysDate()
hist_HV = getHistVolatilityC2C(secID, start, end)
## ----- 50ETF歷史波動率 -----
fig = plt.figure(figsize=(10,12))
ax = fig.add_subplot(211)
font.set_size(16)
hist_plot = hist_HV[hist_HV.index >= Date(2015,2,9).toISO()]
etf_plot = etf[etf.index >= Date(2015,2,9).toISO()]
lns1 = ax.plot(hist_plot.index, hist_plot.hv1M, '-', label = u'HV(1M)')
lns2 = ax.plot(hist_plot.index, hist_plot.hv2M, '-', label = u'HV(2M)')
ax2 = ax.twinx()
lns3 = ax2.plot(etf_plot.index, etf_plot.closePrice, '-r', label = '50ETF closePrice')
lns = lns1+lns2+lns3
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=2)
ax.grid()
ax.set_xlabel(u"tradeDate")
ax.set_ylabel(r"Historical Volatility")
ax2.set_ylabel(r"closePrice")
ax.set_ylim(0, 0.9)
ax2.set_ylim(1.5, 4)
plt.title('50ETF Historical Close-to-Close Volatility')
## -----------------------------------
## ----- 50ETF歷史波動率統計數據 -----
# 注意: 該統計數據基于07年以來將近九年的歷史波動率得出
ax3 = fig.add_subplot(212)
font.set_size(16)
hist_plot = hist_HV[[u'hv2W', u'hv1M', u'hv2M', u'hv3M', u'hv4M', u'hv5M', u'hv6M', u'hv9M', u'hv1Y']]
# Calculate the quantiles column wise
quantiles = mstats.mquantiles(hist_plot, prob=[0.0, 0.25, 0.5, 0.75, 1.0], axis=0)
labels = ['Minimum', '1st quartile', 'Median', '3rd quartile', 'Maximum']
for i, q in enumerate(quantiles):
ax3.plot(q, label=labels[i])
# 在統計圖中標出某一天的波動率
date = Date(2015,8,27)
last_day_HV = hist_plot.ix[date.toDateTime()].T
ax3.plot(last_day_HV.values, 'dr', label=date.toISO())
# 在統計圖中標出最近一天的波動率
last_day_HV = hist_plot.tail(1).T
ax3.plot(last_day_HV.values, 'sb', label=Date.fromDateTime(last_day_HV.columns[0]).toISO())
ax3.set_ylabel(r"Volatility")
plt.xticks((0,1,2,3,4,5,6,7,8),(0.5,1,2,3,4,5,6,9,12))
plt.xlabel('Periods(Months)')
plt.legend()
plt.grid()
```

波動率圖中,上圖表示50ETF收盤價格和歷史波動率的走勢關系:
+ 顯然,短周期波動率對于近期的波動更敏感
+ 收盤價的下跌往往伴隨著波動率的上升,兩者的負相關性質明顯
波動率圖中,下圖表示50ETF歷史波動率的統計數據,圖中給出了四分位波動率錐:
+ 8月底時,各個周期歷史波動率均處于歷史高位
+ 目前,短周期波動率已經有所回落
明顯地,相對于EWMA計算的歷史波動率,Close to Close波動率對于最近價格波動反應比較遲鈍
- Python 量化交易教程
- 第一部分 新手入門
- 一 量化投資視頻學習課程
- 二 Python 手把手教學
- 量化分析師的Python日記【第1天:誰來給我講講Python?】
- 量化分析師的Python日記【第2天:再接著介紹一下Python唄】
- 量化分析師的Python日記【第3天:一大波金融Library來襲之numpy篇】
- 量化分析師的Python日記【第4天:一大波金融Library來襲之scipy篇】
- 量化分析師的Python日記【第5天:數據處理的瑞士軍刀pandas】
- 量化分析師的Python日記【第6天:數據處理的瑞士軍刀pandas下篇
- 量化分析師的Python日記【第7天:Q Quant 之初出江湖】
- 量化分析師的Python日記【第8天 Q Quant兵器譜之函數插值】
- 量化分析師的Python日記【第9天 Q Quant兵器譜之二叉樹】
- 量化分析師的Python日記【第10天 Q Quant兵器譜 -之偏微分方程1】
- 量化分析師的Python日記【第11天 Q Quant兵器譜之偏微分方程2】
- 量化分析師的Python日記【第12天:量化入門進階之葵花寶典:因子如何產生和回測】
- 量化分析師的Python日記【第13天 Q Quant兵器譜之偏微分方程3】
- 量化分析師的Python日記【第14天:如何在優礦上做Alpha對沖模型】
- 量化分析師的Python日記【第15天:如何在優礦上搞一個wealthfront出來】
- 第二部分 股票量化相關
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha對沖策略——觀《量化分析師Python日記第14天》有感
- 熔斷不要怕, alpha model 為你保駕護航!
- 尋找 alpha 之: alpha 設計
- 1.2 基本面因子選股
- Porfolio(現金比率+負債現金+現金保障倍數)+市盈率
- ROE選股指標
- 成交量因子
- ROIC&cashROIC
- 【國信金工】資產周轉率選股模型
- 【基本面指標】Cash Cow
- 量化因子選股——凈利潤/營業總收入
- 營業收入增長率+市盈率
- 1.3 財報閱讀 ? [米缸量化讀財報] 資產負債表-投資相關資產
- 1.4 股東分析
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)— 更新版
- 誰是中國A股最有錢的自然人
- 1.5 宏觀研究
- 【干貨包郵】手把手教你做宏觀擇時
- 宏觀研究:從估值角度看當前市場
- 追尋“國家隊”的足跡
- 二 套利
- 2.1 配對交易
- HS300ETF套利(上)
- 【統計套利】配對交易
- 相似公司股票搬磚
- Paired trading
- 2.2 期現套利 ? 通過股指期貨的期現差與 ETF 對沖套利
- 三 事件驅動
- 3.1 盈利預增
- 盈利預增事件
- 事件驅動策略示例——盈利預增
- 3.2 分析師推薦 ? 分析師的金手指?
- 3.3 牛熊轉換
- 歷史總是相似 牛市還在延續
- 歷史總是相似 牛市已經見頂?
- 3.4 熔斷機制 ? 股海拾貝之 [熔斷錯殺股]
- 3.5 暴漲暴跌 ? [實盤感悟] 遇上暴跌我該怎么做?
- 3.6 兼并重組、舉牌收購 ? 寶萬戰-大戲開幕
- 四 技術分析
- 4.1 布林帶
- 布林帶交易策略
- 布林帶回調系統-日內
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均線系統
- 技術分析入門 —— 雙均線策略
- 5日線10日線交易策略
- 用5日均線和10日均線進行判斷 --- 改進版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑異同移動平均線方法
- 4.4 阿隆指標 ? 技術指標阿隆( Aroon )全解析
- 4.5 CCI ? CCI 順勢指標探索
- 4.6 RSI
- 重寫 rsi
- RSI指標策略
- 4.7 DMI ? DMI 指標體系的構建及簡單應用
- 4.8 EMV ? EMV 技術指標的構建及應用
- 4.9 KDJ ? KDJ 策略
- 4.10 CMO
- CMO 策略模仿練習 1
- CMO策略模仿練習2
- [技術指標] CMO
- 4.11 FPC ? FPC 指標選股
- 4.12 Chaikin Volatility
- 嘉慶離散指標測試
- 4.13 委比 ? 實時計算委比
- 4.14 封單量
- 按照封單跟流通股本比例排序,剔除6月上市新股,前50
- 漲停股票封單統計
- 實時計算漲停板股票的封單資金與總流通市值的比例
- 4.15 成交量 ? 決戰之地, IF1507 !
- 4.16 K 線分析 ? 尋找夜空中最亮的星
- 五 量化模型
- 5.1 動量模型
- Momentum策略
- 【小散學量化】-2-動量模型的簡單實踐
- 一個追漲的策略(修正版)
- 動量策略(momentum driven)
- 動量策略(momentum driven)——修正版
- 最經典的Momentum和Contrarian在中國市場的測試
- 最經典的Momentum和Contrarian在中國市場的測試-yanheven改進
- [策略]基于勝率的趨勢交易策略
- 策略探討(更新):價量結合+動量反轉
- 反向動量策略(reverse momentum driven)
- 輕松跑贏大盤 - 主題Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面選股系統:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR預測股票開盤價 v1.0
- 5.4 決策樹、隨機樹
- 決策樹模型(固定模型)
- 基于Random Forest的決策策略
- 5.5 鐘擺理論 · 鐘擺理論的簡單實現——完美躲過股災和精準抄底
- 5.6 海龜模型
- simple turtle
- 俠之大者 一起賺錢
- 5.7 5217 策略 · 白龍馬的新手策略
- 5.8 SMIA · 基于歷史狀態空間相似性匹配的行業配置 SMIA 模型—取交集
- 5.9 神經網絡
- 神經網絡交易的訓練部分
- 通過神經網絡進行交易
- 5.10 PAMR · PAMR : 基于均值反轉的投資組合選擇策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假說, Hurst 指數 · 分形市場假說,一個聽起來很美的假說
- 5.13 變點理論 · 變點策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用債風險模型初探之:Z-Score Model
- user-defined package
- 5.15 機器學習 · Machine Learning 學習筆記(一) by OTreeWEN
- 5.16 DualTrust 策略和布林強盜策略
- 5.17 卡爾曼濾波
- 5.18 LPPL anti-bubble model
- 今天大盤熔斷大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之謎——對數周期冪率(LPPL)模型
- 六 大數據模型
- 6.1 市場情緒分析
- 通聯情緒指標策略
- 互聯網+量化投資 大數據指數手把手
- 6.2 新聞熱點
- 如何使用優礦之“新聞熱點”?
- 技術分析【3】—— 眾星拱月,眾口鑠金?
- 七 排名選股系統
- 7.1 小市值投資法
- 學習筆記:可模擬(小市值+便宜 的修改版)
- 市值最小300指數
- 流通市值最小股票(新篩選器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊駝策略
- 羊駝策略
- 羊駝反轉策略(修改版)
- 羊駝反轉策略
- 我的羊駝策略,選5只股無腦輪替
- 7.3 低價策略
- 專撿便宜貨(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 輪動模型
- 8.1 大小盤輪動 · 新手上路 -- 二八ETF擇時輪動策略2.0
- 8.2 季節性策略
- Halloween Cycle
- Halloween cycle 2
- 夏買電,東買煤?
- 歷史的十一月板塊漲幅
- 8.3 行業輪動
- 銀行股輪動
- 申萬二級行業在最近1年、3個月、5個交易日的漲幅統計
- 8.4 主題輪動
- 快速研究主題神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板塊異動類
- 風險因子(離散類)
- 8.5 龍頭輪動
- Competitive Securities
- Market Competitiveness
- 主題龍頭類
- 九 組合投資
- 9.1 指數跟蹤 · [策略] 指數跟蹤低成本建倉策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸優化 · 如何在 Python 中利用 CVXOPT 求解二次規劃問題
- 十 波動率
- 10.1 波動率選股 · 風平浪靜 風起豬飛
- 10.2 波動率擇時
- 基于 VIX 指數的擇時策略
- 簡單低波動率指數
- 10.3 Arch/Garch 模型 · 如何使用優礦進行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高頻交易
- 12.1 order book 分析 · 基于高頻 limit order book 數據的短程價格方向預測—— via multi-class SVM
- 12.2 日內交易 · 大盤日內走勢 (for 擇時)
- 十三 Alternative Strategy
- 13.1 易經、傳統文化 · 老黃歷診股
- 第三部分 基金、利率互換、固定收益類
- 一 分級基金
- “優礦”集思錄——分級基金專題
- 基于期權定價的分級基金交易策略
- 基于期權定價的興全合潤基金交易策略
- 二 基金分析
- Alpha 基金“黑天鵝事件” -- 思考以及原因
- 三 債券
- 債券報價中的小陷阱
- 四 利率互換
- Swap Curve Construction
- 中國 Repo 7D 互換的例子
- 第四部分 衍生品相關
- 一 期權數據
- 如何獲取期權市場數據快照
- 期權高頻數據準備
- 二 期權系列
- [ 50ETF 期權] 1. 歷史成交持倉和 PCR 數據
- 【50ETF期權】 2. 歷史波動率
- 【50ETF期權】 3. 中國波指 iVIX
- 【50ETF期權】 4. Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 三 期權分析
- 【50ETF期權】 期權擇時指數 1.0
- 每日期權風險數據整理
- 期權頭寸計算
- 期權探秘1
- 期權探秘2
- 期權市場一周縱覽
- 基于期權PCR指數的擇時策略
- 期權每日成交額PC比例計算
- 四 期貨分析
- 【前方高能!】Gifts from Santa Claus——股指期貨趨勢交易研究