<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                # 【前方高能!】Gifts from Santa Claus——股指期貨趨勢交易研究 > 來源:https://uqer.io/community/share/567ca9b1228e5b3444688438 ![](https://box.kancloud.cn/2016-07-31_579d7a0360495.png) ## 股指期貨的前世今生 股指期貨,名曰期指,乃期貨界的明珠,現貨對應的是股票指數,其逼格比之大豆棉油不知道甩幾條巷子。期指的上市為股票市場提供了很好的風險管理和做策略的工具,礦工們也覺得自己終于能吃上一碗帶肉的康師傅牛肉面。正所謂俠之大者,為國背鍋,這一年股指期貨經歷了不平凡的跌宕起伏。上半年市場一片開朗,10000點不是夢,期指也由原來的 'IF(滬深300)'一個品種增加到了‘IH(上證50)’,‘IF(滬深300)’,‘IC(中證500)’三個品種。“放開讓孩兒們玩吧”,不愿透露姓名的領導心里想著,順勢掐滅了手上的煙頭。不幸的是,市場下半年被玩壞了,從去杠桿到查做空、從基金經理被約談到公安部出動、從券商砸獎金到救市基金強勢入場,轟轟烈烈的市場拯救活動持續了一兩個月,終于把市場給摁了下來。比較不幸的是,量化交易和衍生品受到了比較嚴重的打擊和監管。股指期貨的交易方式、保證金比例、交易頻率都受到了嚴厲的限制,并成為眾矢之的。 雖不知股指期貨的未來何去何從,但效率的提升才能代表未來的發展方向,投資管理變得更為理性化、程序化、智能化對于專業的投資機構來講是大勢所趨。我們相信期指的嚴冬期總會過去,我們有理想,我們有愿望,宣誓完畢! ## 股指期貨的才藝 一個品種的股指期貨有四份合約,分為當月合約、次月合約、第一季月合約和第二季月合約。作為衍生品,它為二級市場投資帶來了豐富的投資方式,并在投資策略中擔當著各種各樣的角色。基于股指期貨可做的事情例如: + 1、構建alpha市場中性策略; + 2、期限套利; + 3、期指間跨期跨品種套利; + 4、趨勢交易; + 5、高頻交易(現在估計比較難)。 這次我們主要研究一種單品種的股指期貨趨勢交易策略,提供了一種基于市場情緒的擇時指標,稱之為ITS(Informed Trader Sentiment),參考文獻為。 ## ITS——基于市場情緒的擇時指標 中金所每日收盤后會公布股指期貨的成交持倉量表,表單中會有三個項目的排名:成交量、持買單量和持賣單量,表單會列出前20名的會員單位。這些會員單位代表了期貨市場上最大的機構投資者。我們將同時出現在三個表單排名中的單位視作VIP單位,他們是這個市場的中流砥柱,他們的投資情緒會影響到市場未來的走勢,我們需要做的就是找到對的大佬,跟著大佬的情緒飛。那如何才能跟到對的大佬?我們基于這樣一個邏輯:如果某位大佬更有預知市場的能力,那么他會在交易中更為堅定的選擇某一個買賣方向,它由于買賣帶來的成交量就會相對較小,進而(持倉量/成交量)數值相對會大,我們認定他是知情者(對的大佬);若某個大佬的持倉量與前一位大佬相當但成交量明顯偏大,說明這位大佬的交易有更多的不確定性,我們也就認定他不是一個知情者(沒有緣分的大佬)。找到對的大佬之后,便開始估測一下大佬的情緒。我們用“對的大佬”們的(持買單量-持賣單量)/(持買單量+持賣單量)(此處的持買單和賣單量都是對的大佬們求和的總量)作為歸一化的指標,根據指標是否大于某個閾值Thres來判定大佬對于市場是看多還是看空。那么我們的信號提取過程為: + step1. 表單中篩選VIP單位(三個排名均上榜)→ 備選大佬; + step2. 備選大佬中找到(持倉量/成交量)大于Avg的VIP單位 → 對的大佬; + step3. ITS = (持買單量-持賣單量)/(持買單量+持賣單量) ## ITS信號生成器 ```py from CAL.PyCAL import * import copy as cp import numpy as np ########################################################################################################### # generate the its signal ########################################################################################################### class itsFutSignal: def __init__(self,secID,currentDate): ####input self.secID = secID self.currentDate = currentDate ####output self.sigDate = self.lastDateGet() self.contract = self.currContractGet() self.posTable = self.posTableGet() self.vipDict = self.vipDictGet() self.sentiSig = self.sentiSigGet() self.inforedInvestor = self.inforedInvestorGet() self.itsSig = self.itsSigGet() def lastDateGet(self): calendar = Calendar('China.SSE') date = calendar.advanceDate(self.currentDate,'-'+str(1)+'B').toDateTime() return date def currContractGet(self): future = DataAPI.MktMFutdGet(mainCon=u"1",contractMark=u"",contractObject=u"",tradeDate=self.sigDate,startDate=u"",endDate=u"",field=u"",pandas="1") for index in future.ticker: if index[:2] == self.secID: return future[future.ticker==index].ticker.tolist()[0] def posTableGet(self): try: pos = DataAPI.MktFutMLRGet(secID=u"",ticker=self.contract,beginDate=self.sigDate,endDate=self.sigDate,field=u"",pandas="1") neg = DataAPI.MktFutMSRGet(secID=u"",ticker=self.contract,beginDate=self.sigDate,endDate=self.sigDate,field=u"",pandas="1") vol = DataAPI.MktFutMTRGet(secID=u"",ticker=self.contract,beginDate=self.sigDate,endDate=self.sigDate,field=u"",pandas="1") return {'pos':pos,'neg':neg,'vol':vol} except: calendar = Calendar('China.SSE') self.sigDate = calendar.advanceDate(self.sigDate,'-'+str(1)+'B').toDateTime() self.contract = self.currContractGet() return self.posTableGet() def list2Dict(self,list): keys = list[0] values = list[1] resultDict = {} for index in range(len(keys)): resultDict[keys[index]] = values[index] return resultDict def vipDictGet(self): ####get data longDict = self.list2Dict([self.posTable['pos'].partyShortName.tolist(),self.posTable['pos'].longVol]) shortDict = self.list2Dict([self.posTable['neg'].partyShortName.tolist(),self.posTable['neg'].shortVol]) volDict = self.list2Dict([self.posTable['vol'].partyShortName.tolist(),self.posTable['vol'].turnoverVol]) ####get vip list vipList = [] for index in longDict.keys(): if index in shortDict.keys(): if index in volDict.keys(): vipList.append(index) ####get vip dict vipDict = {} for index in vipList: vipDict[index] = [longDict[index],shortDict[index],volDict[index]] return vipDict def sentiSigGet(self): sentiSig = {} for index in self.vipDict: sentiSig[index] = sum(self.vipDict[index][:2])*1.0/self.vipDict[index][-1] return sentiSig def inforedInvestorGet(self): if len(self.sentiSig) != 0: sentiAvg = sum(self.sentiSig.values())/len(self.sentiSig) inforedInvestor = [index for index in self.sentiSig if self.sentiSig[index] > sentiAvg] return inforedInvestor else: sentiAvg = 0 return [] def itsSigGet(self): totalBuy = 0 totalSell = 0 if len(self.inforedInvestor) != 0: for index in self.inforedInvestor: totalBuy += self.vipDict[index][0] totalSell += self.vipDict[index][1] if totalBuy + totalSell != 0: return 1.0*(totalBuy - totalSell)/(totalBuy + totalSell) else: return 'null' else: return 'null' ``` ## ITS趨勢交易信號 ITS信號代表了對的大佬們的情緒,那么如何利用它給出每日的交易信號呢?我們利用最為直觀有效的閾值策略,設定某閾值`Thres`: 1)`ITS > Thres`: 大佬看多,買買買,交易信號為1; 2)`ITS < Thres`: 大佬看空,賣賣賣,交易信號為-1; 3)`ITS = Thres & DataErr`: 形勢不明朗或找不到大佬,停止交易觀望,交易信號為0 此處我們取 `Thres = -0.12`? Why?其實是這樣的,由于期現套利交易的存在,因此期指本身有一部分的空單是由于期限套利造成的,由于這部分資金通常會留存較久,因此通常情況下期指的持倉總量應該是空單偏多,而我們判斷市場情緒的時候要把這部分期貨市場上的“裸空單”給剔除掉,因此Thres應該設置為負。 ## IF趨勢交易測試 由于目前Strategy部分還不好支持期指的交易回測,因此用腳本生成了測試數據。 1)交易標的:滬深300主力合約。用IF來測試的原因很簡單,樣本數多呀! 2)每日的交易信號:根據前一日收盤后的持倉量表單計算ITS后根據閾值產生; 3)每日收益率:我們假定在獲取當日的信號后,在開盤的一段時間內以某個價格買入期指,持有至臨近收盤后以某個價格賣出,做日內交易。那么買賣價如何界定?有三種方式來計算:①昨收-今收; ②今開-今收; ③昨結算-今結算。 ①和②都是時點價格,而③是均價。①必然不合理因為無法在昨日收盤前得到今日的交易信號,不具有可操作性;②是時點價格,可操作性也不強;對③來講,由于結算價是一段時間的均價,我們認為拿這個均價作為買賣的期望價格是合理的。所以每日收益率的計算方式是③; ```py startDate = '20110101' endDate = '20150801' future = DataAPI.MktMFutdGet(mainCon=u"1",contractMark=u"",contractObject=u"",tradeDate=u'',startDate=startDate,endDate=endDate,field=u"",pandas="1") # print future closePrice = [] openPrice = [] preClosePrice = [] settlePrice = [] preSettlePrice = [] tradeDate = [] ticker = [] for index in future.ticker.tolist(): if index[:2] == 'IF': if index not in ticker: ticker.append(index) for index in ticker: closePrice += future[future.ticker==index]['closePrice'].tolist() openPrice += future[future.ticker==index]['openPrice'].tolist() preClosePrice += future[future.ticker==index]['preClosePrice'].tolist() settlePrice += future[future.ticker==index]['settlePrice'].tolist() preSettlePrice += future[future.ticker==index]['preSettlePrice'].tolist() tradeDate += future[future.ticker==index]['tradeDate'].tolist() closePrice = np.array(closePrice) openPrice = np.array(openPrice) preClosePrice = np.array(preClosePrice) settlePrice = np.array(settlePrice) preSettlePrice = np.array(preSettlePrice) closeRetRate = (closePrice - preClosePrice)/preClosePrice settleRetRate = (settlePrice - preSettlePrice)/preSettlePrice clopenRetRate = (closePrice - openPrice)/openPrice tradeDate = tradeDate itsValue = [itsFutSignal('IF',index).itsSig for index in tradeDate] itsSignal = [] thres = -0.12 for index in itsValue: if index != 'null': if index > thres: itsSignal.append(1) else: itsSignal.append(-1) else: itsSignal.append(0) itsSignal = np.array(itsSignal) benchMark = DataAPI.MktIdxdGet(tradeDate=u"",indexID=u"",ticker=u"000300",beginDate=startDate,endDate=endDate,field=u"closeIndex",pandas="1")['closeIndex'].tolist() benchMark = benchMark/benchMark[0] ``` ## 回測展示 下面為回測結果展示,測算細節如下: 1) 每日收益率根據結算價來計算,前結算價作為買入的參考均價,結算價作為賣出的參考均價; 2)收益率曲線計算采用單利計算; 3)無風險利率取5%; 4)最后一小段曲線為平是由于股指期貨受到限制導致交易停止 ```py import matplotlib.pyplot as plt ####calculate the daily return dailyRet = settleRetRate*itsSignal ####calculate the winRate count = 0 denom = 0 for index in dailyRet: if index > 0: count += 1 if index != 0: denom += 1 print '策略勝率 : ' + str(round((count*1.0/denom)*100,2)) + '%' ####calculate the curve curve = [1] position = 0.8 for index in dailyRet: curve.append(curve[-1] + index*position) ####calculate the location print '策略倉位 : ' + str(position) ####calculate the max drawDown maxDrawDown = [] for index in range(len(curve)): tmp = [ele/curve[index] for ele in curve[index:]] maxDrawDown.append(min(tmp)) print '最大回撤 : ' + str(round((1-min(maxDrawDown))*100,2)) + '%' ####calculate the sharpRatio stDate = Date(int(startDate[:4]),int(startDate[4:6]),int(startDate[6:8])) edDate = Date(int(endDate[:4]),int(endDate[4:6]),int(endDate[6:8])) duration = round((edDate-stDate)/365.0,1) retYearly = curve[-1]/duration interest = 0.05 fluctuation = np.std(curve)/np.sqrt(duration) print '年化收益 : ' + str(round(retYearly,2)*100.0) + '%' print '夏普比率 : ' + str(round((retYearly-interest)/fluctuation,2)) ####plot the figure print '\n' plt.plot(curve) plt.plot(benchMark) plt.legend(['Strategy','BenchMark'],0) 策略勝率 : 55.03% 策略倉位 : 0.8 最大回撤 : 10.06% 年化收益 : 49.0% 夏普比率 : 2.44 <matplotlib.legend.Legend at 0xed4cc50> ``` ![](https://box.kancloud.cn/2016-07-30_579cbdc2a490e.png) 被曲線美哭了,不叨叨了,Merry Xmas! ![](https://box.kancloud.cn/2016-07-31_579d7a0394716.jpg)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看