# 量化分析師的Python日記【第10天 Q Quant兵器譜 -之偏微分方程1】
> 來源:https://uqer.io/community/share/5530d9f1f9f06c8f3390465a
> 從今天開始我們將進入一個系列 —— 偏微分方程。作為這一系列的開篇,我們以熱傳導方差為引子,引出:
>
> 1. 如何提一個偏微分方程的初邊值問題;
> 1. 利用差分格式將偏微分方程離散化;
> 1. 顯示差分格式;
> 1. 顯示差分格式的條件穩定性。
>
> 最后一點將作為伏筆,引出我們下一天的學習:無條件穩定格式。
## 1. 熱傳導方程

其中:
+ `κ` 稱為熱傳導系數
+ `[2]` 稱為方程的初值條件(Initial Condition)
+ `[3][4]` 稱為方程的邊值條件 (Boundaries Condition)。這里我們使用Dirichlet條件
我們可以看一下初值條件的形狀:
```py
from matplotlib import pylab
import seaborn as sns
import numpy as np
font.set_size(20)
def initialCondition(x):
return 4.0*(1.0 - x) * x
xArray = np.linspace(0,1.0,50)
yArray = map(initialCondition, xArray)
pylab.figure(figsize = (12,6))
pylab.plot(xArray, yArray)
pylab.xlabel('$x$', fontsize = 15)
pylab.ylabel('$f(x)$', fontsize = 15)
pylab.title(u'一維熱傳導方程初值條件', fontproperties = font)
<matplotlib.text.Text at 0x12523810>
```

## 2. 顯式差分格式
這里的基本思想是用差分格式替換對應的微分形式,并且期盼兩種格式的"誤差"在網格足夠密的情況下會趨于0。我們分別在時間方向以及空間方向做差分格式:

合并在一起,我們就得到了原始微分方程的差分格式:

這里我們使用差分網格上的近似值`Uj,k`代替`uj,k`,得到新的方程:

到這里我們得到一個迭代方程組:

其中。下面我們使用Python代碼實現上面的過程。
首先定義基本變量:
+ `N` 空間方向的網格數
+ `M` 時間方向的網格數
+ `T` 最大時間期限
+ `X` 最大空間范圍
+ `U` 用來存儲差分網格點上值得矩陣
```py
N = 25 # x方向網格數
M = 2500 # t方向網格數
T = 1.0
X = 1.0
xArray = np.linspace(0,X,N+1)
yArray = map(initialCondition, xArray)
starValues = yArray
U = np.zeros((N+1,M+1))
U[:,0] = starValues
```
```py
dx = X / N
dt = T / M
kappa = 1.0
rho = kappa * dt / dx / dx
```
這里我們做正向迭代:迭代時 `k=0,1...M?1`, 代表我們從0時刻運行至`T`
```py
for k in range(0, M):
for j in range(1, N):
U[j][k+1] = rho * U[j-1][k] + (1. - 2*rho) * U[j][k] + rho * U[j+1][k]
U[0][k+1] = 0.
U[N][k+1] = 0.
```
我們可以畫出不同時間點 `U(,˙τk)` 的結果:
```py
pylab.figure(figsize = (12,6))
pylab.plot(xArray, U[:,0])
pylab.plot(xArray, U[:, int(0.10/ dt)])
pylab.plot(xArray, U[:, int(0.20/ dt)])
pylab.plot(xArray, U[:, int(0.50/ dt)])
pylab.xlabel('$x$', fontsize = 15)
pylab.ylabel(r'$U(\dot, \tau)$', fontsize = 15)
pylab.title(u'一維熱傳導方程', fontproperties = font)
pylab.legend([r'$\tau = 0.$', r'$\tau = 0.10$', r'$\tau = 0.20$', r'$\tau = 0.50$'], fontsize = 15)
<matplotlib.legend.Legend at 0x12577cd0>
```

也可以通過三維立體圖看一下整體的熱傳導過程:
```py
tArray = np.linspace(0, 0.2, int(0.2 / dt) + 1)
xGrids, tGrids = np.meshgrid(xArray, tArray)
```
```py
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
fig= pylab.figure(figsize = (16,10))
ax = fig.add_subplot(1, 1, 1, projection = '3d')
surface = ax.plot_surface(xGrids, tGrids, U[:,:int(0.2 / dt) + 1].T, cmap=cm.coolwarm)
ax.set_xlabel("$x$", fontdict={"size":18})
ax.set_ylabel(r"$\tau$", fontdict={"size":18})
ax.set_zlabel(r"$U$", fontdict={"size":18})
ax.set_title(u"熱傳導方程 $u_\\tau = u_{xx}$" , fontproperties = font)
fig.colorbar(surface,shrink=0.75)
<matplotlib.colorbar.Colorbar instance at 0xf6eb878>
```

## 3. 組裝起來
就像在前一天二叉樹建模中介紹的一樣,我們這里會以面向對象的方式重新封裝分散的代碼,方便復用。首先是方程的描述:
```py
class HeatEquation:
def __init__(self, kappa, X, T,
initialConstion = lambda x:4.0*x*(1.0-x), boundaryConditionL = lambda x: 0, boundaryCondtionR = lambda x:0):
self.kappa = kappa
self.ic = initialConstion
self.bcl = boundaryConditionL
self.bcr = boundaryCondtionR
self.X = X
self.T = T
```
下面的是顯式差分格式的描述:
```py
class ExplicitEulerScheme:
def __init__(self, M, N, equation):
self.eq = equation
self.dt = self.eq.T / M
self.dx = self.eq.X / N
self.U = np.zeros((N+1, M+1))
self.xArray = np.linspace(0,self.eq.X,N+1)
self.U[:,0] = map(self.eq.ic, self.xArray)
self.rho = self.eq.kappa * self.dt / self.dx / self.dx
self.M = M
self.N = N
def roll_back(self):
for k in range(0, self.M):
for j in range(1, self.N):
self.U[j][k+1] = self.rho * self.U[j-1][k] + (1. - 2*self.rho) * self.U[j][k] + self.rho * self.U[j+1][k]
self.U[0][k+1] = self.eq.bcl(self.xArray[0])
self.U[N][k+1] = self.eq.bcr(self.xArray[-1])
def mesh_grids(self):
tArray = np.linspace(0, self.eq.T, M+1)
tGrids, xGrids = np.meshgrid(tArray, self.xArray)
return tGrids, xGrids
```
有了以上的部分,現在整個過程可以簡單的通過初始化和一行關于`roll_back`的調用完成:
```py
ht = HeatEquation(1.,1.,1.)
scheme = ExplicitEulerScheme(2500,25, ht)
scheme.roll_back()
```
我們可以獲取與之前相同的圖像:
```py
tGrids, xGrids = scheme.mesh_grids()
fig= pylab.figure(figsize = (16,10))
ax = fig.add_subplot(1, 1, 1, projection = '3d')
cutoff = int(0.2 / scheme.dt) + 1
surface = ax.plot_surface(xGrids[:,:cutoff], tGrids[:,:cutoff], scheme.U[:,:cutoff], cmap=cm.coolwarm)
ax.set_xlabel("$x$", fontdict={"size":18})
ax.set_ylabel(r"$\tau$", fontdict={"size":18})
ax.set_zlabel(r"$U$", fontdict={"size":18})
ax.set_title(u"熱傳導方程 $u_\\tau = u_{xx}$" , fontproperties = font)
fig.colorbar(surface,shrink=0.75)
<matplotlib.colorbar.Colorbar instance at 0x12d69e60>
```

## 4. 什么時候顯式格式會失敗?
顯式格式不能任意取時間和空間的網格點數,即`M`與`N`不能隨意取值。我們稱顯式格式為條件穩定。特別地,需要滿足所謂CFL條件(Courant–Friedrichs–Lewy):

例如:
+ `M` = 2500
+ `N` = 25
則:

+ `M` = 1200
+ `N` = 25
則:

下面的代碼計算在第二種情形下的網格點計算過程:
```py
ht = HeatEquation(1.,1.,1.)
scheme = ExplicitEulerScheme(1200,25, ht)
scheme.roll_back()
```
我們可以通過下圖看到,在CFL條件無法滿足的情況下,數值誤差累計的結果(特別注意后面的鋸齒):
```py
tGrids, xGrids = scheme.mesh_grids()
fig= pylab.figure(figsize = (16,10))
ax = fig.add_subplot(1, 1, 1, projection = '3d')
cutoff = int(0.2 / scheme.dt) + 1
surface = ax.plot_surface(xGrids[:,:cutoff], tGrids[:,:cutoff], scheme.U[:,:cutoff], cmap=cm.coolwarm)
ax.set_xlabel("$x$", fontdict={"size":18})
ax.set_ylabel(r"$\tau$", fontdict={"size":18})
ax.set_zlabel(r"$U$", fontdict={"size":18})
ax.set_title(u"熱傳導方程 $u_\\tau = u_{xx}$, $\\rho = 0.521$" , fontproperties = font)
fig.colorbar(surface,shrink=0.75)
<matplotlib.colorbar.Colorbar instance at 0x10f51b48>
```

今天的日記到此為止,這個問題我們會在下一篇中進行討論,引出無條件穩定格式:隱式差分格式(Implicit)。
- Python 量化交易教程
- 第一部分 新手入門
- 一 量化投資視頻學習課程
- 二 Python 手把手教學
- 量化分析師的Python日記【第1天:誰來給我講講Python?】
- 量化分析師的Python日記【第2天:再接著介紹一下Python唄】
- 量化分析師的Python日記【第3天:一大波金融Library來襲之numpy篇】
- 量化分析師的Python日記【第4天:一大波金融Library來襲之scipy篇】
- 量化分析師的Python日記【第5天:數據處理的瑞士軍刀pandas】
- 量化分析師的Python日記【第6天:數據處理的瑞士軍刀pandas下篇
- 量化分析師的Python日記【第7天:Q Quant 之初出江湖】
- 量化分析師的Python日記【第8天 Q Quant兵器譜之函數插值】
- 量化分析師的Python日記【第9天 Q Quant兵器譜之二叉樹】
- 量化分析師的Python日記【第10天 Q Quant兵器譜 -之偏微分方程1】
- 量化分析師的Python日記【第11天 Q Quant兵器譜之偏微分方程2】
- 量化分析師的Python日記【第12天:量化入門進階之葵花寶典:因子如何產生和回測】
- 量化分析師的Python日記【第13天 Q Quant兵器譜之偏微分方程3】
- 量化分析師的Python日記【第14天:如何在優礦上做Alpha對沖模型】
- 量化分析師的Python日記【第15天:如何在優礦上搞一個wealthfront出來】
- 第二部分 股票量化相關
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha對沖策略——觀《量化分析師Python日記第14天》有感
- 熔斷不要怕, alpha model 為你保駕護航!
- 尋找 alpha 之: alpha 設計
- 1.2 基本面因子選股
- Porfolio(現金比率+負債現金+現金保障倍數)+市盈率
- ROE選股指標
- 成交量因子
- ROIC&cashROIC
- 【國信金工】資產周轉率選股模型
- 【基本面指標】Cash Cow
- 量化因子選股——凈利潤/營業總收入
- 營業收入增長率+市盈率
- 1.3 財報閱讀 ? [米缸量化讀財報] 資產負債表-投資相關資產
- 1.4 股東分析
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)— 更新版
- 誰是中國A股最有錢的自然人
- 1.5 宏觀研究
- 【干貨包郵】手把手教你做宏觀擇時
- 宏觀研究:從估值角度看當前市場
- 追尋“國家隊”的足跡
- 二 套利
- 2.1 配對交易
- HS300ETF套利(上)
- 【統計套利】配對交易
- 相似公司股票搬磚
- Paired trading
- 2.2 期現套利 ? 通過股指期貨的期現差與 ETF 對沖套利
- 三 事件驅動
- 3.1 盈利預增
- 盈利預增事件
- 事件驅動策略示例——盈利預增
- 3.2 分析師推薦 ? 分析師的金手指?
- 3.3 牛熊轉換
- 歷史總是相似 牛市還在延續
- 歷史總是相似 牛市已經見頂?
- 3.4 熔斷機制 ? 股海拾貝之 [熔斷錯殺股]
- 3.5 暴漲暴跌 ? [實盤感悟] 遇上暴跌我該怎么做?
- 3.6 兼并重組、舉牌收購 ? 寶萬戰-大戲開幕
- 四 技術分析
- 4.1 布林帶
- 布林帶交易策略
- 布林帶回調系統-日內
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均線系統
- 技術分析入門 —— 雙均線策略
- 5日線10日線交易策略
- 用5日均線和10日均線進行判斷 --- 改進版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑異同移動平均線方法
- 4.4 阿隆指標 ? 技術指標阿隆( Aroon )全解析
- 4.5 CCI ? CCI 順勢指標探索
- 4.6 RSI
- 重寫 rsi
- RSI指標策略
- 4.7 DMI ? DMI 指標體系的構建及簡單應用
- 4.8 EMV ? EMV 技術指標的構建及應用
- 4.9 KDJ ? KDJ 策略
- 4.10 CMO
- CMO 策略模仿練習 1
- CMO策略模仿練習2
- [技術指標] CMO
- 4.11 FPC ? FPC 指標選股
- 4.12 Chaikin Volatility
- 嘉慶離散指標測試
- 4.13 委比 ? 實時計算委比
- 4.14 封單量
- 按照封單跟流通股本比例排序,剔除6月上市新股,前50
- 漲停股票封單統計
- 實時計算漲停板股票的封單資金與總流通市值的比例
- 4.15 成交量 ? 決戰之地, IF1507 !
- 4.16 K 線分析 ? 尋找夜空中最亮的星
- 五 量化模型
- 5.1 動量模型
- Momentum策略
- 【小散學量化】-2-動量模型的簡單實踐
- 一個追漲的策略(修正版)
- 動量策略(momentum driven)
- 動量策略(momentum driven)——修正版
- 最經典的Momentum和Contrarian在中國市場的測試
- 最經典的Momentum和Contrarian在中國市場的測試-yanheven改進
- [策略]基于勝率的趨勢交易策略
- 策略探討(更新):價量結合+動量反轉
- 反向動量策略(reverse momentum driven)
- 輕松跑贏大盤 - 主題Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面選股系統:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR預測股票開盤價 v1.0
- 5.4 決策樹、隨機樹
- 決策樹模型(固定模型)
- 基于Random Forest的決策策略
- 5.5 鐘擺理論 · 鐘擺理論的簡單實現——完美躲過股災和精準抄底
- 5.6 海龜模型
- simple turtle
- 俠之大者 一起賺錢
- 5.7 5217 策略 · 白龍馬的新手策略
- 5.8 SMIA · 基于歷史狀態空間相似性匹配的行業配置 SMIA 模型—取交集
- 5.9 神經網絡
- 神經網絡交易的訓練部分
- 通過神經網絡進行交易
- 5.10 PAMR · PAMR : 基于均值反轉的投資組合選擇策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假說, Hurst 指數 · 分形市場假說,一個聽起來很美的假說
- 5.13 變點理論 · 變點策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用債風險模型初探之:Z-Score Model
- user-defined package
- 5.15 機器學習 · Machine Learning 學習筆記(一) by OTreeWEN
- 5.16 DualTrust 策略和布林強盜策略
- 5.17 卡爾曼濾波
- 5.18 LPPL anti-bubble model
- 今天大盤熔斷大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之謎——對數周期冪率(LPPL)模型
- 六 大數據模型
- 6.1 市場情緒分析
- 通聯情緒指標策略
- 互聯網+量化投資 大數據指數手把手
- 6.2 新聞熱點
- 如何使用優礦之“新聞熱點”?
- 技術分析【3】—— 眾星拱月,眾口鑠金?
- 七 排名選股系統
- 7.1 小市值投資法
- 學習筆記:可模擬(小市值+便宜 的修改版)
- 市值最小300指數
- 流通市值最小股票(新篩選器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊駝策略
- 羊駝策略
- 羊駝反轉策略(修改版)
- 羊駝反轉策略
- 我的羊駝策略,選5只股無腦輪替
- 7.3 低價策略
- 專撿便宜貨(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 輪動模型
- 8.1 大小盤輪動 · 新手上路 -- 二八ETF擇時輪動策略2.0
- 8.2 季節性策略
- Halloween Cycle
- Halloween cycle 2
- 夏買電,東買煤?
- 歷史的十一月板塊漲幅
- 8.3 行業輪動
- 銀行股輪動
- 申萬二級行業在最近1年、3個月、5個交易日的漲幅統計
- 8.4 主題輪動
- 快速研究主題神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板塊異動類
- 風險因子(離散類)
- 8.5 龍頭輪動
- Competitive Securities
- Market Competitiveness
- 主題龍頭類
- 九 組合投資
- 9.1 指數跟蹤 · [策略] 指數跟蹤低成本建倉策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸優化 · 如何在 Python 中利用 CVXOPT 求解二次規劃問題
- 十 波動率
- 10.1 波動率選股 · 風平浪靜 風起豬飛
- 10.2 波動率擇時
- 基于 VIX 指數的擇時策略
- 簡單低波動率指數
- 10.3 Arch/Garch 模型 · 如何使用優礦進行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高頻交易
- 12.1 order book 分析 · 基于高頻 limit order book 數據的短程價格方向預測—— via multi-class SVM
- 12.2 日內交易 · 大盤日內走勢 (for 擇時)
- 十三 Alternative Strategy
- 13.1 易經、傳統文化 · 老黃歷診股
- 第三部分 基金、利率互換、固定收益類
- 一 分級基金
- “優礦”集思錄——分級基金專題
- 基于期權定價的分級基金交易策略
- 基于期權定價的興全合潤基金交易策略
- 二 基金分析
- Alpha 基金“黑天鵝事件” -- 思考以及原因
- 三 債券
- 債券報價中的小陷阱
- 四 利率互換
- Swap Curve Construction
- 中國 Repo 7D 互換的例子
- 第四部分 衍生品相關
- 一 期權數據
- 如何獲取期權市場數據快照
- 期權高頻數據準備
- 二 期權系列
- [ 50ETF 期權] 1. 歷史成交持倉和 PCR 數據
- 【50ETF期權】 2. 歷史波動率
- 【50ETF期權】 3. 中國波指 iVIX
- 【50ETF期權】 4. Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 三 期權分析
- 【50ETF期權】 期權擇時指數 1.0
- 每日期權風險數據整理
- 期權頭寸計算
- 期權探秘1
- 期權探秘2
- 期權市場一周縱覽
- 基于期權PCR指數的擇時策略
- 期權每日成交額PC比例計算
- 四 期貨分析
- 【前方高能!】Gifts from Santa Claus——股指期貨趨勢交易研究