<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                # 12.2 日內交易 · 大盤日內走勢 (for 擇時) > 來源:https://uqer.io/community/share/5649b64af9f06c4446b48202 上周統計過周一到周五的漲跌分布,后來又統計了一下股指交割周的周四,竟然只有33.33%上漲 。也是醉了。 統計完日間,再來看下日內,那么大盤日內走勢是怎樣呢? 對日內操作有指導嗎? 時間緊急,話不多說,上分析過程。 ```py # 獲取09年以來的上證交易日 import datetime import seaborn import pandas as pd df = DataAPI.TradeCalGet(exchangeCD=u"XSHG",beginDate=u"20090101",endDate=datetime.datetime.now().strftime('%Y%m%d'),field=u"calendarDate,isOpen",pandas="1") trading_days = df[df.isOpen==1].calendarDate.apply(lambda x:x.replace('-','')).values trading_days array(['20090105', '20090106', '20090107', ..., '20151112', '20151113', '20151116'], dtype=object) ``` ```py # 獲取09年以來的上證指數的分鐘線 df = None for date in trading_days: try: temp_df = DataAPI.MktBarHistOneDayGet(securityID='000001.XSHG',date=date, field='barTime,closePrice')[1:] except: print 'get data error at %s.' %date continue # 日內打分,1表示最高 temp_df['rank'] = temp_df.closePrice.rank(ascending=False) temp_df['index'] = range(len(temp_df)) if df is None: df = temp_df else: df = df.append(temp_df) ``` 首先看一下30mins線,日內高點和低點的分布圖。 ```py bar_length = 30 #30mins bar def plot(bar_length): df['bar time'] = df['index'].apply(lambda x:x/bar_length) highest_count = df[df['rank'] == min(df['rank'])].groupby('bar time')['rank'].count() lowest_count = df[df['rank'] == max(df['rank'])].groupby('bar time')['rank'].count() pd.DataFrame({'highest point':highest_count,'lowest point': lowest_count}).plot(figsize=(14,8),kind='bar', title='%s mins bar' %bar_length) plot(bar_length) ``` ![](https://box.kancloud.cn/2016-07-30_579cbdb599158.png) 可以看到,日內的最高點和最低點在早盤和尾盤出現頻率最高。實際上,確實很多人都會選擇在早盤或者尾盤操作。 那15mins和5mins的情況呢? ```py plot(bar_length=15) plot(bar_length=5) ``` ![](https://box.kancloud.cn/2016-07-30_579cbdb5aea58.png) ![](img/Syhraj+egAAAABJRU5ErkJggg==.png) 5mins比15mins圖更清晰。 越靠近開盤,出現日內低點概率越高;而越臨近收盤,沖高概率也越高。極點微笑。 今天(20151116)的走勢,正巧是低開高收。 對于日內需要調倉,或者做T,可以關注一下該現象。不做任何買賣建議哦。 完。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看