<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                # 風險因子(離散類) > 來源:https://uqer.io/community/share/54d2cee9f9f06c276f651a67 本代碼用于計算風險因子 + 先根據`DataAPI.ThemeTickersGet`得到每個主題相關的個股 + 計算個股在前7天的每天漲跌幅,從而計算主題的每天漲跌幅(市值加權) + 計算個股前7天的漲跌停次數,計算主題漲跌停比例 + 對每個股票,按照股票市值占主題總市值的比例,計算漲跌幅和漲跌停比例(均為7日),將兩個指標進行排名,個股有兩個排名得分 + 再取兩個排名得分的平均,對個股再次排名 排名越高,波動越大,風險越大 ```py datetime.today() datetime.datetime(2015, 2, 4, 22, 18, 57, 402881) ``` 此處定義了幾個函數,方便調用 ```py def GetThemeInfo(thm_id_list): #由于ThemeTickersGet對于數據量有限制,一次調用1000個主題數據 num = 1000 #每一次調取多少個主題的信息 cnt_num = len(thm_id_list)/num #一次調取num個主題,要調用num次 beginDate = '20140601' #開始時間 endDate = '20150123' #結束時間 if cnt_num>0: thm_tk_pd = pd.DataFrame({}) for i in range(cnt_num): info_sub = DataAPI.ThemeTickersGet(beginDate=beginDate,endDate=endDate,themeID=thm_id_list[i*num:(i+1)*num]) #獲取主題相關的個股 thm_tk_pd = pd.concat([thm_tk_pd,info_sub]) #將數據連接 info_sub = DataAPI.ThemeTickersGet(beginDate=beginDate,endDate=endDate,themeID=thm_id_list[(i+1)*num:]) thm_tk_pd = pd.concat([thm_tk_pd,info_sub]) else: thm_tk_pd = DataAPI.ThemeTickersGet(beginDate=beginDate,endDate=endDate,themeID=thm_id_list) return thm_tk_pd def GetMktInfo(tk_list,beginDate,endDate,field_mkt): #獲得個股的日線行情數據 num = 50 cnt_num = len(tk_list)/num if cnt_num>0: tk_mkt_info = pd.DataFrame({}) for i in range(cnt_num): sub_info = DataAPI.MktEqudGet(ticker=tk_list[i*num:(i+1)*num],beginDate=beginDate,endDate=endDate,field=field_mkt) tk_mkt_info = pd.concat([tk_mkt_info,sub_info]) sub_info = DataAPI.MktEqudGet(ticker=tk_list[(i+1)*num:],beginDate=beginDate,endDate=endDate,field=field_mkt) tk_mkt_info = pd.concat([tk_mkt_info,sub_info]) else: tk_mkt_info = DataAPI.MktEqudGet(ticker=tk_list,beginDate=beginDate,endDate=endDate,field=field_mkt) return tk_mkt_info def GetDate(n): #獲得最近7個交易日的日期 cal = Calendar("China.SSE") today_cal = Date.todaysDate() today_dtime = datetime.today() if cal.isBizDay(today_cal): #如果今天是交易日 today_ymd = today_dtime.strftime("%Y%m%d") hms = " 15:05:00" ben_time = datetime.strptime(today_ymd+hms,"%Y%m%d %H:%M:%S") if today_dtime>ben_time: #如果當前時間晚于15:05分,則可以獲取到今日行情數據 end_date = today_ymd else: cal_wd = cal.advanceDate(today_cal, '-1B', BizDayConvention.Preceding) #獲得前一個工作日Date格式 end_date = cal_wd.toISO().replace('-','') #轉換成字符串格式‘20140102’ else: cal_wd = cal.advanceDate(today_cal, '-1B', BizDayConvention.Preceding) #獲得前一個工作日Date格式 end_date = cal_wd.toISO().replace('-','') #轉換成字符串格式‘20140102’ end_date_cal = Date.parseISO('-'.join([end_date[0:4],end_date[4:6],end_date[6:8]])) #更改日期格式為“2014-03-02” prd = '-'+str(n-1)+'B' #起始日期和終止日期間隔的天數 begin_date_cal = cal.advanceDate(end_date_cal, prd , BizDayConvention.Preceding) #獲得6天前的工作日 begin_date = begin_date_cal.toISO().replace('-','') return begin_date,end_date ``` 讀取主題id文件,先對個股和主題進行篩選,然后獲得個股的行情數據 ```py #Main import pandas as pd f1 = read('20140601_20150203theme_list.txt') #從這個文檔中讀取所有的主題id thm_id_list = f1.split(',') thm_tk_pd = GetThemeInfo(thm_id_list=thm_id_list) #獲得主題對應個股的信息 thm_tk_pd = thm_tk_pd[(thm_tk_pd['ticker'].str.len()==6) & (thm_tk_pd['ticker'].apply(lambda x:x[0]=='0' or x[0]=='6'))] #過濾港股和新三板,因為拿不到行情數據 grouped_thmid = thm_tk_pd.groupby('themeID') #根據主題id分類,得到每個主題對應的個股 ###對主題進行過濾如果該主題所包含的個股《5,則舍棄 fld_thmid_list = [] for name,group in grouped_thmid: if len(group)>=5: fld_thmid_list.append(name) thm_tk_pd = thm_tk_pd[thm_tk_pd['themeID'].isin(fld_thmid_list)] ThmId_Nm_dic = dict(zip(thm_tk_pd['themeID'],thm_tk_pd['themeName'])) #獲得主題id與主題名稱的對應 TkId_Nm_dic = dict(zip(thm_tk_pd['ticker'],thm_tk_pd['secShortName'])) #獲得個股id與個股名稱的對應 thm_tk_pd = thm_tk_pd[['themeID','ticker']] tk_list = list(set(thm_tk_pd['ticker'])) #獲得所有的個股 n_prd =7 beginDate,endDate = GetDate(n_prd) #獲取n_prd個交易日的具體日期 field_mkt = ['ticker','openPrice','closePrice','highestPrice','lowestPrice','marketValue','preClosePrice '] tk_mktinfo_pd = GetMktInfo(tk_list,beginDate,endDate,field_mkt) #獲得所有個股的行情數據 tk_mktinfo_pd['return'] = (tk_mktinfo_pd['closePrice']-tk_mktinfo_pd['preClosePrice'])/tk_mktinfo_pd['preClosePrice'] #計算所有個股每天的漲跌幅 ``` 計算主題的漲跌幅(絕對值)和漲跌停比例 ```py grouped_thmid = thm_tk_pd.groupby('themeID') #根據主題id分類,得到每個主題對應的個股 grouped_tkid = thm_tk_pd.groupby('ticker') #根據ticker分類,得到每個個股對應的主題 thm_rtn_dic, thm_gb_dic, thm_mkv_dic = {},{},{} #主題的日漲幅,主題的日漲跌停比例,主題的市值 #獲得主題的日收益的絕對值的平均 for thm,group_thm in grouped_thmid: sub_tk_list = list(group_thm['ticker']) sub_tk_mkt_pd = tk_mktinfo_pd[tk_mktinfo_pd['ticker'].isin(sub_tk_list)] #獲得該主題下個股的行情數據 thm_rtn = (sub_tk_mkt_pd['marketValue']*abs(sub_tk_mkt_pd['return'])).sum()/sub_tk_mkt_pd['marketValue'].sum() #計算主題在這7天的平均每天絕對收益 thm_rtn_dic[thm] = thm_rtn thm_mkv_dic[thm] = sub_tk_mkt_pd['marketValue'].sum() #記錄每個主題的市值(7天的和) num_gb = len(sub_tk_mkt_pd[(abs((sub_tk_mkt_pd['closePrice']-sub_tk_mkt_pd['preClosePrice']))/sub_tk_mkt_pd['preClosePrice']).round(2)==0.1]) #漲跌停的個股數目 thm_gb_dic[thm] = num_gb/n_prd #主題漲跌停比例7日均值 ``` 由主題漲跌幅和漲跌停比例,計算個股的漲跌幅和漲跌停比例 ```py tk_inc_gb_dic = {} #由主題計算的個股的漲幅和漲跌停比例 for tk,group_tk in grouped_tkid: tk_mkv = tk_mktinfo_pd['marketValue'][tk_mktinfo_pd['ticker']==tk].sum() #得到個股市值(7天的和) thm_list = group_tk['themeID'] inc,gb_ratio = 0,0 for thm in thm_list: pro = tk_mkv/thm_mkv_dic[thm] #個股占該主題的比例 inc += thm_rtn_dic[thm]*pro gb_ratio += thm_gb_dic[thm]*pro tk_inc_gb_dic[tk] = (inc,gb_ratio) #記錄個股的漲幅和漲跌停比例 ``` 根據個股的漲跌幅和漲跌停比例進行排名,再將這兩個排名進行平均,再排名 ```py sort1 = sorted(tk_inc_gb_dic.keys(), key = lambda x:tk_inc_gb_dic[x][0], reverse=True) #根據個股的漲幅排名,漲幅大的排名在前 sort2 = sorted(tk_inc_gb_dic.keys(), key = lambda x:tk_inc_gb_dic[x][1], reverse=True) #根據個股的漲跌停比例排名,漲跌停比例高的排名在前 rank = lambda x:(sort1.index(x)+sort2.index(x))*1.0/2+1 id2name = lambda x:TkId_Nm_dic[x] df = pd.DataFrame({'ticker':tk_list}) df['name'] = pd.Series(map(id2name,tk_list)) df['ranking_score'] = pd.Series(map(rank,tk_list)) df_sort = df.sort(columns=['ranking_score'],ascending = True) df_sort.reset_index(inplace=True,drop=True) print "最近個股風險因子排名:" df_sort ``` ```py datetime.today() datetime.datetime(2015, 2, 4, 22, 19, 15, 638752) ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看