# 【50ETF期權】 4. Greeks 和隱含波動率微笑
> 來源:https://uqer.io/community/share/560769faf9f06c597165ef75
在本文中,我們將通過量化實驗室提供的數據,計算上證50ETF期權的隱含波動率微笑。
```py
from CAL.PyCAL import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')
import seaborn as sns
sns.set_style('white')
import math
from scipy import interpolate
from scipy.stats import mstats
from pandas import Series, DataFrame, concat
import time
from matplotlib import dates
```
上海銀行間同業拆借利率 SHIBOR,用來作為無風險利率參考
```py
## 銀行間質押式回購利率
def getHistDayInterestRateInterbankRepo(date):
cal = Calendar('China.SSE')
period = Period('-10B')
begin = cal.advanceDate(date, period)
begin_str = begin.toISO().replace('-', '')
date_str = date.toISO().replace('-', '')
# 以下的indicID分別對應的銀行間質押式回購利率周期為:
# 1D, 7D, 14D, 21D, 1M, 3M, 4M, 6M, 9M, 1Y
indicID = [u"M120000067", u"M120000068", u"M120000069", u"M120000070", u"M120000071",
u"M120000072", u"M120000073", u"M120000074", u"M120000075", u"M120000076"]
period = np.asarray([1.0, 7.0, 14.0, 21.0, 30.0, 90.0, 120.0, 180.0, 270.0, 360.0]) / 360.0
period_matrix = pd.DataFrame(index=indicID, data=period, columns=['period'])
field = u"indicID,indicName,publishTime,periodDate,dataValue,unit"
interbank_repo = DataAPI.ChinaDataInterestRateInterbankRepoGet(indicID=indicID,beginDate=begin_str,endDate=date_str,field=field,pandas="1")
interbank_repo = interbank_repo.groupby('indicID').first()
interbank_repo = concat([interbank_repo, period_matrix], axis=1, join='inner').sort_index()
return interbank_repo
## 銀行間同業拆借利率
def getHistDaySHIBOR(date):
cal = Calendar('China.SSE')
period = Period('-10B')
begin = cal.advanceDate(date, period)
begin_str = begin.toISO().replace('-', '')
date_str = date.toISO().replace('-', '')
# 以下的indicID分別對應的SHIBOR周期為:
# 1D, 7D, 14D, 1M, 3M, 6M, 9M, 1Y
indicID = [u"M120000057", u"M120000058", u"M120000059", u"M120000060",
u"M120000061", u"M120000062", u"M120000063", u"M120000064"]
period = np.asarray([1.0, 7.0, 14.0, 30.0, 90.0, 180.0, 270.0, 360.0]) / 360.0
period_matrix = pd.DataFrame(index=indicID, data=period, columns=['period'])
field = u"indicID,indicName,publishTime,periodDate,dataValue,unit"
interest_shibor = DataAPI.ChinaDataInterestRateSHIBORGet(indicID=indicID,beginDate=begin_str,endDate=date_str,field=field,pandas="1")
interest_shibor = interest_shibor.groupby('indicID').first()
interest_shibor = concat([interest_shibor, period_matrix], axis=1, join='inner').sort_index()
return interest_shibor
## 插值得到給定的周期的無風險利率
def periodsSplineRiskFreeInterestRate(date, periods):
# 此處使用SHIBOR來插值
init_shibor = getHistDaySHIBOR(date)
shibor = {}
min_period = min(init_shibor.period.values)
min_period = 10.0/360.0
max_period = max(init_shibor.period.values)
for p in periods.keys():
tmp = periods[p]
if periods[p] > max_period:
tmp = max_period * 0.99999
elif periods[p] < min_period:
tmp = min_period * 1.00001
sh = interpolate.spline(init_shibor.period.values, init_shibor.dataValue.values, [tmp], order=3)
shibor[p] = sh[0]/100.0
return shibor
```
1. Greeks 和 隱含波動率計算
本文中計算的Greeks包括:
+ `delta` 期權價格關于標的價格的一階導數
+ `gamma` 期權價格關于標的價格的二階導數
+ `rho` 期權價格關于無風險利率的一階導數
+ `theta` 期權價格關于到期時間的一階導數
+ `vega` 期權價格關于波動率的一階導數
注意:
+ 計算隱含波動率,我們采用Black-Scholes-Merton模型,此模型在平臺Python包CAL中已有實現
+ 無風險利率使用SHIBOR
+ 期權的時間價值為負時(此種情況在50ETF期權里時有發生),沒法通過BSM模型計算隱含波動率,故此時將期權隱含波動率設為0.0,實際上,此時的隱含波動率和各風險指標并無實際參考價值
```py
## 使用DataAPI.OptGet, DataAPI.MktOptdGet拿到計算所需數據
def getOptDayData(opt_var_sec, date):
date_str = date.toISO().replace('-', '')
#使用DataAPI.OptGet,拿到已退市和上市的所有期權的基本信息
info_fields = [u'optID', u'varSecID', u'varShortName', u'varTicker', u'varExchangeCD', u'varType',
u'contractType', u'strikePrice', u'contMultNum', u'contractStatus', u'listDate',
u'expYear', u'expMonth', u'expDate', u'lastTradeDate', u'exerDate', u'deliDate',
u'delistDate']
opt_info = DataAPI.OptGet(optID='', contractStatus=[u"DE",u"L"], field=info_fields, pandas="1")
#使用DataAPI.MktOptdGet,拿到歷史上某一天的期權成交信息
mkt_fields = [u'ticker', u'optID', u'secShortName', u'exchangeCD', u'tradeDate', u'preSettlePrice',
u'preClosePrice', u'openPrice', u'highestPrice', u'lowestPrice', u'closePrice',
u'settlPrice', u'turnoverVol', u'turnoverValue', u'openInt']
opt_mkt = DataAPI.MktOptdGet(tradeDate=date_str, field=mkt_fields, pandas = "1")
opt_info = opt_info.set_index(u"optID")
opt_mkt = opt_mkt.set_index(u"optID")
opt = concat([opt_info, opt_mkt], axis=1, join='inner').sort_index()
return opt
## 分析歷史某一日的期權收盤價信息,得到隱含波動率微笑和期權風險指標
def getOptDayAnalysis(opt_var_sec, date):
opt = getOptDayData(opt_var_sec, date)
#使用DataAPI.MktFunddGet拿到期權標的的日行情
date_str = date.toISO().replace('-', '')
opt_var_mkt = DataAPI.MktFunddGet(secID=opt_var_sec,tradeDate=date_str,beginDate=u"",endDate=u"",field=u"",pandas="1")
#opt_var_mkt = DataAPI.MktFunddAdjGet(secID=opt_var_sec,beginDate=date_str,endDate=date_str,field=u"",pandas="1")
# 計算shibor
exp_dates_str = opt.expDate.unique()
periods = {}
for date_str in exp_dates_str:
exp_date = Date.parseISO(date_str)
periods[exp_date] = (exp_date - date)/360.0
shibor = periodsSplineRiskFreeInterestRate(date, periods)
settle = opt.settlPrice.values # 期權 settle price
close = opt.closePrice.values # 期權 close price
strike = opt.strikePrice.values # 期權 strike price
option_type = opt.contractType.values # 期權類型
exp_date_str = opt.expDate.values # 期權行權日期
eval_date_str = opt.tradeDate.values # 期權交易日期
mat_dates = []
eval_dates = []
spot = []
for epd, evd in zip(exp_date_str, eval_date_str):
mat_dates.append(Date.parseISO(epd))
eval_dates.append(Date.parseISO(evd))
spot.append(opt_var_mkt.closePrice[0])
time_to_maturity = [float(mat - eva + 1.0)/365.0 for (mat, eva) in zip(mat_dates, eval_dates)]
risk_free = [] # 無風險利率
for s, mat, time in zip(spot, mat_dates, time_to_maturity):
#rf = math.log(forward_price[mat] / s) / time
rf = shibor[mat]
risk_free.append(rf)
opt_types = [] # 期權類型
for t in option_type:
if t == 'CO':
opt_types.append(1)
else:
opt_types.append(-1)
# 使用通聯CAL包中 BSMImpliedVolatity 計算隱含波動率
calculated_vol = BSMImpliedVolatity(opt_types, strike, spot, risk_free, 0.0, time_to_maturity, settle)
calculated_vol = calculated_vol.fillna(0.0)
# 使用通聯CAL包中 BSMPrice 計算期權風險指標
greeks = BSMPrice(opt_types, strike, spot, risk_free, 0.0, calculated_vol.vol.values, time_to_maturity)
greeks.vega = greeks.vega #/ 100.0
greeks.rho = greeks.rho #/ 100.0
greeks.theta = greeks.theta #* 365.0 / 252.0 #/ 365.0
opt['strike'] = strike
opt['optType'] = option_type
opt['expDate'] = exp_date_str
opt['spotPrice'] = spot
opt['riskFree'] = risk_free
opt['timeToMaturity'] = np.around(time_to_maturity, decimals=4)
opt['settle'] = np.around(greeks.price.values.astype(np.double), decimals=4)
opt['iv'] = np.around(calculated_vol.vol.values.astype(np.double), decimals=4)
opt['delta'] = np.around(greeks.delta.values.astype(np.double), decimals=4)
opt['vega'] = np.around(greeks.vega.values.astype(np.double), decimals=4)
opt['gamma'] = np.around(greeks.gamma.values.astype(np.double), decimals=4)
opt['theta'] = np.around(greeks.theta.values.astype(np.double), decimals=4)
opt['rho'] = np.around(greeks.rho.values.astype(np.double), decimals=4)
fields = [u'ticker', u'contractType', u'strikePrice', u'expDate', u'tradeDate',
u'closePrice', u'settlPrice', 'spotPrice', u'iv',
u'delta', u'vega', u'gamma', u'theta', u'rho']
opt = opt[fields].reset_index().set_index('ticker').sort_index()
#opt['iv'] = opt.iv.replace(to_replace=0.0, value=np.nan)
return opt
```
嘗試用 `getOptDayAnalysis` 計算 2015-09-24 這一天的風險指標
```py
# Uqer 計算期權的風險數據
opt_var_sec = u"510050.XSHG" # 期權標的
date = Date(2015, 9, 24)
option_risk = getOptDayAnalysis(opt_var_sec, date)
option_risk.head(2)
```
| | optID | contractType | strikePrice | expDate | tradeDate | closePrice | settlPrice | spotPrice | iv | delta | vega | gamma | theta | rho |
| --- | --- |
| ticker | | | | | | | | | | | | | | |
| 510050C1510M01850 | 10000405 | CO | 1.85 | 2015-10-28 | 2015-09-24 | 0.3268 | 0.3555 | 2.187 | 0.4317 | 0.9101 | 0.1099 | 0.5550 | -0.2992 | 0.1568 |
| 510050C1510M01900 | 10000406 | CO | 1.90 | 2015-10-28 | 2015-09-24 | 0.2791 | 0.3102 | 2.187 | 0.4161 | 0.8810 | 0.1347 | 0.7058 | -0.3435 | 0.1550 |
進一步,我們和上交所給出的對應日期的風險指標參考數據對比一下
+ 上交所的數據需要自行下載,注意選擇日期下載相應csv文件,http://www.sse.com.cn/assortment/derivatives/options/risk/
+ 下載完后,不做內容改動,請上傳到UQER平臺的 Data 中;文件名請相應修改,此處我設為了 `option_risk_sse_0924.csv`
+ 為了避免冗余,下面我們僅僅對比近月期權的各個風險指標
```py
# 讀取上交所數據
def readRiskDataSSE(file_str):
# 按照上交所下載到的risk數據排版格式,做以處理
opt = pd.read_csv(file_str, encoding='gb2312').reset_index()
opt.columns = [['tradeDate','optID','ticker','secShortName','delta','theta','gamma','vega','rho','margin']]
opt = opt[['tradeDate','optID','ticker','delta','theta','gamma','vega','rho']]
opt['ticker'] = [tic[1:-2] for tic in opt['ticker']]
opt['tradeDate'] = [td[0:-1] for td in opt['tradeDate']]
#使用DataAPI.OptGet,拿到已退市和上市的所有期權的基本信息
info_fields = [u'optID', u'varSecID', u'varShortName', u'varTicker', u'varExchangeCD', u'varType',
u'contractType', u'strikePrice', u'contMultNum', u'contractStatus', u'listDate',
u'expYear', u'expMonth', u'expDate', u'lastTradeDate', u'exerDate', u'deliDate',
u'delistDate']
opt_info = DataAPI.OptGet(optID='', contractStatus=[u"DE",u"L"], field=info_fields, pandas="1")
# 上交所的數據和期權基本信息合并,得到比較完整的期權數據
opt_info = opt_info.set_index(u"optID")
opt = opt.set_index(u"optID")
opt = concat([opt_info, opt], axis=1, join='inner').sort_index()
fields = [u'ticker', u'contractType', u'strikePrice', u'expDate', u'tradeDate',
u'delta', u'vega', u'gamma', u'theta', u'rho']
opt = opt[fields].reset_index().set_index('ticker').sort_index()
return opt
```
讀取 2015-09-24 上交所數據
```py
option_risk_sse = readRiskDataSSE('option_risk_sse_0924.csv')
option_risk_sse.head(2)
```
| | optID | contractType | strikePrice | expDate | tradeDate | delta | vega | gamma | theta | rho |
| --- | --- |
| ticker | | | | | | | | | | |
| 510050C1510M01850 | 10000405 | CO | 1.85 | 2015-10-28 | 2015-09-24 | 0.910 | 0.109 | 0.555 | -0.303 | 0.154 |
| 510050C1510M01900 | 10000406 | CO | 1.90 | 2015-10-28 | 2015-09-24 | 0.881 | 0.134 | 0.706 | -0.349 | 0.153 |
`getOptDayAnalysis` 函數計算結果和上交所數據的對比
```py
# 對比本文計算結果 option_risk 和上交所結果 option_risk_sse 中的近月期權風險指標
near_exp = np.sort(option_risk.expDate.unique())[0] # 近月期權行權日
opt_call_uqer = option_risk[option_risk.expDate==near_exp][option_risk.contractType=='CO'].set_index('strikePrice')
opt_call_sse = option_risk_sse[option_risk_sse.expDate==near_exp][option_risk_sse.contractType=='CO'].set_index('strikePrice')
opt_put_uqer = option_risk[option_risk.expDate==near_exp][option_risk.contractType=='PO'].set_index('strikePrice')
opt_put_sse = option_risk_sse[option_risk_sse.expDate==near_exp][option_risk_sse.contractType=='PO'].set_index('strikePrice')
## ----------------------------------------------
## 風險指標對比
fig = plt.figure(figsize=(10,12))
fig.set_tight_layout(True)
# ------ Delta ------
ax = fig.add_subplot(321)
ax.plot(opt_call_uqer.index, opt_call_uqer['delta'], '-')
ax.plot(opt_call_sse.index, opt_call_sse['delta'], 's')
ax.plot(opt_put_uqer.index, opt_put_uqer['delta'], '-')
ax.plot(opt_put_sse.index, opt_put_sse['delta'], 's')
ax.legend(['call-uqer', 'call-sse', 'put-uqer', 'put-sse'])
ax.grid()
ax.set_xlabel(u"strikePrice")
ax.set_ylabel(r"Delta")
plt.title('Delta Comparison')
# ------ Theta ------
ax = fig.add_subplot(322)
ax.plot(opt_call_uqer.index, opt_call_uqer['theta'], '-')
ax.plot(opt_call_sse.index, opt_call_sse['theta'], 's')
ax.plot(opt_put_uqer.index, opt_put_uqer['theta'], '-')
ax.plot(opt_put_sse.index, opt_put_sse['theta'], 's')
ax.legend(['call-uqer', 'call-sse', 'put-uqer', 'put-sse'])
ax.grid()
ax.set_xlabel(u"strikePrice")
ax.set_ylabel(r"Theta")
plt.title('Theta Comparison')
# ------ Gamma ------
ax = fig.add_subplot(323)
ax.plot(opt_call_uqer.index, opt_call_uqer['gamma'], '-')
ax.plot(opt_call_sse.index, opt_call_sse['gamma'], 's')
ax.plot(opt_put_uqer.index, opt_put_uqer['gamma'], '-')
ax.plot(opt_put_sse.index, opt_put_sse['gamma'], 's')
ax.legend(['call-uqer', 'call-sse', 'put-uqer', 'put-sse'], loc=0)
ax.grid()
ax.set_xlabel(u"strikePrice")
ax.set_ylabel(r"Gamma")
plt.title('Gamma Comparison')
# # ------ Vega ------
ax = fig.add_subplot(324)
ax.plot(opt_call_uqer.index, opt_call_uqer['vega'], '-')
ax.plot(opt_call_sse.index, opt_call_sse['vega'], 's')
ax.plot(opt_put_uqer.index, opt_put_uqer['vega'], '-')
ax.plot(opt_put_sse.index, opt_put_sse['vega'], 's')
ax.legend(['call-uqer', 'call-sse', 'put-uqer', 'put-sse'], loc=4)
ax.grid()
ax.set_xlabel(u"strikePrice")
ax.set_ylabel(r"Vega")
plt.title('Vega Comparison')
# ------ Rho ------
ax = fig.add_subplot(325)
ax.plot(opt_call_uqer.index, opt_call_uqer['rho'], '-')
ax.plot(opt_call_sse.index, opt_call_sse['rho'], 's')
ax.plot(opt_put_uqer.index, opt_put_uqer['rho'], '-')
ax.plot(opt_put_sse.index, opt_put_sse['rho'], 's')
ax.legend(['call-uqer', 'call-sse', 'put-uqer', 'put-sse'], loc=3)
ax.grid()
ax.set_xlabel(u"strikePrice")
ax.set_ylabel(r"Rho")
plt.title('Rho Comparison')
<matplotlib.text.Text at 0x535d0d0>
```

上述五張圖中,對于近月期權,我們分別對比了五個Greeks風險指標:`Delta`, `Theta`, `Gamma`, `Vega`, `Rho`:
+ 每張圖中,`Call` 和 `Put` 分開比較,橫軸為行權價
+ 可以看出,本文中的計算結果和上交所的參考數值符合的比較好
+ 在接下來的50ETF期權分析中,我們將使用本文中的計算方法來計算期權隱含波動率和Greeks風險指標
把上面的數據整理整理,格式更簡潔一點
```py
# 每日期權分析數據整理
def getOptDayGreeksIV(date):
# Uqer 計算期權的風險數據
opt_var_sec = u"510050.XSHG" # 期權標的
opt = getOptDayAnalysis(opt_var_sec, date)
# 整理數據部分
opt.index = [index[-10:] for index in opt.index]
opt = opt[['contractType','strikePrice','expDate','closePrice','iv','delta','theta','gamma','vega','rho']]
opt_call = opt[opt.contractType=='CO']
opt_put = opt[opt.contractType=='PO']
opt_call.columns = pd.MultiIndex.from_tuples([('Call', c) for c in opt_call.columns])
opt_call[('Call-Put', 'strikePrice')] = opt_call[('Call', 'strikePrice')]
opt_put.columns = pd.MultiIndex.from_tuples([('Put', c) for c in opt_put.columns])
opt = concat([opt_call, opt_put], axis=1, join='inner').sort_index()
opt = opt.set_index(('Call','expDate')).sort_index()
opt = opt.drop([('Call','contractType'), ('Call','strikePrice')], axis=1)
opt = opt.drop([('Put','expDate'), ('Put','contractType'), ('Put','strikePrice')], axis=1)
opt.index.name = 'expDate'
## 以上得到完整的歷史某日數據,格式簡潔明了
return opt
```
```py
date = Date(2015, 9, 24)
option_risk = getOptDayGreeksIV(date)
option_risk.head(10)
```
| | Call | Call-Put | Put |
| --- | --- |
| closePrice | iv | delta | theta | gamma | vega | rho | strikePrice | closePrice | iv | delta | theta | gamma | vega | rho |
| expDate | | | | | | | | | | | | | | | |
| 2015-10-28 | 0.3268 | 0.4317 | 0.9101 | -0.2992 | 0.5550 | 0.1099 | 0.1568 | 1.85 | 0.0129 | 0.4319 | -0.0900 | -0.2410 | 0.5551 | 0.1100 | -0.0201 |
| 2015-10-28 | 0.2791 | 0.4161 | 0.8810 | -0.3435 | 0.7058 | 0.1347 | 0.1550 | 1.90 | 0.0176 | 0.4174 | -0.1197 | -0.2854 | 0.7063 | 0.1352 | -0.0268 |
| 2015-10-28 | 0.2360 | 0.3990 | 0.8449 | -0.3862 | 0.8823 | 0.1615 | 0.1517 | 1.95 | 0.0232 | 0.3992 | -0.1552 | -0.3247 | 0.8822 | 0.1615 | -0.0348 |
| 2015-10-28 | 0.1955 | 0.1811 | 0.9532 | -0.1225 | 0.7980 | 0.0663 | 0.1811 | 2.00 | 0.0345 | 0.4020 | -0.2105 | -0.3940 | 1.0601 | 0.1954 | -0.0474 |
| 2015-10-28 | 0.1599 | 0.2453 | 0.8237 | -0.2764 | 1.5588 | 0.1754 | 0.1574 | 2.05 | 0.0474 | 0.3975 | -0.2703 | -0.4441 | 1.2290 | 0.2241 | -0.0612 |
| 2015-10-28 | 0.1275 | 0.2698 | 0.7137 | -0.3696 | 1.8625 | 0.2304 | 0.1374 | 2.10 | 0.0643 | 0.3952 | -0.3381 | -0.4847 | 1.3660 | 0.2476 | -0.0771 |
| 2015-10-28 | 0.0990 | 0.2814 | 0.6081 | -0.4208 | 2.0162 | 0.2602 | 0.1180 | 2.15 | 0.0869 | 0.4013 | -0.4114 | -0.5200 | 1.4317 | 0.2635 | -0.0946 |
| 2015-10-28 | 0.0768 | 0.2955 | 0.5057 | -0.4489 | 1.9934 | 0.2701 | 0.0987 | 2.20 | 0.1146 | 0.4121 | -0.4836 | -0.5428 | 1.4284 | 0.2699 | -0.1124 |
| 2015-10-28 | 0.0584 | 0.3068 | 0.4132 | -0.4487 | 1.8746 | 0.2637 | 0.0810 | 2.25 | 0.1450 | 0.4200 | -0.5517 | -0.5438 | 1.3908 | 0.2679 | -0.1296 |
| 2015-10-28 | 0.0470 | 0.3264 | 0.3381 | -0.4434 | 1.6538 | 0.2476 | 0.0664 | 2.30 | 0.1826 | 0.4426 | -0.6091 | -0.5520 | 1.2809 | 0.2600 | -0.1452 |
## 2. 隱含波動率微笑
利用上一小節的代碼,給出隱含波動率微笑結構
隱含波動率微笑
```py
# 做圖展示某一天的隱含波動率微笑
def plotSmileVolatility(date):
# Uqer 計算期權的風險數據
opt = getOptDayGreeksIV(date)
# 下面展示波動率微笑
exp_dates = np.sort(opt.index.unique())
## ----------------------------------------------
fig = plt.figure(figsize=(10,8))
fig.set_tight_layout(True)
for i in range(exp_dates.shape[0]):
date = exp_dates[i]
ax = fig.add_subplot(2,2,i+1)
opt_date = opt[opt.index==date].set_index(('Call-Put', 'strikePrice'))
opt_date.index.name = 'strikePrice'
ax.plot(opt_date.index, opt_date[('Call', 'iv')], '-o')
ax.plot(opt_date.index, opt_date[('Put', 'iv')], '-s')
ax.legend(['call', 'put'], loc=0)
ax.grid()
ax.set_xlabel(u"strikePrice")
ax.set_ylabel(r"Implied Volatility")
plt.title(exp_dates[i])
```
```py
plotSmileVolatility(Date(2015,9,24))
```

行權價和行權日期兩個方向上的隱含波動率微笑
```py
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
# 做圖展示某一天的隱含波動率結構
def plotSmileVolatilitySurface(date):
# Uqer 計算期權的風險數據
opt = getOptDayGreeksIV(date)
# 下面展示波動率結構
exp_dates = np.sort(opt.index.unique())
strikes = np.sort(opt[('Call-Put', 'strikePrice')].unique())
risk_mt = {'Call': pd.DataFrame(index=strikes),
'Put': pd.DataFrame(index=strikes) }
# 將數據整理成Call和Put分開來,分別的結構為:
# 行為行權價,列為剩余到期天數(以自然天數計算)
for epd in exp_dates:
exp_days = Date.parseISO(epd) - date
opt_date = opt[opt.index==epd].set_index(('Call-Put', 'strikePrice'))
opt_date.index.name = 'strikePrice'
for cp in risk_mt.keys():
risk_mt[cp][exp_days] = opt_date[(cp, 'iv')]
for cp in risk_mt.keys():
for strike in risk_mt[cp].index:
if np.sum(np.isnan(risk_mt[cp].ix[strike])) > 0:
risk_mt[cp] = risk_mt[cp].drop(strike)
# Call和Put分開顯示,行index為行權價,列index為剩余到期天數
#print risk_mt
# 畫圖
for cp in ['Call', 'Put']:
opt = risk_mt[cp]
x = []
y = []
z = []
for xx in opt.index:
for yy in opt.columns:
x.append(xx)
y.append(yy)
z.append(opt[yy][xx])
fig = plt.figure(figsize=(10,8))
fig.suptitle(cp)
ax = fig.gca(projection='3d')
ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.2)
return risk_mt
```
畫出某一天的波動率微笑曲面結構
```py
opt = plotSmileVolatilitySurface(Date(2015,9,24))
opt # Call和Put分開顯示,行index為行權價,列index為剩余到期天數
{'Call': 34 62 90 181
2.10 0.2698 0.2817 0.2823 0.3042
2.15 0.2814 0.2888 0.2916 0.3063
2.20 0.2955 0.3008 0.2922 0.3237
2.25 0.3068 0.3067 0.3093 0.3157
2.30 0.3264 0.3155 0.3128 0.3172,
'Put': 34 62 90 181
2.10 0.3952 0.4403 0.4740 0.4449
2.15 0.4013 0.4442 0.4794 0.4632
2.20 0.4121 0.4498 0.4802 0.4451
2.25 0.4200 0.4581 0.4863 0.4547
2.30 0.4426 0.4673 0.4893 0.4691}
```


波動率曲面結構圖中:
+ 上圖為Call,下圖為Put,此處沒有進行任何插值處理,所以略顯粗糙
+ Put的隱含波動率明顯大于Call
+ 期限結構來說,波動率呈現遠高近低的特征
- Python 量化交易教程
- 第一部分 新手入門
- 一 量化投資視頻學習課程
- 二 Python 手把手教學
- 量化分析師的Python日記【第1天:誰來給我講講Python?】
- 量化分析師的Python日記【第2天:再接著介紹一下Python唄】
- 量化分析師的Python日記【第3天:一大波金融Library來襲之numpy篇】
- 量化分析師的Python日記【第4天:一大波金融Library來襲之scipy篇】
- 量化分析師的Python日記【第5天:數據處理的瑞士軍刀pandas】
- 量化分析師的Python日記【第6天:數據處理的瑞士軍刀pandas下篇
- 量化分析師的Python日記【第7天:Q Quant 之初出江湖】
- 量化分析師的Python日記【第8天 Q Quant兵器譜之函數插值】
- 量化分析師的Python日記【第9天 Q Quant兵器譜之二叉樹】
- 量化分析師的Python日記【第10天 Q Quant兵器譜 -之偏微分方程1】
- 量化分析師的Python日記【第11天 Q Quant兵器譜之偏微分方程2】
- 量化分析師的Python日記【第12天:量化入門進階之葵花寶典:因子如何產生和回測】
- 量化分析師的Python日記【第13天 Q Quant兵器譜之偏微分方程3】
- 量化分析師的Python日記【第14天:如何在優礦上做Alpha對沖模型】
- 量化分析師的Python日記【第15天:如何在優礦上搞一個wealthfront出來】
- 第二部分 股票量化相關
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha對沖策略——觀《量化分析師Python日記第14天》有感
- 熔斷不要怕, alpha model 為你保駕護航!
- 尋找 alpha 之: alpha 設計
- 1.2 基本面因子選股
- Porfolio(現金比率+負債現金+現金保障倍數)+市盈率
- ROE選股指標
- 成交量因子
- ROIC&cashROIC
- 【國信金工】資產周轉率選股模型
- 【基本面指標】Cash Cow
- 量化因子選股——凈利潤/營業總收入
- 營業收入增長率+市盈率
- 1.3 財報閱讀 ? [米缸量化讀財報] 資產負債表-投資相關資產
- 1.4 股東分析
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)
- 技術分析入門 【2】 —— 大家搶籌碼(06年至12年版)— 更新版
- 誰是中國A股最有錢的自然人
- 1.5 宏觀研究
- 【干貨包郵】手把手教你做宏觀擇時
- 宏觀研究:從估值角度看當前市場
- 追尋“國家隊”的足跡
- 二 套利
- 2.1 配對交易
- HS300ETF套利(上)
- 【統計套利】配對交易
- 相似公司股票搬磚
- Paired trading
- 2.2 期現套利 ? 通過股指期貨的期現差與 ETF 對沖套利
- 三 事件驅動
- 3.1 盈利預增
- 盈利預增事件
- 事件驅動策略示例——盈利預增
- 3.2 分析師推薦 ? 分析師的金手指?
- 3.3 牛熊轉換
- 歷史總是相似 牛市還在延續
- 歷史總是相似 牛市已經見頂?
- 3.4 熔斷機制 ? 股海拾貝之 [熔斷錯殺股]
- 3.5 暴漲暴跌 ? [實盤感悟] 遇上暴跌我該怎么做?
- 3.6 兼并重組、舉牌收購 ? 寶萬戰-大戲開幕
- 四 技術分析
- 4.1 布林帶
- 布林帶交易策略
- 布林帶回調系統-日內
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均線系統
- 技術分析入門 —— 雙均線策略
- 5日線10日線交易策略
- 用5日均線和10日均線進行判斷 --- 改進版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑異同移動平均線方法
- 4.4 阿隆指標 ? 技術指標阿隆( Aroon )全解析
- 4.5 CCI ? CCI 順勢指標探索
- 4.6 RSI
- 重寫 rsi
- RSI指標策略
- 4.7 DMI ? DMI 指標體系的構建及簡單應用
- 4.8 EMV ? EMV 技術指標的構建及應用
- 4.9 KDJ ? KDJ 策略
- 4.10 CMO
- CMO 策略模仿練習 1
- CMO策略模仿練習2
- [技術指標] CMO
- 4.11 FPC ? FPC 指標選股
- 4.12 Chaikin Volatility
- 嘉慶離散指標測試
- 4.13 委比 ? 實時計算委比
- 4.14 封單量
- 按照封單跟流通股本比例排序,剔除6月上市新股,前50
- 漲停股票封單統計
- 實時計算漲停板股票的封單資金與總流通市值的比例
- 4.15 成交量 ? 決戰之地, IF1507 !
- 4.16 K 線分析 ? 尋找夜空中最亮的星
- 五 量化模型
- 5.1 動量模型
- Momentum策略
- 【小散學量化】-2-動量模型的簡單實踐
- 一個追漲的策略(修正版)
- 動量策略(momentum driven)
- 動量策略(momentum driven)——修正版
- 最經典的Momentum和Contrarian在中國市場的測試
- 最經典的Momentum和Contrarian在中國市場的測試-yanheven改進
- [策略]基于勝率的趨勢交易策略
- 策略探討(更新):價量結合+動量反轉
- 反向動量策略(reverse momentum driven)
- 輕松跑贏大盤 - 主題Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面選股系統:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR預測股票開盤價 v1.0
- 5.4 決策樹、隨機樹
- 決策樹模型(固定模型)
- 基于Random Forest的決策策略
- 5.5 鐘擺理論 · 鐘擺理論的簡單實現——完美躲過股災和精準抄底
- 5.6 海龜模型
- simple turtle
- 俠之大者 一起賺錢
- 5.7 5217 策略 · 白龍馬的新手策略
- 5.8 SMIA · 基于歷史狀態空間相似性匹配的行業配置 SMIA 模型—取交集
- 5.9 神經網絡
- 神經網絡交易的訓練部分
- 通過神經網絡進行交易
- 5.10 PAMR · PAMR : 基于均值反轉的投資組合選擇策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假說, Hurst 指數 · 分形市場假說,一個聽起來很美的假說
- 5.13 變點理論 · 變點策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用債風險模型初探之:Z-Score Model
- user-defined package
- 5.15 機器學習 · Machine Learning 學習筆記(一) by OTreeWEN
- 5.16 DualTrust 策略和布林強盜策略
- 5.17 卡爾曼濾波
- 5.18 LPPL anti-bubble model
- 今天大盤熔斷大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之謎——對數周期冪率(LPPL)模型
- 六 大數據模型
- 6.1 市場情緒分析
- 通聯情緒指標策略
- 互聯網+量化投資 大數據指數手把手
- 6.2 新聞熱點
- 如何使用優礦之“新聞熱點”?
- 技術分析【3】—— 眾星拱月,眾口鑠金?
- 七 排名選股系統
- 7.1 小市值投資法
- 學習筆記:可模擬(小市值+便宜 的修改版)
- 市值最小300指數
- 流通市值最小股票(新篩選器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊駝策略
- 羊駝策略
- 羊駝反轉策略(修改版)
- 羊駝反轉策略
- 我的羊駝策略,選5只股無腦輪替
- 7.3 低價策略
- 專撿便宜貨(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 輪動模型
- 8.1 大小盤輪動 · 新手上路 -- 二八ETF擇時輪動策略2.0
- 8.2 季節性策略
- Halloween Cycle
- Halloween cycle 2
- 夏買電,東買煤?
- 歷史的十一月板塊漲幅
- 8.3 行業輪動
- 銀行股輪動
- 申萬二級行業在最近1年、3個月、5個交易日的漲幅統計
- 8.4 主題輪動
- 快速研究主題神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板塊異動類
- 風險因子(離散類)
- 8.5 龍頭輪動
- Competitive Securities
- Market Competitiveness
- 主題龍頭類
- 九 組合投資
- 9.1 指數跟蹤 · [策略] 指數跟蹤低成本建倉策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸優化 · 如何在 Python 中利用 CVXOPT 求解二次規劃問題
- 十 波動率
- 10.1 波動率選股 · 風平浪靜 風起豬飛
- 10.2 波動率擇時
- 基于 VIX 指數的擇時策略
- 簡單低波動率指數
- 10.3 Arch/Garch 模型 · 如何使用優礦進行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高頻交易
- 12.1 order book 分析 · 基于高頻 limit order book 數據的短程價格方向預測—— via multi-class SVM
- 12.2 日內交易 · 大盤日內走勢 (for 擇時)
- 十三 Alternative Strategy
- 13.1 易經、傳統文化 · 老黃歷診股
- 第三部分 基金、利率互換、固定收益類
- 一 分級基金
- “優礦”集思錄——分級基金專題
- 基于期權定價的分級基金交易策略
- 基于期權定價的興全合潤基金交易策略
- 二 基金分析
- Alpha 基金“黑天鵝事件” -- 思考以及原因
- 三 債券
- 債券報價中的小陷阱
- 四 利率互換
- Swap Curve Construction
- 中國 Repo 7D 互換的例子
- 第四部分 衍生品相關
- 一 期權數據
- 如何獲取期權市場數據快照
- 期權高頻數據準備
- 二 期權系列
- [ 50ETF 期權] 1. 歷史成交持倉和 PCR 數據
- 【50ETF期權】 2. 歷史波動率
- 【50ETF期權】 3. 中國波指 iVIX
- 【50ETF期權】 4. Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 【50ETF期權】 5. 日內即時監控 Greeks 和隱含波動率微笑
- 三 期權分析
- 【50ETF期權】 期權擇時指數 1.0
- 每日期權風險數據整理
- 期權頭寸計算
- 期權探秘1
- 期權探秘2
- 期權市場一周縱覽
- 基于期權PCR指數的擇時策略
- 期權每日成交額PC比例計算
- 四 期貨分析
- 【前方高能!】Gifts from Santa Claus——股指期貨趨勢交易研究