<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                # 誰是中國A股最有錢的自然人 > 來源:https://uqer.io/community/share/5523b45ef9f06c8f3390453e 運行此代碼,便可知道,在當前日期,誰是A股最有錢的自然人! 股東數據來自于恒生聚源,選擇的是類型為“自然人”的股東,有可能有臟數據! ```py import pandas as pd import numpy as np from datetime import datetime,timedelta from CAL.PyCAL import * cal = Calendar('China.SSE') ``` ```py def GetSecID(tk_list,**kargs): #獲得partyID num = 100 cnt_num = len(tk_list)/num if cnt_num > 0: df = pd.DataFrame({}) for i in range(cnt_num): sub_df = DataAPI.SecIDGet(ticker=tk_list[i*num:(i+1)*num],**kargs) df = pd.concat([df,sub_df]) if (i+1)*num != len(tk_list): sub_df = DataAPI.SecIDGet(ticker=tk_list[(i+1)*num:],**kargs) df = pd.concat([df,sub_df]) else: df = DataAPI.SecIDGet(ticker=tk_list,**kargs) return df def CountTime(): #獲取最近的一個交易日,返回的是datetime格式 today = datetime.today() today_str = today.strftime("%Y%m%d") cal_date = Date.fromDateTime(today) time1=" 15:05:00" ben_time = datetime.strptime(today_str+time1,"%Y%m%d %H:%M:%S") if cal.isBizDay(cal_date) & (today>ben_time): #如果是交易日,則判斷當天是不是在15點前 date = today else: #如果當天不是交易日,則獲得前一個交易日 cal_wd = cal.advanceDate(cal_date, '-1B', BizDayConvention.Following) #Date格式 date = cal_wd.toDateTime() #datetime格式 return date def GetMktEqud(tk_list,**kargs): #獲得最新市場信息快照,即最新價格信息 num = 50 cnt_num = len(tk_list)/num if cnt_num > 0: df = pd.DataFrame({}) for i in range(cnt_num): sub_df = DataAPI.MktEqudGet(ticker=tk_list[i*num:(i+1)*num],**kargs) df = pd.concat([df,sub_df]) if (i+1)*num != len(tk_list): sub_df = DataAPI.MktEqudGet(ticker=tk_list[(i+1)*num:],**kargs) df = pd.concat([df,sub_df]) else: df = DataAPI.MktEqudGet(ticker=tk_list,**kargs) return df def add_nm_money(sub_info): #將個股名稱與金額拼接,方便做展示 add_info_list = [] sub_info_1 = sub_info.sort(columns='hold_money',ascending=False) for i in range(len(sub_info_1)): add_info = sub_info_1['secshortNM'].iloc[i] + str(round(sub_info_1['hold_money'].iloc[i]/1e8,2))+'億' add_info_list.append(add_info) return add_info_list ``` ```py #獲得全A股的partyID universe = DataAPI.EquGet(equTypeCD='A')['secID'].tolist() #獲得全A股的secID All_A_tks_list = map(lambda x:x[0:6],universe) #根據色此ID獲得A股的所有ticker,因為要獲得partyID需要輸入ticker party_id_info = GetSecID(tk_list=All_A_tks_list,field=['secShortName','ticker','partyID']) #由ticker獲得該個股的partyID party2tk_dic = dict(zip(party_id_info['partyID'],party_id_info['ticker'])) #獲得partyID與ticker的對應字典;注意,party_id_info的partyID是int型 party2nm_dic = dict(zip(party_id_info['partyID'],party_id_info['secShortName'])) #獲得partyID與secShortName的對應字典 party_id_list = map(lambda x:str(x),party_id_info['partyID'].tolist()) #獲得partyID的list,返回的party_id_info的‘partyID’是int型,而EquMainshJYGet輸入的partyID需要str型,所以這里做個轉換 field1 = ['partyID','publishDate','shName','shChar','holdVol'] #分別對應的是[公司代碼,公告日、信息類別、股東名稱、股東性質、持股數] ``` ```py #獲得所有個股的自然人股東姓名,以及持有的股票數目 All_info_df = pd.DataFrame({}) for party_id in party_id_list: hold_info = DataAPI.JY.EquMainshJYGet(partyID=party_id,field=field1) last_publishDate = hold_info['publishDate'].iloc[-1] hold_info = hold_info[(hold_info['publishDate']==last_publishDate)&(hold_info['shChar']=='自然人')] #獲取最新的自然人股東信息 hold_info_gp = hold_info.groupby('shName') #由于EquMainshJYGet這個API獲得的是十大股東和十大流通股,只要出現過,不管是哪種都要記錄;有可能出現兩次,也只記錄一次。 for nm,sub_info in hold_info_gp: if len(sub_info)>1: #既是十大股東之一也是十大流通股東之一,只記錄其中之一 All_info_df = pd.concat([All_info_df,sub_info[0:1]]) else: #是十大股東或十大流通股東,記錄下來 All_info_df = pd.concat([All_info_df,sub_info]) All_info_df['ticker'] = All_info_df['partyID'].apply(lambda x:party2tk_dic[x]) #獲得partyID對應的ticker ``` ```py #獲得個股的行情數據 tklist_1 = All_info_df['ticker'].tolist() #獲得有自然人持股的個股ticker tklist_1 = list(set(tklist_1)) #去重 endDate = CountTime().strftime('%Y%m%d') #獲得最近一個交易日的日期 Mkt_info = GetMktEqud(tklist_1,beginDate=endDate,endDate=endDate,field = ['ticker','closePrice']) #獲取最近一個交易日的行情數據 ``` ```py tk2price = dict(zip(Mkt_info['ticker'],Mkt_info['closePrice'])) #獲得個股ticker與價格的字典 All_info_df['closePrice'] = All_info_df['ticker'].apply(lambda x:tk2price[x]) #添加closePrice到All_info_df中 All_info_df['secshortNM'] = All_info_df['partyID'].apply(lambda x:party2nm_dic[x]) #添加secshortNM即個股的簡稱到All_info_df中 All_info_df['hold_money'] = All_info_df['holdVol']*All_info_df['closePrice'] #添加hold_money即個股的持有金額到All_info_df中 All_info_df_gp = All_info_df.groupby('shName') #根據股東的姓名來分類 ``` ```py #統計自然人股東的總資產,并按照總資產大小由大到小排序 final_info_dic = {'name':[],'total_money':[],'stk_money':[]} for personNM,sub_info in All_info_df_gp: total_money = sub_info['hold_money'].sum() stk_money = add_nm_money(sub_info) #獲得個股名稱和金額的拼接結果 final_info_dic['name'].append(personNM) final_info_dic['total_money'].append(total_money) final_info_dic['stk_money'].append(stk_money) final_info_df = pd.DataFrame(final_info_dic) ``` ```py #為了展示,做一些處理 All_info_df_sort = final_info_df.sort(columns='total_money',ascending=False).reset_index(drop=True) All_info_df_sort['total_money'] = np.round(All_info_df_sort['total_money']/1e8,2).astype(str)+'億' All_info_df_sort.columns = ['自然人名稱','持有的股票及資產','總資產'] print '誰是A股最有錢的自然人股東?(附注:’恒生聚源‘的數據庫顯示為自然人,則該股東定為自然人股東,可能存在臟數據)' All_info_df_sort ``` 誰是A股最有錢的自然人股東?(附注:’恒生聚源‘的數據庫顯示為自然人,則該股東定為自然人股東,可能存在臟數據) | | 自然人名稱 | 持有的股票及資產 | 總資產 | | --- | --- | | 0 | 財政部 | [工商銀行6165.82億, 農業銀行4801.54億, 交通銀行1290.53億] | 12257.89億 | | 1 | 淡馬錫 | [建設銀行908.96億] | 908.96億 | | 2 | 王靖 | [信威集團480.9億] | 480.9億 | | 3 | 王傳福 | [比亞迪344.61億] | 344.61億 | | 4 | 張長虹 | [大智慧340.28億, *ST路翔0.51億] | 340.79億 | | 5 | 賈躍亭 | [樂視網327.9億] | 327.9億 | | 6 | 張近東 | [蘇寧云商264.86億] | 264.86億 | | 7 | 中國第一重型機械集團公司 | [中國一重250.14億] | 250.14億 | | 8 | 李仲初 | [石基信息242.46億] | 242.46億 | | 9 | 龔虹嘉 | [海康威視238.03億] | 238.03億 | | 10 | 傅利泉 | [大華股份201.11億] | 201.11億 | | 11 | 肖文革 | [印紀傳媒175.97億, 西部證券16.58億] | 192.55億 | | 12 | 杜江濤 | [內蒙君正157.7億, 博暉創新16.3億] | 174.0億 | | 13 | 梁允超 | [湯臣倍健162.02億] | 162.02億 | | 14 | 孫清煥 | [木林森161.08億] | 161.08億 | | 15 | 蔡東青 | [奧飛動漫147.74億] | 147.74億 | | 16 | 呂向陽 | [比亞迪144.47億] | 144.47億 | | 17 | 帥放文 | [爾康制藥128.99億] | 128.99億 | | 18 | 何巧女 | [東方園林128.18億] | 128.18億 | | 19 | 易崢 | [同花順128.11億] | 128.11億 | | 20 | 田明 | [美亞光電127.27億, 西北軸承0.21億] | 127.48億 | | 21 | 姜偉 | [貴州百靈126.89億, 安泰科技0.41億] | 127.3億 | | 22 | 王俊民 | [海思科125.16億] | 125.16億 | | 23 | 王偉 | [朗瑪信息98.87億, 盛達礦業6.57億, 火炬電子5.8億, 凱發電氣3.95億, 新... | 118.54億 | | 24 | 闕文彬 | [恒康醫療116.81億] | 116.81億 | | 25 | 敖小強 | [雪迪龍115.3億] | 115.3億 | | 26 | 莊敏 | [中達股份107.71億] | 107.71億 | | 27 | 王海鵬 | [美盈森105.31億] | 105.31億 | | 28 | 周亞輝 | [昆侖萬維98.11億] | 98.11億 | | 29 | 張軒松 | [永輝超市94.87億] | 94.87億 | | ... | ... | ... | ... | | 11186 | 羅篦涵 | [金萊特0.03億] | 0.03億 | | 11187 | 翟振國 | [北特科技0.03億] | 0.03億 | | 11188 | 高春成 | [欣泰電氣0.03億] | 0.03億 | | 11189 | 熊小華 | [禾豐牧業0.03億] | 0.03億 | | 11190 | 馮月季 | [聯明股份0.03億] | 0.03億 | | 11191 | 張艷紅 | [金輪股份0.03億] | 0.03億 | | 11192 | 瞿斌 | [聯明股份0.03億] | 0.03億 | | 11193 | 宋建平 | [光洋股份0.03億] | 0.03億 | | 11194 | 牛帥 | [登云股份0.03億] | 0.03億 | | 11195 | 李國虎 | [金萊特0.03億] | 0.03億 | | 11196 | 林薇薇 | [北特科技0.03億] | 0.03億 | | 11197 | 陳天國 | [雄韜股份0.03億] | 0.03億 | | 11198 | 宗長麗 | [金輪股份0.03億] | 0.03億 | | 11199 | 劉燕華 | [躍嶺股份0.03億] | 0.03億 | | 11200 | 吳小金 | [登云股份0.03億] | 0.03億 | | 11201 | 張鐵立 | [聯明股份0.03億] | 0.03億 | | 11202 | 吳國軍 | [北特科技0.03億] | 0.03億 | | 11203 | 韓泉富 | [聯明股份0.03億] | 0.03億 | | 11204 | 余曉玲 | [北特科技0.03億] | 0.03億 | | 11205 | 侯玉輝 | [登云股份0.03億] | 0.03億 | | 11206 | 朱素煥 | [登云股份0.03億] | 0.03億 | | 11207 | 陳茂鑄 | [天保重裝0.03億] | 0.03億 | | 11208 | 陳兆國 | [天保重裝0.02億] | 0.02億 | | 11209 | 王利瓊 | [登云股份0.02億] | 0.02億 | | 11210 | 陳行飛 | [天保重裝0.02億] | 0.02億 | | 11211 | 戴曉斐 | [天保重裝0.02億] | 0.02億 | | 11212 | 趙麗 | [天保重裝0.02億] | 0.02億 | | 11213 | 陸建 | [登云股份0.02億] | 0.02億 | | 11214 | 陳玉芬 | [天保重裝0.02億] | 0.02億 | | 11215 | 盧旭東 | [紅陽能源0.0億] | 0.0億 | ``` 11216 rows × 3 columns ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看