#### 3.3.1 使用Scroller
Scroller的使用方法在3.1.4節中已經進行了介紹,下面我們來分析一下它的源碼,從而探究為什么它能實現View的彈性滑動。
Scroller scroller = new Scroller(mContext);
// 緩慢滾動到指定位置
private void smoothScrollTo(int destX, int destY) {
int scrollX = getScrollX();
int deltaX = destX - scrollX;
// 1000ms內滑向destX,效果就是慢慢滑動
mScroller.startScroll(scrollX, 0, deltaX, 0, 1000);
invalidate();
}
@Override
public void computeScroll() {
if (mScroller.computeScrollOffset()) {
scrollTo(mScroller.getCurrX(), mScroller.getCurrY());
postInvalidate();
}
}
上面是Scroller的典型的使用方法,這里先描述它的工作原理:當我們構造一個Scroller對象并且調用它的startScroll方法時,Scroller內部其實什么也沒做,它只是保存了我們傳遞的幾個參數,這幾個參數從startScroll的原型上就可以看出來,如下所示。
public void startScroll(int startX, int startY, int dx, int dy, int duration){
mMode = SCROLL_MODE;
mFinished = false;
mDuration = duration;
mStartTime = AnimationUtils.currentAnimationTimeMillis();
mStartX = startX;
mStartY = startY;
mFinalX = startX + dx;
mFinalY = startY + dy;
mDeltaX = dx;
mDeltaY = dy;
mDurationReciprocal = 1.0f / (float) mDuration;
}
這個方法的參數含義很清楚,startX和startY表示的是滑動的起點,dx和dy表示的是要滑動的距離,而duration表示的是滑動時間,即整個滑動過程完成所需要的時間,注意這里的滑動是指View內容的滑動而非View本身位置的改變。可以看到,僅僅調用startScroll方法是無法讓View滑動的,因為它內部并沒有做滑動相關的事,那么Scroller到底是如何讓View彈性滑動的呢?答案就是startScroll方法下面的invalidate方法,雖然有點不可思議,但是的確是這樣的。invalidate方法會導致View重繪,在View的draw方法中又會去調用computeScroll方法,computeScroll方法在View中是一個空實現,因此需要我們自己去實現,上面的代碼已經實現了computeScroll方法。正是因為這個computeScroll方法,View才能實現彈性滑動。這看起來還是很抽象,其實這樣的:當View重繪后會在draw方法中調用computeScroll,而computeScroll又會去向Scroller獲取當前的scrollX和scrollY;然后通過scrollTo方法實現滑動;接著又調用postInvalidate方法來進行第二次重繪,這一次重繪的過程和第一次重繪一樣,還是會導致computeScroll方法被調用;然后繼續向Scroller獲取當前的scrollX和scrollY,并通過scrollTo方法滑動到新的位置,如此反復,直到整個滑動過程結束。
我們再看一下Scroller的computeScrollOffset方法的實現,如下所示。
/**
* Call this when you want to know the new location. If it returns true,
* the animation is not yet finished.
*/
public boolean computeScrollOffset() {
...
int timePassed = (int)(AnimationUtils.currentAnimationTimeMillis() -
mStartTime);
if (timePassed < mDuration) {
switch (mMode) {
case SCROLL_MODE:
final float x = mInterpolator.getInterpolation(timePassed *
mDurationReciprocal);
mCurrX = mStartX + Math.round(x * mDeltaX);
mCurrY = mStartY + Math.round(x * mDeltaY);
break;
...
}
}
return true;
}
是不是突然就明白了?這個方法會根據時間的流逝來計算出當前的scrollX和scrollY的值。計算方法也很簡單,大意就是根據時間流逝的百分比來算出scrollX和scrollY改變的百分比并計算出當前的值,這個過程類似于動畫中的插值器的概念,這里我們先不去深究這個具體過程。這個方法的返回值也很重要,它返回true表示滑動還未結束,false則表示滑動已經結束,因此當這個方法返回true時,我們要繼續進行View的滑動。
通過上面的分析,我們應該明白Scroller的工作原理了,這里做一下概括:Scroller本身并不能實現View的滑動,它需要配合View的computeScroll方法才能完成彈性滑動的效果,它不斷地讓View重繪,而每一次重繪距滑動起始時間會有一個時間間隔,通過這個時間間隔Scroller就可以得出View當前的滑動位置,知道了滑動位置就可以通過scrollTo方法來完成View的滑動。就這樣,View的每一次重繪都會導致View進行小幅度的滑動,而多次的小幅度滑動就組成了彈性滑動,這就是Scroller的工作機制。由此可見,Scroller的設計思想是多么值得稱贊,整個過程中它對View沒有絲毫的引用,甚至在它內部連計時器都沒有。
- 前言
- 第1章 Activity的生命周期和啟動模式
- 1.1 Activity的生命周期全面分析
- 1.1.1 典型情況下的生命周期分析
- 1.1.2 異常情況下的生命周期分析
- 1.2 Activity的啟動模式
- 1.2.1 Activity的LaunchMode
- 1.2.2 Activity的Flags
- 1.3 IntentFilter的匹配規則
- 第2章 IPC機制
- 2.1 Android IPC簡介
- 2.2 Android中的多進程模式
- 2.2.1 開啟多進程模式
- 2.2.2 多進程模式的運行機制
- 2.3 IPC基礎概念介紹
- 2.3.1 Serializable接口
- 2.3.2 Parcelable接口
- 2.3.3 Binder
- 2.4 Android中的IPC方式
- 2.4.1 使用Bundle
- 2.4.2 使用文件共享
- 2.4.3 使用Messenger
- 2.4.4 使用AIDL
- 2.4.5 使用ContentProvider
- 2.4.6 使用Socket
- 2.5 Binder連接池
- 2.6 選用合適的IPC方式
- 第3章 View的事件體系
- 3.1 View基礎知識
- 3.1.1 什么是View
- 3.1.2 View的位置參數
- 3.1.3 MotionEvent和TouchSlop
- 3.1.4 VelocityTracker、GestureDetector和Scroller
- 3.2 View的滑動
- 3.2.1 使用scrollTo/scrollBy
- 3.2.2 使用動畫
- 3.2.3 改變布局參數
- 3.2.4 各種滑動方式的對比
- 3.3 彈性滑動
- 3.3.1 使用Scroller7
- 3.3.2 通過動畫
- 3.3.3 使用延時策略
- 3.4 View的事件分發機制
- 3.4.1 點擊事件的傳遞規則
- 3.4.2 事件分發的源碼解析
- 3.5 View的滑動沖突
- 3.5.1 常見的滑動沖突場景
- 3.5.2 滑動沖突的處理規則
- 3.5.3 滑動沖突的解決方式
- 第4章 View的工作原理
- 4.1 初識ViewRoot和DecorView
- 4.2 理解MeasureSpec
- 4.2.1 MeasureSpec
- 4.2.2 MeasureSpec和LayoutParams的對應關系
- 4.3 View的工作流程
- 4.3.1 measure過程
- 4.3.2 layout過程
- 4.3.3 draw過程
- 4.4 自定義View
- 4.4.1 自定義View的分類
- 4.4.2 自定義View須知
- 4.4.3 自定義View示例
- 4.4.4 自定義View的思想
- 第5章 理解RemoteViews
- 5.1 RemoteViews的應用
- 5.1.1 RemoteViews在通知欄上的應用
- 5.1.2 RemoteViews在桌面小部件上的應用
- 5.1.3 PendingIntent概述
- 5.2 RemoteViews的內部機制
- 5.3 RemoteViews的意義
- 第6章 Android的Drawable
- 6.1 Drawable簡介
- 6.2 Drawable的分類
- 6.2.1 BitmapDrawable2
- 6.2.2 ShapeDrawable
- 6.2.3 LayerDrawable
- 6.2.4 StateListDrawable
- 6.2.5 LevelListDrawable
- 6.2.6 TransitionDrawable
- 6.2.7 InsetDrawable
- 6.2.8 ScaleDrawable
- 6.2.9 ClipDrawable
- 6.3 自定義Drawable
- 第7章 Android動畫深入分析
- 7.1 View動畫
- 7.1.1 View動畫的種類
- 7.1.2 自定義View動畫
- 7.1.3 幀動畫
- 7.2 View動畫的特殊使用場景
- 7.2.1 LayoutAnimation
- 7.2.2 Activity的切換效果
- 7.3 屬性動畫
- 7.3.1 使用屬性動畫
- 7.3.2 理解插值器和估值器 /
- 7.3.3 屬性動畫的監聽器
- 7.3.4 對任意屬性做動畫
- 7.3.5 屬性動畫的工作原理
- 7.4 使用動畫的注意事項
- 第8章 理解Window和WindowManager
- 8.1 Window和WindowManager
- 8.2 Window的內部機制
- 8.2.1 Window的添加過程
- 8.2.2 Window的刪除過程
- 8.2.3 Window的更新過程
- 8.3 Window的創建過程
- 8.3.1 Activity的Window創建過程
- 8.3.2 Dialog的Window創建過程
- 8.3.3 Toast的Window創建過程
- 第9章 四大組件的工作過程
- 9.1 四大組件的運行狀態
- 9.2 Activity的工作過程
- 9.3 Service的工作過程
- 9.3.1 Service的啟動過程
- 9.3.2 Service的綁定過程
- 9.4 BroadcastReceiver的工作過程
- 9.4.1 廣播的注冊過程
- 9.4.2 廣播的發送和接收過程
- 9.5 ContentProvider的工作過程
- 第10章 Android的消息機制
- 10.1 Android的消息機制概述
- 10.2 Android的消息機制分析
- 10.2.1 ThreadLocal的工作原理
- 10.2.2 消息隊列的工作原理
- 10.2.3 Looper的工作原理
- 10.2.4 Handler的工作原理
- 10.3 主線程的消息循環
- 第11章 Android的線程和線程池
- 11.1 主線程和子線程
- 11.2 Android中的線程形態
- 11.2.1 AsyncTask
- 11.2.2 AsyncTask的工作原理
- 11.2.3 HandlerThread
- 11.2.4 IntentService
- 11.3 Android中的線程池
- 11.3.1 ThreadPoolExecutor
- 11.3.2 線程池的分類
- 第12章 Bitmap的加載和Cache
- 12.1 Bitmap的高效加載
- 12.2 Android中的緩存策略
- 12.2.1 LruCache
- 12.2.2 DiskLruCache
- 12.2.3 ImageLoader的實現446
- 12.3 ImageLoader的使用
- 12.3.1 照片墻效果
- 12.3.2 優化列表的卡頓現象
- 第13章 綜合技術
- 13.1 使用CrashHandler來獲取應用的crash信息
- 13.2 使用multidex來解決方法數越界
- 13.3 Android的動態加載技術
- 13.4 反編譯初步
- 13.4.1 使用dex2jar和jd-gui反編譯apk
- 13.4.2 使用apktool對apk進行二次打包
- 第14章 JNI和NDK編程
- 14.1 JNI的開發流程
- 14.2 NDK的開發流程
- 14.3 JNI的數據類型和類型簽名
- 14.4 JNI調用Java方法的流程
- 第15章 Android性能優化
- 15.1 Android的性能優化方法
- 15.1.1 布局優化
- 15.1.2 繪制優化
- 15.1.3 內存泄露優化
- 15.1.4 響應速度優化和ANR日志分析
- 15.1.5 ListView和Bitmap優化
- 15.1.6 線程優化
- 15.1.7 一些性能優化建議
- 15.2 內存泄露分析之MAT工具
- 15.3 提高程序的可維護性