#### 4.3.2 layout過程
Layout的作用是ViewGroup用來確定子元素的位置,當ViewGroup的位置被確定后,它在onLayout中會遍歷所有的子元素并調用其layout方法,在layout方法中onLayout方法又會被調用。Layout過程和measure過程相比就簡單多了,layout方法確定View本身的位置,而onLayout方法則會確定所有子元素的位置,先看View的layout方法,如下所示。
public void layout(int l, int t, int r, int b) {
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) ! = 0) {
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight;
boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_
LAYOUT_REQUIRED) {
onLayout(changed, l, t, r, b);
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
ListenerInfo li = mListenerInfo;
if (li ! = null && li.mOnLayoutChangeListeners ! = null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayout-
ChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL,
oldT, oldR, oldB);
}
}
}
mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}
layout方法的大致流程如下:首先會通過setFrame方法來設定View的四個頂點的位置,即初始化mLeft、mRight、mTop和mBottom這四個值,View的四個頂點一旦確定,那么View在父容器中的位置也就確定了;接著會調用onLayout方法,這個方法的用途是父容器確定子元素的位置,和onMeasure方法類似,onLayout的具體實現同樣和具體的布局有關,所以View和ViewGroup均沒有真正實現onLayout方法。接下來,我們可以看一下LinearLayout的onLayout方法,如下所示。
protected void onLayout(boolean changed, int l, int t, int r, int b) {
if (mOrientation == VERTICAL) {
layoutVertical(l, t, r, b);
} else {
layoutHorizontal(l, t, r, b);
}
}
LinearLayout中onLayout的實現邏輯和onMeasure的實現邏輯類似,這里選擇layoutVertical繼續講解,為了更好地理解其邏輯,這里只給出了主要的代碼:
void layoutVertical(int left, int top, int right, int bottom) {
...
final int count = getVirtualChildCount();
for (int i = 0; i < count; i++) {
final View child = getVirtualChildAt(i);
if (child == null) {
childTop += measureNullChild(i);
} else if (child.getVisibility() ! = GONE) {
final int childWidth = child.getMeasuredWidth();
final int childHeight = child.getMeasuredHeight();
final LinearLayout.LayoutParams lp =
(LinearLayout.LayoutParams) child.getLayoutParams();
...
if (hasDividerBeforeChildAt(i)) {
childTop += mDividerHeight;
}
childTop += lp.topMargin;
setChildFrame(child, childLeft, childTop + getLocationOffset
(child), childWidth, childHeight);
childTop += childHeight + lp.bottomMargin + getNextLocation-
Offset(child);
i += getChildrenSkipCount(child, i);
}
}
}
這里分析一下layoutVertical的代碼邏輯,可以看到,此方法會遍歷所有子元素并調用setChildFrame方法來為子元素指定對應的位置,其中childTop會逐漸增大,這就意味著后面的子元素會被放置在靠下的位置,這剛好符合豎直方向的LinearLayout的特性。至于setChildFrame,它僅僅是調用子元素的layout方法而已,這樣父元素在layout方法中完成自己的定位以后,就通過onLayout方法去調用子元素的layout方法,子元素又會通過自己的layout方法來確定自己的位置,這樣一層一層地傳遞下去就完成了整個View樹的layout過程。setChildFrame方法的實現如下所示。
private void setChildFrame(View child, int left, int top, int width, int
height) {
child.layout(left, top, left + width, top + height);
}
我們注意到,setChildFrame中的width和height實際上就是子元素的測量寬/高,從下面的代碼可以看出這一點:
final int childWidth = child.getMeasuredWidth();
final int childHeight = child.getMeasuredHeight();
setChildFrame(child, childLeft, childTop + getLocationOffset(child),
childWidth, childHeight);
而在layout方法中會通過setFrame去設置子元素的四個頂點的位置,在setFrame中有如下幾句賦值語句,這樣一來子元素的位置就確定了:
mLeft = left;
mTop = top;
mRight = right;
mBottom = bottom;
下面我們來回答一個在4.3.2節中提到的問題:View的測量寬/高和最終/寬高有什么區別?這個問題可以具體為:View的getMeasuredWidth和getWidth這兩個方法有什么區別,至于getMeasuredHeight和getHeight的區別和前兩者完全一樣。為了回答這個問題,首先,我們看一下getwidth和getHeight這兩個方法的具體實現:
public final int getWidth() {
return mRight - mLeft;
}
public final int getHeight() {
return mBottom - mTop;
}
從getWidth和getHeight的源碼再結合mLeft、mRight、mTop和mBottom這四個變量的賦值過程來看,getWidth方法的返回值剛好就是View的測量寬度,而getHeight方法的返回值也剛好就是View的測量高度。經過上述分析,現在我們可以回答這個問題了:在View的默認實現中,View的測量寬/高和最終寬/高是相等的,只不過測量寬/高形成于View的measure過程,而最終寬/高形成于View的layout過程,即兩者的賦值時機不同,測量寬/高的賦值時機稍微早一些。因此,在日常開發中,我們可以認為View的測量寬/高就等于最終寬/高,但是的確存在某些特殊情況會導致兩者不一致,下面舉例說明。
如果重寫View的layout方法,代碼如下:
public void layout(int l, int t, int r, int b) {
super.layout(l, t, r + 100, b + 100);
}
上述代碼會導致在任何情況下View的最終寬/高總是比測量寬/高大100px,雖然這樣做會導致View顯示不正常并且也沒有實際意義,但是這證明了測量寬/高的確可以不等于最終寬/高。另外一種情況是在某些情況下,View需要多次measure才能確定自己的測量寬/高,在前幾次的測量過程中,其得出的測量寬/高有可能和最終寬/高不一致,但最終來說,測量寬/高還是和最終寬/高相同。
- 前言
- 第1章 Activity的生命周期和啟動模式
- 1.1 Activity的生命周期全面分析
- 1.1.1 典型情況下的生命周期分析
- 1.1.2 異常情況下的生命周期分析
- 1.2 Activity的啟動模式
- 1.2.1 Activity的LaunchMode
- 1.2.2 Activity的Flags
- 1.3 IntentFilter的匹配規則
- 第2章 IPC機制
- 2.1 Android IPC簡介
- 2.2 Android中的多進程模式
- 2.2.1 開啟多進程模式
- 2.2.2 多進程模式的運行機制
- 2.3 IPC基礎概念介紹
- 2.3.1 Serializable接口
- 2.3.2 Parcelable接口
- 2.3.3 Binder
- 2.4 Android中的IPC方式
- 2.4.1 使用Bundle
- 2.4.2 使用文件共享
- 2.4.3 使用Messenger
- 2.4.4 使用AIDL
- 2.4.5 使用ContentProvider
- 2.4.6 使用Socket
- 2.5 Binder連接池
- 2.6 選用合適的IPC方式
- 第3章 View的事件體系
- 3.1 View基礎知識
- 3.1.1 什么是View
- 3.1.2 View的位置參數
- 3.1.3 MotionEvent和TouchSlop
- 3.1.4 VelocityTracker、GestureDetector和Scroller
- 3.2 View的滑動
- 3.2.1 使用scrollTo/scrollBy
- 3.2.2 使用動畫
- 3.2.3 改變布局參數
- 3.2.4 各種滑動方式的對比
- 3.3 彈性滑動
- 3.3.1 使用Scroller7
- 3.3.2 通過動畫
- 3.3.3 使用延時策略
- 3.4 View的事件分發機制
- 3.4.1 點擊事件的傳遞規則
- 3.4.2 事件分發的源碼解析
- 3.5 View的滑動沖突
- 3.5.1 常見的滑動沖突場景
- 3.5.2 滑動沖突的處理規則
- 3.5.3 滑動沖突的解決方式
- 第4章 View的工作原理
- 4.1 初識ViewRoot和DecorView
- 4.2 理解MeasureSpec
- 4.2.1 MeasureSpec
- 4.2.2 MeasureSpec和LayoutParams的對應關系
- 4.3 View的工作流程
- 4.3.1 measure過程
- 4.3.2 layout過程
- 4.3.3 draw過程
- 4.4 自定義View
- 4.4.1 自定義View的分類
- 4.4.2 自定義View須知
- 4.4.3 自定義View示例
- 4.4.4 自定義View的思想
- 第5章 理解RemoteViews
- 5.1 RemoteViews的應用
- 5.1.1 RemoteViews在通知欄上的應用
- 5.1.2 RemoteViews在桌面小部件上的應用
- 5.1.3 PendingIntent概述
- 5.2 RemoteViews的內部機制
- 5.3 RemoteViews的意義
- 第6章 Android的Drawable
- 6.1 Drawable簡介
- 6.2 Drawable的分類
- 6.2.1 BitmapDrawable2
- 6.2.2 ShapeDrawable
- 6.2.3 LayerDrawable
- 6.2.4 StateListDrawable
- 6.2.5 LevelListDrawable
- 6.2.6 TransitionDrawable
- 6.2.7 InsetDrawable
- 6.2.8 ScaleDrawable
- 6.2.9 ClipDrawable
- 6.3 自定義Drawable
- 第7章 Android動畫深入分析
- 7.1 View動畫
- 7.1.1 View動畫的種類
- 7.1.2 自定義View動畫
- 7.1.3 幀動畫
- 7.2 View動畫的特殊使用場景
- 7.2.1 LayoutAnimation
- 7.2.2 Activity的切換效果
- 7.3 屬性動畫
- 7.3.1 使用屬性動畫
- 7.3.2 理解插值器和估值器 /
- 7.3.3 屬性動畫的監聽器
- 7.3.4 對任意屬性做動畫
- 7.3.5 屬性動畫的工作原理
- 7.4 使用動畫的注意事項
- 第8章 理解Window和WindowManager
- 8.1 Window和WindowManager
- 8.2 Window的內部機制
- 8.2.1 Window的添加過程
- 8.2.2 Window的刪除過程
- 8.2.3 Window的更新過程
- 8.3 Window的創建過程
- 8.3.1 Activity的Window創建過程
- 8.3.2 Dialog的Window創建過程
- 8.3.3 Toast的Window創建過程
- 第9章 四大組件的工作過程
- 9.1 四大組件的運行狀態
- 9.2 Activity的工作過程
- 9.3 Service的工作過程
- 9.3.1 Service的啟動過程
- 9.3.2 Service的綁定過程
- 9.4 BroadcastReceiver的工作過程
- 9.4.1 廣播的注冊過程
- 9.4.2 廣播的發送和接收過程
- 9.5 ContentProvider的工作過程
- 第10章 Android的消息機制
- 10.1 Android的消息機制概述
- 10.2 Android的消息機制分析
- 10.2.1 ThreadLocal的工作原理
- 10.2.2 消息隊列的工作原理
- 10.2.3 Looper的工作原理
- 10.2.4 Handler的工作原理
- 10.3 主線程的消息循環
- 第11章 Android的線程和線程池
- 11.1 主線程和子線程
- 11.2 Android中的線程形態
- 11.2.1 AsyncTask
- 11.2.2 AsyncTask的工作原理
- 11.2.3 HandlerThread
- 11.2.4 IntentService
- 11.3 Android中的線程池
- 11.3.1 ThreadPoolExecutor
- 11.3.2 線程池的分類
- 第12章 Bitmap的加載和Cache
- 12.1 Bitmap的高效加載
- 12.2 Android中的緩存策略
- 12.2.1 LruCache
- 12.2.2 DiskLruCache
- 12.2.3 ImageLoader的實現446
- 12.3 ImageLoader的使用
- 12.3.1 照片墻效果
- 12.3.2 優化列表的卡頓現象
- 第13章 綜合技術
- 13.1 使用CrashHandler來獲取應用的crash信息
- 13.2 使用multidex來解決方法數越界
- 13.3 Android的動態加載技術
- 13.4 反編譯初步
- 13.4.1 使用dex2jar和jd-gui反編譯apk
- 13.4.2 使用apktool對apk進行二次打包
- 第14章 JNI和NDK編程
- 14.1 JNI的開發流程
- 14.2 NDK的開發流程
- 14.3 JNI的數據類型和類型簽名
- 14.4 JNI調用Java方法的流程
- 第15章 Android性能優化
- 15.1 Android的性能優化方法
- 15.1.1 布局優化
- 15.1.2 繪制優化
- 15.1.3 內存泄露優化
- 15.1.4 響應速度優化和ANR日志分析
- 15.1.5 ListView和Bitmap優化
- 15.1.6 線程優化
- 15.1.7 一些性能優化建議
- 15.2 內存泄露分析之MAT工具
- 15.3 提高程序的可維護性