<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                # 多個圖 您可以創建與默認圖分開的圖,并在會話中執行它們。但是,不建議創建和執行多個圖,因為它具有以下缺點: * 在同一程序中創建和使用多個圖將需要多個 TensorFlow 會話,并且每個會話將消耗大量資源 * 您無法直接在圖之間傳遞數據 因此,推薦的方法是在單個圖中包含多個子圖。如果您希望使用自己的圖而不是默認圖,可以使用`tf.graph()`命令執行此操作。下面是我們創建自己的圖`g`并將其作為默認圖執行的示例: ```py g = tf.Graph() output = 0 # Assume Linear Model y = w * x + b with g.as_default(): # Define model parameters w = tf.Variable([.3], tf.float32) b = tf.Variable([-.3], tf.float32) # Define model input and output x = tf.placeholder(tf.float32) y = w * x + b with tf.Session(graph=g) as tfs: # initialize and print the variable y tf.global_variables_initializer().run() output = tfs.run(y,{x:[1,2,3,4]}) print('output : ',output) ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看