<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                # 為 TF 服務構建 Docker 鏡像 我們繼續使用 Docker 鏡像進行如下操作: 1. 使用以下內容創建名為`dockerfile`的文件: ```py FROM ubuntu:16.04 MAINTAINER Armando Fandango <armando@geekysalsero.com> RUN apt-get update && apt-get install -y \ build-essential \ curl \ git \ libfreetype6-dev \ libpng12-dev \ libzmq3-dev \ mlocate \ pkg-config \ python-dev \ python-numpy \ python-pip \ software-properties-common \ swig \ zip \ zlib1g-dev \ libcurl3-dev \ openjdk-8-jdk\ openjdk-8-jre-headless \ wget \ && \ apt-get clean && \ rm -rf /var/lib/apt/lists/* RUN echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" \ | tee /etc/apt/sources.list.d/tensorflow-serving.list RUN curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg \ | apt-key add - RUN apt-get update && apt-get install -y \ tensorflow-model-server RUN pip install --upgrade pip RUN pip install mock grpcio tensorflow tensorflow-serving-api CMD ["/bin/bash"] ``` 1. 運行以下命令從此`dockerfile`構建 Docker 鏡像: ```py $ docker build --pull -t $USER/tensorflow_serving -f dockerfile . ``` 1. 創建圖像需要一段時間。當您看到類似于以下內容的內容時,您就會知道圖像已構建: ```py Removing intermediate container 1d8e757d96e0 Successfully built 0f95ddba4362 Successfully tagged armando/tensorflow_serving:latest ``` 1. 運行以下命令以啟動容器: ```py $ docker run --name=mnist_container -it $USER/tensorflow_serving ``` 1. 當您看到以下提示時,您將登錄到容器: ```py root@244ea14efb8f:/# ``` 1. 將`cd`命令轉到主文件夾。 2. 在主文件夾中,提供以下命令以檢查 TensorFlow 是否正在提供代碼。我們將使用此代碼中的示例來演示,但您可以查看自己的 Git 倉庫來運行您自己的模型: ```py $ git clone --recurse-submodules https://github.com/tensorflow/serving ``` 克隆倉庫后,我們就可以構建,訓練和保存 MNIST 模型了。 1. 使用以下命令刪除臨時文件夾(如果尚未刪除): ```py $ rm -rf /tmp/mnist_model ``` 1. 運行以下命令以構建,訓練和保存 MNIST 模型。 ```py $ python serving/tensorflow_serving/example/mnist_saved_model.py /tmp/mnist_model ``` 您將看到類似于以下內容的內容: ```py Training model... Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes. Extracting /tmp/train-images-idx3-ubyte.gz Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes. Extracting /tmp/train-labels-idx1-ubyte.gz Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes. Extracting /tmp/t10k-images-idx3-ubyte.gz Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes. Extracting /tmp/t10k-labels-idx1-ubyte.gz 2017-11-22 01:09:38.165391: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA training accuracy 0.9092 Done training! Exporting trained model to /tmp/mnist_model/1 Done exporting! ``` 1. 按`Ctrl + P`和`Ctrl + Q`從 Docker 鏡像中分離。 2. 提交對新映像的更改并使用以下命令停止容器: ```py $ docker commit mnist_container $USER/mnist_serving $ docker stop mnist_container ``` 1. 現在,您可以通過提供以下命令隨時運行此容器: ```py $ docker run --name=mnist_container -it $USER/mnist_serving ``` 1. 刪除我們為保存圖像而構建的臨時 MNIST 容器: ```py $ docker rm mnist_container ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看