<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                # 定義損失函數 接下來,我們使用**均方誤差**( **MSE** )定義損失函數。 MSE 定義如下: 有關 MSE 的更多詳細信息,請訪問以下鏈接:[https://en.wikipedia.org/wiki/Mean_squared_error](https://en.wikipedia.org/wiki/Mean_squared_error)[http://www.statisticshowto.com/mean-squared-error/](http://www.statisticshowto.com/mean-squared-error/) `y`的實際值和估計值的差異稱為**殘留**。損失函數計算殘差平方的平均值。我們通過以下方式在 TensorFlow 中定義它: ```py loss = tf.reduce_mean(tf.square(model - y_tensor)) ``` * `model - y_tensor`計算殘差 * `tf.square(model - y_tensor)`計算每個殘差的平方 * `tf.reduce_mean( ... )`最終計算在前一步驟中計算的平方均值 我們還定義**均方誤差**( **mse** )和 **r 平方**( **rs** )函數來評估訓練模型。我們使用單獨的`mse`函數,因為在接下來的章節中,損失函數將改變但`mse`函數將保持不變。 ```py # mse and R2 functions mse = tf.reduce_mean(tf.square(model - y_tensor)) y_mean = tf.reduce_mean(y_tensor) total_error = tf.reduce_sum(tf.square(y_tensor - y_mean)) unexplained_error = tf.reduce_sum(tf.square(y_tensor - model)) rs = 1 - tf.div(unexplained_error, total_error) ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看