<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                # 數據準備 要生成數據集,我們使用`sklearn`庫的`datasets`模塊中的`make_regression`函數: ```py from sklearn import datasets as skds X, y = skds.make_regression(n_samples=200, n_features=1, n_informative=1, n_targets=1, noise = 20.0) ``` 這將生成一個回歸數據集,其中包含一個特征的 200 個樣本值和每個特征的一個目標,并添加了一些噪聲。因為我們只生成一個目標,所以該函數使用一維 NumPy 數組生成`y`;因此,我們重塑`y`有兩個維度: ```py if (y.ndim == 1): y = y.reshape(len(y),1) ``` 我們使用以下代碼繪制生成的數據集以查看數據: ```py import matplotlib.pyplot as plt plt.figure(figsize=(14,8)) plt.plot(X,y,'b.') plt.title('Original Dataset') plt.show() ``` 我們得到以下繪圖。由于生成的數據是隨機的,您可能會得到不同的繪圖: ![](https://img.kancloud.cn/3f/2f/3f2fae779b05316ba1b9a345f69d7dc3_833x482.png) 現在讓我們將數據分為訓練集和測試集: ```py X_train, X_test, y_train, y_test = skms.train_test_split(X, y, test_size=.4, random_state=123) ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看