# 使用 TensorFlow 的簡單的 GAN
您可以按照 Jupyter 筆記本中的代碼`ch-14a_SimpleGAN`。
為了使用 TensorFlow 構建 GAN,我們使用以下步驟構建三個網絡,兩個判別器模型和一個生成器模型:
1. 首先添加用于定義網絡的超參數:
```py
# graph hyperparameters
g_learning_rate = 0.00001
d_learning_rate = 0.01
n_x = 784 # number of pixels in the MNIST image
# number of hidden layers for generator and discriminator
g_n_layers = 3
d_n_layers = 1
# neurons in each hidden layer
g_n_neurons = [256, 512, 1024]
d_n_neurons = [256]
# define parameter ditionary
d_params = {}
g_params = {}
activation = tf.nn.leaky_relu
w_initializer = tf.glorot_uniform_initializer
b_initializer = tf.zeros_initializer
```
1. 接下來,定義生成器網絡:
```py
z_p = tf.placeholder(dtype=tf.float32, name='z_p',
shape=[None, n_z])
layer = z_p
# add generator network weights, biases and layers
with tf.variable_scope('g'):
for i in range(0, g_n_layers): w_name = 'w_{0:04d}'.format(i)
g_params[w_name] = tf.get_variable(
name=w_name,
shape=[n_z if i == 0 else g_n_neurons[i - 1],
g_n_neurons[i]],
initializer=w_initializer())
b_name = 'b_{0:04d}'.format(i)
g_params[b_name] = tf.get_variable(
name=b_name, shape=[g_n_neurons[i]],
initializer=b_initializer())
layer = activation(
tf.matmul(layer, g_params[w_name]) + g_params[b_name])
# output (logit) layer
i = g_n_layers
w_name = 'w_{0:04d}'.format(i)
g_params[w_name] = tf.get_variable(
name=w_name,
shape=[g_n_neurons[i - 1], n_x],
initializer=w_initializer())
b_name = 'b_{0:04d}'.format(i)
g_params[b_name] = tf.get_variable(
name=b_name, shape=[n_x], initializer=b_initializer())
g_logit = tf.matmul(layer, g_params[w_name]) + g_params[b_name]
g_model = tf.nn.tanh(g_logit)
```
1. 接下來,定義我們將構建的兩個判別器網絡的權重和偏差:
```py
with tf.variable_scope('d'):
for i in range(0, d_n_layers): w_name = 'w_{0:04d}'.format(i)
d_params[w_name] = tf.get_variable(
name=w_name,
shape=[n_x if i == 0 else d_n_neurons[i - 1],
d_n_neurons[i]],
initializer=w_initializer())
b_name = 'b_{0:04d}'.format(i)
d_params[b_name] = tf.get_variable(
name=b_name, shape=[d_n_neurons[i]],
initializer=b_initializer())
#output (logit) layer
i = d_n_layers
w_name = 'w_{0:04d}'.format(i)
d_params[w_name] = tf.get_variable(
name=w_name, shape=[d_n_neurons[i - 1], 1],
initializer=w_initializer())
b_name = 'b_{0:04d}'.format(i)
d_params[b_name] = tf.get_variable(
name=b_name, shape=[1], initializer=b_initializer())
```
1. 現在使用這些參數,構建將真實圖像作為輸入并輸出分類的判別器:
```py
# define discriminator_real
# input real images
x_p = tf.placeholder(dtype=tf.float32, name='x_p',
shape=[None, n_x])
layer = x_p
with tf.variable_scope('d'):
for i in range(0, d_n_layers): w_name = 'w_{0:04d}'.format(i)
b_name = 'b_{0:04d}'.format(i)
layer = activation(
tf.matmul(layer, d_params[w_name]) + d_params[b_name])
layer = tf.nn.dropout(layer,0.7)
#output (logit) layer
i = d_n_layers
w_name = 'w_{0:04d}'.format(i)
b_name = 'b_{0:04d}'.format(i)
d_logit_real = tf.matmul(layer,
d_params[w_name]) + d_params[b_name]
d_model_real = tf.nn.sigmoid(d_logit_real)
```
1. 接下來,使用相同的參數構建另一個判別器網絡,但提供生成器的輸出作為輸入:
```py
# define discriminator_fake
# input generated fake images
z = g_model
layer = z
with tf.variable_scope('d'):
for i in range(0, d_n_layers): w_name = 'w_{0:04d}'.format(i)
b_name = 'b_{0:04d}'.format(i)
layer = activation(
tf.matmul(layer, d_params[w_name]) + d_params[b_name])
layer = tf.nn.dropout(layer,0.7)
#output (logit) layer
i = d_n_layers
w_name = 'w_{0:04d}'.format(i)
b_name = 'b_{0:04d}'.format(i)
d_logit_fake = tf.matmul(layer,
d_params[w_name]) + d_params[b_name]
d_model_fake = tf.nn.sigmoid(d_logit_fake)
```
1. 現在我們已經建立了三個網絡,它們之間的連接是使用損失,優化器和訓練函數完成的。在訓練生成器時,我們只訓練生成器的參數,在訓練判別器時,我們只訓練判別器的參數。我們使用`var_list`參數將此指定給優化器的`minimize()`函數。以下是為兩種網絡定義損失,優化器和訓練函數的完整代碼:
```py
g_loss = -tf.reduce_mean(tf.log(d_model_fake))
d_loss = -tf.reduce_mean(tf.log(d_model_real) + tf.log(1 - d_model_fake))
g_optimizer = tf.train.AdamOptimizer(g_learning_rate)
d_optimizer = tf.train.GradientDescentOptimizer(d_learning_rate)
g_train_op = g_optimizer.minimize(g_loss,
var_list=list(g_params.values()))
d_train_op = d_optimizer.minimize(d_loss,
var_list=list(d_params.values()))
```
1. 現在我們已經定義了模型,我們必須訓練模型。訓練按照以下算法完成:
```py
For each epoch:
For each batch: get real images x_batch
generate noise z_batch
train discriminator using z_batch and x_batch
generate noise z_batch
train generator using z_batch
```
筆記本電腦的完整訓練代碼如下:
```py
n_epochs = 400
batch_size = 100
n_batches = int(mnist.train.num_examples / batch_size)
n_epochs_print = 50
with tf.Session() as tfs:
tfs.run(tf.global_variables_initializer())
for epoch in range(n_epochs):
epoch_d_loss = 0.0
epoch_g_loss = 0.0
for batch in range(n_batches):
x_batch, _ = mnist.train.next_batch(batch_size)
x_batch = norm(x_batch)
z_batch = np.random.uniform(-1.0,1.0,size=[batch_size,n_z])
feed_dict = {x_p: x_batch,z_p: z_batch}
_,batch_d_loss = tfs.run([d_train_op,d_loss],
feed_dict=feed_dict)
z_batch = np.random.uniform(-1.0,1.0,size=[batch_size,n_z])
feed_dict={z_p: z_batch}
_,batch_g_loss = tfs.run([g_train_op,g_loss],
feed_dict=feed_dict)
epoch_d_loss += batch_d_loss
epoch_g_loss += batch_g_loss
if epoch%n_epochs_print == 0:
average_d_loss = epoch_d_loss / n_batches
average_g_loss = epoch_g_loss / n_batches
print('epoch: {0:04d} d_loss = {1:0.6f} g_loss = {2:0.6f}'
.format(epoch,average_d_loss,average_g_loss))
# predict images using generator model trained
x_pred = tfs.run(g_model,feed_dict={z_p:z_test})
display_images(x_pred.reshape(-1,pixel_size,pixel_size))
```
我們每 50 個周期印刷生成的圖像:

正如我們所看到的那樣,生成器在周期 0 中只產生噪聲,但是在周期 350 中,它經過訓練可以產生更好的手寫數字形狀。您可以嘗試使用周期,正則化,網絡架構和其他超參數進行試驗,看看是否可以產生更快更好的結果。
- TensorFlow 101
- 什么是 TensorFlow?
- TensorFlow 核心
- 代碼預熱 - Hello TensorFlow
- 張量
- 常量
- 操作
- 占位符
- 從 Python 對象創建張量
- 變量
- 從庫函數生成的張量
- 使用相同的值填充張量元素
- 用序列填充張量元素
- 使用隨機分布填充張量元素
- 使用tf.get_variable()獲取變量
- 數據流圖或計算圖
- 執行順序和延遲加載
- 跨計算設備執行圖 - CPU 和 GPU
- 將圖節點放置在特定的計算設備上
- 簡單放置
- 動態展示位置
- 軟放置
- GPU 內存處理
- 多個圖
- TensorBoard
- TensorBoard 最小的例子
- TensorBoard 詳情
- 總結
- TensorFlow 的高級庫
- TF Estimator - 以前的 TF 學習
- TF Slim
- TFLearn
- 創建 TFLearn 層
- TFLearn 核心層
- TFLearn 卷積層
- TFLearn 循環層
- TFLearn 正則化層
- TFLearn 嵌入層
- TFLearn 合并層
- TFLearn 估計層
- 創建 TFLearn 模型
- TFLearn 模型的類型
- 訓練 TFLearn 模型
- 使用 TFLearn 模型
- PrettyTensor
- Sonnet
- 總結
- Keras 101
- 安裝 Keras
- Keras 中的神經網絡模型
- 在 Keras 建立模型的工作流程
- 創建 Keras 模型
- 用于創建 Keras 模型的順序 API
- 用于創建 Keras 模型的函數式 API
- Keras 層
- Keras 核心層
- Keras 卷積層
- Keras 池化層
- Keras 本地連接層
- Keras 循環層
- Keras 嵌入層
- Keras 合并層
- Keras 高級激活層
- Keras 正則化層
- Keras 噪音層
- 將層添加到 Keras 模型
- 用于將層添加到 Keras 模型的順序 API
- 用于向 Keras 模型添加層的函數式 API
- 編譯 Keras 模型
- 訓練 Keras 模型
- 使用 Keras 模型進行預測
- Keras 的附加模塊
- MNIST 數據集的 Keras 序列模型示例
- 總結
- 使用 TensorFlow 進行經典機器學習
- 簡單的線性回歸
- 數據準備
- 構建一個簡單的回歸模型
- 定義輸入,參數和其他變量
- 定義模型
- 定義損失函數
- 定義優化器函數
- 訓練模型
- 使用訓練的模型進行預測
- 多元回歸
- 正則化回歸
- 套索正則化
- 嶺正則化
- ElasticNet 正則化
- 使用邏輯回歸進行分類
- 二分類的邏輯回歸
- 多類分類的邏輯回歸
- 二分類
- 多類分類
- 總結
- 使用 TensorFlow 和 Keras 的神經網絡和 MLP
- 感知機
- 多層感知機
- 用于圖像分類的 MLP
- 用于 MNIST 分類的基于 TensorFlow 的 MLP
- 用于 MNIST 分類的基于 Keras 的 MLP
- 用于 MNIST 分類的基于 TFLearn 的 MLP
- 使用 TensorFlow,Keras 和 TFLearn 的 MLP 總結
- 用于時間序列回歸的 MLP
- 總結
- 使用 TensorFlow 和 Keras 的 RNN
- 簡單循環神經網絡
- RNN 變種
- LSTM 網絡
- GRU 網絡
- TensorFlow RNN
- TensorFlow RNN 單元類
- TensorFlow RNN 模型構建類
- TensorFlow RNN 單元包裝器類
- 適用于 RNN 的 Keras
- RNN 的應用領域
- 用于 MNIST 數據的 Keras 中的 RNN
- 總結
- 使用 TensorFlow 和 Keras 的時間序列數據的 RNN
- 航空公司乘客數據集
- 加載 airpass 數據集
- 可視化 airpass 數據集
- 使用 TensorFlow RNN 模型預處理數據集
- TensorFlow 中的簡單 RNN
- TensorFlow 中的 LSTM
- TensorFlow 中的 GRU
- 使用 Keras RNN 模型預處理數據集
- 使用 Keras 的簡單 RNN
- 使用 Keras 的 LSTM
- 使用 Keras 的 GRU
- 總結
- 使用 TensorFlow 和 Keras 的文本數據的 RNN
- 詞向量表示
- 為 word2vec 模型準備數據
- 加載和準備 PTB 數據集
- 加載和準備 text8 數據集
- 準備小驗證集
- 使用 TensorFlow 的 skip-gram 模型
- 使用 t-SNE 可視化單詞嵌入
- keras 的 skip-gram 模型
- 使用 TensorFlow 和 Keras 中的 RNN 模型生成文本
- TensorFlow 中的 LSTM 文本生成
- Keras 中的 LSTM 文本生成
- 總結
- 使用 TensorFlow 和 Keras 的 CNN
- 理解卷積
- 了解池化
- CNN 架構模式 - LeNet
- 用于 MNIST 數據的 LeNet
- 使用 TensorFlow 的用于 MNIST 的 LeNet CNN
- 使用 Keras 的用于 MNIST 的 LeNet CNN
- 用于 CIFAR10 數據的 LeNet
- 使用 TensorFlow 的用于 CIFAR10 的 ConvNets
- 使用 Keras 的用于 CIFAR10 的 ConvNets
- 總結
- 使用 TensorFlow 和 Keras 的自編碼器
- 自編碼器類型
- TensorFlow 中的棧式自編碼器
- Keras 中的棧式自編碼器
- TensorFlow 中的去噪自編碼器
- Keras 中的去噪自編碼器
- TensorFlow 中的變分自編碼器
- Keras 中的變分自編碼器
- 總結
- TF 服務:生產中的 TensorFlow 模型
- 在 TensorFlow 中保存和恢復模型
- 使用保護程序類保存和恢復所有圖變量
- 使用保護程序類保存和恢復所選變量
- 保存和恢復 Keras 模型
- TensorFlow 服務
- 安裝 TF 服務
- 保存 TF 服務的模型
- 提供 TF 服務模型
- 在 Docker 容器中提供 TF 服務
- 安裝 Docker
- 為 TF 服務構建 Docker 鏡像
- 在 Docker 容器中提供模型
- Kubernetes 中的 TensorFlow 服務
- 安裝 Kubernetes
- 將 Docker 鏡像上傳到 dockerhub
- 在 Kubernetes 部署
- 總結
- 遷移學習和預訓練模型
- ImageNet 數據集
- 再訓練或微調模型
- COCO 動物數據集和預處理圖像
- TensorFlow 中的 VGG16
- 使用 TensorFlow 中預訓練的 VGG16 進行圖像分類
- TensorFlow 中的圖像預處理,用于預訓練的 VGG16
- 使用 TensorFlow 中的再訓練的 VGG16 進行圖像分類
- Keras 的 VGG16
- 使用 Keras 中預訓練的 VGG16 進行圖像分類
- 使用 Keras 中再訓練的 VGG16 進行圖像分類
- TensorFlow 中的 Inception v3
- 使用 TensorFlow 中的 Inception v3 進行圖像分類
- 使用 TensorFlow 中的再訓練的 Inception v3 進行圖像分類
- 總結
- 深度強化學習
- OpenAI Gym 101
- 將簡單的策略應用于 cartpole 游戲
- 強化學習 101
- Q 函數(在模型不可用時學習優化)
- RL 算法的探索與開發
- V 函數(模型可用時學習優化)
- 強化學習技巧
- 強化學習的樸素神經網絡策略
- 實現 Q-Learning
- Q-Learning 的初始化和離散化
- 使用 Q-Table 進行 Q-Learning
- Q-Network 或深 Q 網絡(DQN)的 Q-Learning
- 總結
- 生成性對抗網絡
- 生成性對抗網絡 101
- 建立和訓練 GAN 的最佳實踐
- 使用 TensorFlow 的簡單的 GAN
- 使用 Keras 的簡單的 GAN
- 使用 TensorFlow 和 Keras 的深度卷積 GAN
- 總結
- 使用 TensorFlow 集群的分布式模型
- 分布式執行策略
- TensorFlow 集群
- 定義集群規范
- 創建服務器實例
- 定義服務器和設備之間的參數和操作
- 定義并訓練圖以進行異步更新
- 定義并訓練圖以進行同步更新
- 總結
- 移動和嵌入式平臺上的 TensorFlow 模型
- 移動平臺上的 TensorFlow
- Android 應用中的 TF Mobile
- Android 上的 TF Mobile 演示
- iOS 應用中的 TF Mobile
- iOS 上的 TF Mobile 演示
- TensorFlow Lite
- Android 上的 TF Lite 演示
- iOS 上的 TF Lite 演示
- 總結
- R 中的 TensorFlow 和 Keras
- 在 R 中安裝 TensorFlow 和 Keras 軟件包
- R 中的 TF 核心 API
- R 中的 TF 估計器 API
- R 中的 Keras API
- R 中的 TensorBoard
- R 中的 tfruns 包
- 總結
- 調試 TensorFlow 模型
- 使用tf.Session.run()獲取張量值
- 使用tf.Print()打印張量值
- 用tf.Assert()斷言條件
- 使用 TensorFlow 調試器(tfdbg)進行調試
- 總結
- 張量處理單元