<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                # PrettyTensor PrettyTensor 在 TensorFlow 上提供了一個薄包裝器。 PrettyTensor 提供的對象支持可鏈接的語法來定義神經網絡。例如,可以通過鏈接層來創建模型,如以下代碼所示: ```py model = (X. flatten(). fully_connected(10). softmax_classifier(n_classes, labels=Y)) ``` 可以使用以下命令在 Python 3 中安裝 PrettyTensor: ```py pip3 install prettytensor ``` PrettyTensor 以名為`apply()`的方法提供了一個非常輕量級和可擴展的界面。可以使用`.apply(function, arguments)`方法將任何附加函數鏈接到 PrettyTensor 對象。 PrettyTensor 將調用`function`并提供當前張量作為`function`的第一個參數。 User-created functions can be added using the `@prettytensor.register` decorator. Details can be found at [https://github.com/google/prettytensor](https://github.com/google/prettytensor). 在 PrettyTensor 中定義和訓練模型的工作流程如下: 1. 獲取數據。 2. 定義超參數和參數。 3. 定義輸入和輸出。 4. 定義模型。 5. 定義評估程序,優化程序和訓練器函數。 6. 創建跑步者對象。 7. 在 TensorFlow 會話中,使用`runner.train_model()`方法訓練模型。 8. 在同一會話中,使用`runner.evaluate_model()`方法評估模型。 筆記本`ch-02_TF_High_Level_Libraries`中提供了 PrettyTensor MNIST 分類示例的完整代碼。 PrettyTensor MNIST 示例的輸出如下: ```py [1] [2.5561881] [600] [0.3553167] Accuracy after 1 epochs 0.8799999952316284 [601] [0.47775066] [1200] [0.34739292] Accuracy after 2 epochs 0.8999999761581421 [1201] [0.19110668] [1800] [0.17418651] Accuracy after 3 epochs 0.8999999761581421 [1801] [0.27229539] [2400] [0.34908807] Accuracy after 4 epochs 0.8700000047683716 [2401] [0.40000191] [3000] [0.30816519] Accuracy after 5 epochs 0.8999999761581421 [3001] [0.29905257] [3600] [0.41590339] Accuracy after 6 epochs 0.8899999856948853 [3601] [0.32594997] [4200] [0.36930788] Accuracy after 7 epochs 0.8899999856948853 [4201] [0.26780865] [4800] [0.2911002] Accuracy after 8 epochs 0.8899999856948853 [4801] [0.36304188] [5400] [0.39880857] Accuracy after 9 epochs 0.8999999761581421 [5401] [0.1339224] [6000] [0.14993289] Accuracy after 10 epochs 0.8899999856948853 ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看