<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                # 用于 MNIST 數據的 Keras 中的 RNN 雖然 RNN 主要用于序列數據,但它也可用于圖像數據。我們知道圖像具有最小的兩個維度 - 高度和寬度。現在將其中一個維度視為時間步長,將其他維度視為特征。對于 MNIST,圖像大小為 28 x 28 像素,因此我們可以將 MNIST 圖像視為具有 28 個時間步長,每個時間步長具有 28 個特征。 我們將在下一章中提供時間序列和文本數據的示例,但讓我們為 Keras 中的 MNIST 構建和訓練 RNN,以快速瀏覽構建和訓練 RNN 模型的過程。 您可以按照 Jupyter 筆記本中的代碼`ch-06_RNN_MNIST_Keras`。 導入所需的模塊: ```py import keras from keras.models import Sequential from keras.layers import Dense, Activation from keras.layers.recurrent import SimpleRNN from keras.optimizers import RMSprop from keras.optimizers import SGD ``` 獲取 MNIST 數據并將數據從 1-D 中的 784 像素轉換為 2-D 中的 28 x 28 像素: ```py from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets(os.path.join(datasetslib.datasets_root, 'mnist'), one_hot=True) X_train = mnist.train.images X_test = mnist.test.images Y_train = mnist.train.labels Y_test = mnist.test.labels n_classes = 10 n_classes = 10 X_train = X_train.reshape(-1,28,28) X_test = X_test.reshape(-1,28,28) ``` 在 Keras 構建 SimpleRNN 模型: ```py # create and fit the SimpleRNN model model = Sequential() model.add(SimpleRNN(units=16, activation='relu', input_shape=(28,28))) model.add(Dense(n_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=RMSprop(lr=0.01), metrics=['accuracy']) model.summary() ``` 該模型如下: ```py _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= simple_rnn_1 (SimpleRNN) (None, 16) 720 _________________________________________________________________ dense_1 (Dense) (None, 10) 170 _________________________________________________________________ activation_1 (Activation) (None, 10) 0 ================================================================= Total params: 890 Trainable params: 890 Non-trainable params: 0 _________________________________________________________________ ``` 訓練模型并打印測試數據集的準確性: ```py model.fit(X_train, Y_train, batch_size=100, epochs=20) score = model.evaluate(X_test, Y_test) print('\nTest loss:', score[0]) print('Test accuracy:', score[1]) ``` 我們得到以下結果: ```py Test loss: 0.520945608187 Test accuracy: 0.8379 ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看